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Abstract—In this study, the performance of Naïve Bayes 

classification on a high-resolution aerial image captured from a 

UAV-based remote sensing platform is investigated. K-means 

clustering of the study area is initially performed to assist in 

selecting the training pixels for the Naïve Bayes classification. 

The Naïve Bayes classification is performed using linear and 

quadratic discriminant analyses and by making use of training 

set sizes that are varied from 10 through 100 pixels. The results 

show that the 20 training set size gives the highest overall 

classification accuracy and Kappa coefficient for both 

discriminant analysis types. The linear discriminant analysis with 

94.44% overall classification accuracy and 0.9395 Kappa 

coefficient is found higher than the quadratic discriminant 

analysis with 88.89% overall classification accuracy and 0.875 

Kappa coefficient. Further investigations carried out on the 

producer accuracy and area size of individual classes show that 

the linear discriminant analysis produces a more realistic 

classification compared to the quadratic discriminant analysis 

particularly due to limited homogenous training pixels of certain 

objects. 

Keywords—Naïve Bayes; k-means; classification accuracy; 

training set size; discriminant analysis 

I. INTRODUCTION 

In remote sensing, classification is the process of assigning 
a pixel to a particular type of land cover. Classification uses 

typically a measurement vector or feature vector  of data 
acquired from a spaceborne or airborne acquisition system. It 

aims to assign a pixel associated with the measurement  at 

position x to particular class i, where 1 i M and M is the 
total number of classes. The classes are defined from 
supporting data, such as maps and ground data for test sites. 
Two types of classification are commonly used, supervised 
and unsupervised. Supervised classification starts from a 

known set of classes, learns the statistical properties of each 
class and then assigns the pixels based on these properties. 
Unsupervised classification is a two-step operation of 
grouping pixels into clusters based on the statistical properties 
of the measurements, and then labelling the clusters with the 
appropriate classes. Supervised classification classifies pixels 
based on known properties of each cover type, it requires 
representative land cover information, in the form of training 
pixels [1],[2],[3]. Signatures generated from the training data 
will be in a different form, depending on the classifier type 
used. Examples of supervised classification classifiers include 
Naïve Bayes, Maximum Likelihood, Mahalanobis Distance, 
Parallelepiped and support vector machines. On the other 
hand, in terms of unsupervised classification, the clustering 
process produces clusters that are statistically separable, 
giving a natural grouping of the pixels [4]. Landcover 
information is then used in the following labelling process 
where clusters are assigned to classes based on the available 
landcover information. This has the disadvantages that (1) a 
cluster may represent a mixture of different landcover types 
and (2) a single landcover may be split into several clusters. 
Furthermore, the assignment of clusters to classes, also known 
as the labelling process, requires manual input using available 
knowledge and needs to be carefully performed after the 
clustering, to correctly label the clusters. Examples of 
unsupervised classification are K-means and ISODATA. 
These unsupervised and supervised methods have been used 
extensively on satellite images however, there is limited effort 
to investigate the performance of these methods on high-
resolution aerial images [1],[2],[3],[4]. In this study, the 
performance of Naïve Bayes classification on a high-
resolution aerial image is to be investigated where K-means 
clustering is initially performed in determining the training 
pixels. 
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II. UNSUPERVISED AND SUPERVISED CLASSIFICATION 

A. K-means Clustering 

K-Means algorithm is an iterative method to partition a 
given dataset into a user-specified number of clusters, K. Its 
objective is to minimize the average squared Euclidean 
distance of distance from their cluster centres [5]. Let    
denotes the mean for cluster centre  , and the K-Means 
objective function can be written as: 

 (   )  ∑ ∑ ‖     
 ‖
  

   
 
      (1) 

Where,   measures the sum of squared distances between 

each training example    and the cluster centroid   
  to which it 

has been assigned. The inner-loop of K-Means repeatedly 
minimizes   with respect to   while holding   fixed, and then 
minimizes   with respect to   while holding   fixed. With this 
function well defined, the process can be split into several 
steps, to achieve the intended result. The starting point is a 
large set of data entries and defining the number of centres, k. 

B. Naïve Bayes Classification 

Generally, from the conditional probability theorem, the 
probability of an event A occurs given event B has already 
occurred is equal to the intersection of event A and B divided 
by event B [6],[7]. This can be expressed as: 

 (   )  
 (   )

 ( )
   (2) 

In the same way, the probability of an event B occurs 
given event A has already occurred can be expressed as: 

 (   )  
 (   )

 ( )
   (3) 

From the Commutative law, it can be easily proven: 

          (4) 

Therefore (3) can also be written as, 

 (   )  
 (   )

 ( )
   (5) 

and, 

 (   )   (   ) ( )   (6) 

Hence, (2) can be expressed as: 

 (   )  
 (   ) ( )

 ( )
   (7) 

This is popularly known as the Bayes‟ Theorem.  (   ) is 
also known as a posteriori probability of B. Event B is the 
evidence or feature. P(A) is the priori of A or the prior 
probability. In real-world problems, multiple features B are 
typically considered. For n features, B can be expressed as a 
feature vector: 

           ..,      (8) 

When these features are independent, the Bayes Rule can 
be extended to Naive Bayes: 

 (   )   (            )  
 (               ) ( )

 (             )
   (9) 

Since  (               ) ( ) can be expanded into: 

 (               ) ( )  
 (    ) (    ) (    )  (    ) (10) 

and 

 (    ) (    ) (    )  (    )  ∏  (    )
 
    (11) 

Hence, 

 (            )  
∏  (    )
 
    ( )

 (          )
 (12) 

In remote sensing, the probability distributions of the data 
may take a variety of forms, but very frequently they are 
assumed to be Gaussian, more specifically having normal 
distribution [8],[9]. When each class obeys a multivariate 
normal distribution for N spectral dimensions, specifically the 
number of bands used, the probability that feature vector   
occurs in a specified class    can be defined as: 

 (   )  (  ) 
 

 (    )
 
 

    ( 
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  (    )) 

  (13) 

where, 

   ⟨(     )(     )
 
⟩  

 

  
∑{(     )(     )

 
}

  

   

 

where  
 
is the class mean vector,    is the class covariance 

matrix for class i,     is the number of pixels in class i,    is 

the feature vector of the jth pixel and      is determinant. This 
assumption is likely to be suitable for data that comes directly 
from spectral band measurements, but should not be used if 
the feature vector contains more general types of data, e.g. 
band ratios, without first testing its validity. 

