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ABSTRACT 

 
With the accelerating pace of development in printed electronics, the fabrication and application of 
conductive ink have been brought into sharp focus in recent years. The discovery of graphene also 
unfolded a vigorous campaign on its application. The purpose of this study was to determine the effect 
of graphene ink when the heat was applied to obtain the optimised formula and prepare graphene 
conductive ink with good conductivity. In this paper, graphene conductive ink was prepared using a 
simple method involving mixing, printing, and curing processes to produce conductive ink according 
to the formulation. Different compositions of a mixture that contained filler, binder, and hardener 
were put inside a vacuum to remove bubbles and the ink was cured at 150°C for 30 minutes. This 
research also studied the effect of the temperature on electrical and mechanical properties, and 
surface roughness of the hybrid conductive ink using a varying amount of filler for graphene 
nanoplatelets (GNP) inks. The electrical and mechanical properties were assessed using a four-point 
probe complying with the ASTM F390 and a Dynamic Ultra Microhardness complying with the ASTM 
E2546-15. The experimental results demonstrated an improvement in electrical conductivity. GNP 
showed resistivity around 0.0456 Mohm/sq. The correlation between the material hardness with 
different percentages of filler loading for GNP ink with and without thermal effect conditions was 
presented. Both of the two GNP ink conditions exhibited similar graph trends, where the hardness 
was found to increase as the filler loading in the ink was increased. 
 
Keywords: Graphene ink; sheet resistivity; surface roughness; cross-section; hardness.  
 
 
1.  INTRODUCTION 
 
In the last few years, the development of technologies for conductive ink grew significantly. 
Conductive ink has been pushed forward by the progress of printed and flexible electronics (Rosa et 
al., 2015). Printed electronics are involved in the development of electrical and electronic system 
printing techniques on different types of substrates. It is an emerging technology, which grows rapidly 
due to its wide application in radio frequency identification (RFID) (Huang et al., 2015; Leng et al., 
2016), chemical sensors (Singh et al., 2017; Tortorich et al., 2018) and wearable electronics (Van Den 
Brand et al., 2015; Gao et al., 2017). There is an ever-increasing need to develop and produce 
electronic devices with new characteristics, which have low manufacturing costs, long-endurance 
time, environmentally sustainable production methods, recycling ability, lower energy consumption, 
and higher efficiency.  
 
To meet all the requirements, a new manufacturing technique must be developed, and new advanced 
materials must be taken into use. One of the promising manufacturing techniques for electronic 
production is printing. Printing is an additive method, which can be used to prepare conductive pattern 
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One of the major challenges is to formulate suitable inks that can be printed using printing 
technologies in order to replace conventional technologies, which create a limitation in terms of an 
environmental issue (Faddoul et. al., 2012; Wu, 2017). Up to now, numerous kinds of conductive ink 
with different fillers such as silver, copper, and carbon-based material have been developed for the 
formation of conductive ink. Typically, silver and copper inks have been globally commercialised and 
used in electronic industries due to their excellent electrical conductivity performance. However, the 
problems with silver ink are the high cost, low content, and electromigration behaviour that limit their 
widespread industrial application.  
 
Other than that, copper is an attractive alternative material to silver due to its comparable bulk 
conductivity. However, copper is easily oxidised, and the presence of copper oxide increases sintering 
temperature and reduces conductivity (Lee et. al., 2008; Nie et. al., 2012; Yang et. al., 2016). Thus, 
there is still a need to develop new types of conductive ink to solve the above-mentioned problem. 
Therefore, carbon-based material is utilised in this study as the filler material, which is graphene 
nanoplatelets (GNP) with different filler percentages to investigate the role of those properties in the 
enhancement of functionality and reliability of the conductive ink (Ismail et al., 2020). 
 
 
2. METHODOLOGY 
 
2.1 Materials 
 
Graphene nanoplatelets with a surface area of 500 m2/g were used as the main filler in this study. 
Binder system bisphenol, an epoxy resin BE-188 (BPA) was used as a binder to bind the particles 
together, and ACR Hardener H-2310 polyamide amine to harden the mixture. 
 
 
2.2 Ink Preparation 
 
The fabrication of graphene conductive ink involves formulating the ink composition, preparing the 
ink sample, printing the ink on the compatible substrate, and curing at the temperature of 150°C for 
30 minutes. For the first condition, namely mixing without thermal effect, the stirring process took 15 
minutes continuously at room temperature (25°C) by using a glass rod. For the second condition, 
namely mixing with thermal effect, the stirring process took 15 minutes continuously with the 
addition of heat at 70°C. The preheated mixture was taken into the vacuum to remove the bubbles. 
The conductive ink was prepared with six (6) different percentages of filler loading: 10, 15, 20, 25, 
30, and 35 wt.% with the hardener in the ratio of 100:30. The composition of the filler loading is 
tabulated in Table 1. 
 

Table 1: The composition of graphene ink. 

Sample Filler Binder Hardener 
(g) 

Total 
(g) (%) (g) (%) (g) 

1 10 0.2 90% 1.8 0.54 2 
2 15 0.3 85% 1.7 0.51 2 
3 20 0.4 80% 1.6 0.48 2 
4 25 0.5 75% 1.5 0.45 2 
5 30 0.6 70% 1.4 0.42 2 
6 35 0.7 65% 1.3 0.39 2 

 
The ink was prepared by manual mixing that involved a stirring process by using a glass rod. Stirring 
plays an important role in ensuring the uniform distribution of epoxy in the mixture and it can break 
up the agglomerates of GNP and epoxy resin to produce high GNP/epoxy dispersion. The experiment 
started with the deposition of the inked track onto a glass substrate using the doctor blade technique. 
A doctor blade method was used to deposit the ink, in which a metal stencil and low tack tape were 
applied on a polymer substrate. The stencil was placed on the tape polymer substrate and a knife was 
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3. RESULTS & DISCUSSION 
 
All the collected data and results obtained from the experiment and tests were analysed and recorded. 
The resistivity, stability, and microstructure of ink were discussed to find out the best ink formulation 
based on the recorded data. The result turned out to be as expected in which the higher the filler 
loading resulting in better performance of the ink track. The resistance of the inked track increased as 
the filler loading increased and it gave better conductivity.   
 
 
3.1 Morphological Properties 
 
The enhancement of the properties is strongly correlated with nanocomposite microstructure. 
Effective characterisation of morphology is important to establish a structure-property relationship for 
these materials. Scanning electron microscopy (SEM) had been used to evaluate the dispersion of 
GNP as well as to examine the surface for filler pull out, which could give insight into the strength of 
interfacial adhesion. There were six samples as shown in Figures 4 (a) and (b) and Figures 5 (a) and 
(b). It shows that 10 wt.% and 15 wt.% of GNP inks with and without thermal effect have brighter 
images and uneven distribution on the cross-sectional area. The micrograph also shows bad dispersion 
with many small and black clusters of GNP inks.  
 
Comparatively, the dispersion of low filler loading of 10 wt.% and 15 wt.% between the GNP inks 
with and without thermal effect does not change significantly, but the aggregate size indeed becomes 
smaller as shown in Figures 4 (a) and (b) and Figures 5 (a) and (b). Hence, they do not show the 
existence of resistivity as they contain a low percentage of filler loading (Chatterjee et al., 2012). 
Starting from 20 wt.% of filler loading as shown in Figures 4 (c) and Figure 5 (c), the cross-sectional 
images have shown smooth, homogeneous, and continuous cross-sectional areas on the GNP inks. In 
the same figures, they illustrate that the GNP inks distribute uniformly on the substrate and even 
further, GNP ink can be dispersed and stabilised well in the conductive ink.  
 
From Figures 4 (e) and (f) and Figures 5 (e) and (f), they show a smooth surface, which reveals the 
nature of weak resistance to crack initiation and propagation. On the other hand, composite containing 
a high percentage of filler loading exhibits relatively rough with some river-like structure. 
Comparatively, the composite with the highly dispersed GNP inks exhibits a rougher surface and 
numerous tortuous and fine river-like structures with hackles and ribbons. This result was similar to 
one of the studies that had been reported (Tang et al., 2013). Therefore, Figures 4 and 5 show the 
cross-sectional area of GNP ink without thermal effect and GNP ink with thermal effect.  
 
In EDX, the y-axis depicts the number of counts and the x-axis illustrates the energy of x-rays as 
shown in Figures 6 and 7. The position of the peaks leads to the identification of the element 
concentration in the sample. Samples of 10 wt.% of graphene ink with and without thermal effect 
have an atomic weight of 74.88 % and 69.00 %, while for the samples of 35 wt.% are 84.00 % and 
100.00% respectively. The higher the atomic weight of graphene, the lower the resistance of 
conductive ink track because the lesser amount of carbon particle that obstructs the movement of 
electron between graphene particles. 
 
Electrical conductivity is the measurement regarding the ability of a material to transfer or conduct an 
electric current. Lower resistance means that the material will conduct electricity more easily than a 
material with high resistance. 
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Table 2 shows the average value of sheet resistance and the standard deviation for six (6) percentages 
of filler loading. Each sample consists of six points to measure the uniformity of the printed GNP ink. 
Therefore, there is no standard benchmark in determining the standard deviation, but the lowest value 
indicates the best standard deviation. It presents how tightly the data is gathered around the mean or 
average or how far the data is spread out from the mean or average. The table below shows that 20 
wt.% of GNP ink without thermal effect has a very large standard deviation as compared to 20 wt.% 
of GNP ink with thermal effect. 
 
 

Table 2: The sheet resistance value of GNP ink. 

 Filler loading 10wt.% 15wt.% 20wt.% 25wt.% 30wt.% 35wt.% 
Sheet resistance 

(MΩ/sq) 
GNP without thermal 

effect 
0 0 308.88 42.324 3.3519 0.0456 

Std 0 0 15.444 2.1162 0.1675 0.00228 
GNP ink with thermal 

effect 
0 0 11.909 2.2913 0.1616 0.1431 

Std 0 0 0.5954 0.1145 0.00808 0.00715 
 
 
Figure 8 shows the sheet resistivity against the percentage of filler loading for both graphene inks in 
two conditions, with and without thermal effect. In general, regardless of adding the temperature to 
the mixture, the sheet resistivity of the ink decreases with an increase in the filler loading from 10 
wt.% to 35 wt.%. In other words, better electrical conductivity is achieved by increasing the filler 
loading. Such observation is supported by percolation theory, which states that filler content in 
conductive polymer composite reaches its critical volume that varies, based on the filler’s physical 
properties such as shape and size. Upon reaching the critical volume, the filler forms a three-
dimensional conductive network within the polymer matrix and resulting in a dramatic decrease in the 
sheet resistance (Saad et al., 2020).  
 
From all the prepared samples, the results reveal that only four samples have the existence of 
resistivity, which are from 20 wt.% to 35 wt.%.  For 10 wt.% and 15 wt.%, there is no existence of 
resistivity due to the small amount of filler loading. A small amount of filler loading leads to an 
agglomeration effect. No electrical conductivity is produced due to the agglomeration effect. 
Therefore, there are no resistivity values can be obtained. The different range of resistivity at different 
filler loadings on the samples is shown in Figure 8. From the graph, 35 wt.% of the ink mixture shows 
lower resistivity. It is proven that the higher the percentage of filler loading, the lower the resistivity.  
 
There is a major difference between the values of resistivity of 20 wt.% to 25 wt.% for GNP ink 
without thermal effect. It is because of the possibility that the ink is not well-distributed all over the 
gap between the scotch tape on the glass slide when the blade is moved across the gap due to the 
speed or the viscosity of the ink. When the speed of the blade increases, the ink may lose and not 
covering all the gap area. As for the viscosity of the ink, it increases with higher filler content. Ink 
with high viscosity is hard to print in compliance with the texture of the ink. Thus, it causes the 
inconsistent thickness of printed inks on the glass side. Some regions may have different thickness, 
which leads to different spreads of conducting material.   
 
There is a significant difference in values before and after 15 wt.% of filler loading, which are 327.95 
MΩ/sq for ink without thermal effect and 16.54 MΩ/sq for ink with thermal effect. However, when 
the loading reaches approximately 30 wt.%, it can be clearly seen that the sheet resistance has reached 
a plateau. This trend suggests that the conductive ink has been transformed from bulk insulator to bulk 
electrical conductor by the percolated network. In addition, during this state, the electrical 
performance of the ink is determined by intrinsic filler material properties (Lu, 2012). Furthermore, 
the higher content of filler loading is needed to make good physical contact with other fillers to 
building up the conductive network. 
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temperature, which was supplied during the mixing method, and the percentage of filler loading. 
However, the temperature of the mixing method did not give significant changes in mechanical 
properties and surface roughness. The percolation threshold for GNP was 30 wt.% at room 
temperature. Furthermore, the hardness increased with an increased percentage of elastic modulus. 
The trend contradicted for the hardness as the percentage of loading increased. 
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