The Naive Bayes classifier is based on Bayes‟ theorem of 
probability. In classification, the concern is to predict the 
classes given the measurement from different spectral bands 
[9],[10]. Therefore, the probability of class i occurs given the 

spectral measurement  , P(i|), needs to be determined. From 

the Bayes‟ theorem, the a posteriori distribution P(i|) which 

is the probability that a pixel with feature vector   belongs to 
class i, is given by: 

 (   )  
 (   ) ( )

 ( )
 (14) 

where  ( )is the priori of  , the prior probability, that is 

the probability of class i occurs before   is known. P(|i) is 
the likelihood function, P(i) is the a priori information, that‟s 
is the probability that class i occurs in the study area and  ( ) 
is the probability that  is observed.  ( ) or the priori of   
can be expressed as: 

 ( )  ∑  (   ) 
    ( ) (15) 

where M is the number of classes. 

For Naïve Bayes,              

 (   )   (            )  
 (            ) ( )

 (          )
 (16) 
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Expanding  (            ) gives: 

 (            )   (    ) (    ) (    )   (    ) (17) 

and 

 (    ) (    ) (    )  (    )  ∏  (    )
 
    (18) 

Hence, 

 (            )  
∏  (    )
 
    ( )

 (          )
 (19) 

Since  (          )  is constant given the input, the 
following classification rule can be used: 

 (            )  ∏  (    )
 
    ( ) (20) 

 ̂           ( )  ∏  (    )
 
    ( ) (21) 

Naïve Bayes classification is possible if the prior 
information P(i) is available. This is the most powerful use of 
the Bayes Theorem. 

Pixel x is assigned to class i by the rule: 

xi    if P(i|) > P(k|)    for all k≠i  (22) 

III. METHODOLOGY 

A. Personal Remote Sensing System (PRSS) Workflow 

Image acquisition is carried out using an aerial imaging 
known as Personal Remote Sensing System or PRSS 
[11],[12]. The PRSS has been developed in the previous 
research for overcoming limitations in term of resolution 
besides cloud and haze effects of the space-borne remote 
sensing satellites [1],[13],[14],[15],[27]. This system consists 
of 1) aerial segment, 2) ground segment and 3) user segment. 
The aerial segment consists of a quad rotor UAV that is 
equipped with GPS and telemetry facilities and mounted with 
a high-resolution RGB camera [16],[17],[18]. Images are 
captured automatically at certain time interval and stored in 
the camera‟s storage card. Upon completing an image 
acquisition mission, the images in the card are transferred to 
the ground segment for subsequent image processing tasks. 
The ground segment consists of a laptop installed with 
softwares for controlling and tracking the UAV besides 
processing the captured images [19]. The processed images 
are finally uploaded to the cloud-based geospatial databases 
that can finally be accessed and personalised using a smart 
phone at the user segment. A user can make other request to 
the ground segment for images of other areas or objects. Upon 
receiving the request, the ground segment will prepare a new 
mission plan and it to the aerial segment for a new image 
acquisition mission to take place. The image used in this study 
was acquired on 28 March 2016 at 0956 local time. The UAV 
is flown at an altitude of 180 m at 0900 to 1100 MST 
(Malaysian Standard Time) and the sky was having clear 
conditions. The size of the image is 3000 rows by 4000 
columns and the image format is JPG. Fig. 1 illustrates the 
PRSS workflow. 

 

Fig. 1. PRSS Workflow. 

B. Image Classification 

The acquired image was initially processed using K-Means 
clustering algorithm [8]. The K-Means clustered image is later 
to be used together with the existing information of the study 
area in selecting the training pixels for Naïve Bayes 
classification later. The K-Means clustering algorithm is as 
follows. 

1) An initial mean vector (point) is randomly specified for 

each of the K clusters. These points are to be the centre for 

each of the K clusters. 

2) Next, the distances between every point of the image 

pixels and those centres are computed. 

3) Each pixel is assigned to the cluster whose mean vector 

is the closest to the pixel vector. This leads to the formation of 

the first set of decision boundaries. 

4) Based on the pixel vectors within each boundary, a new 

set of clusters mean vectors is then calculated and the pixels 

are reassigned accordingly to these new mean vectors. 

5) The iterations are continued until there is no significant 

change in pixel assignments from one iteration to the next. 

Specifically, the magnitude of change from iteration (   ) to 

iteration   summed over all K clusters can be expressed as: 

  ( )  ∑ |  
    

   | 
    (23) 

The clustered image produced from the K-Means 
clustering is used to assist in collecting the training pixels for 
Naïve Bayes classification. The general procedures in Naïve 
Bayes classification are as follows: 

1) The number of land cover types within the study area is 

determined. 

2) The training pixels for each of the desired classes are 

chosen using land cover information for the study area 

together with the cluster map produced from the K-Means 

clustering. 

3) The training pixels are then used to estimate the mean 

vector and covariance matrix of each class. 
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4) Finally, every pixel in the image is classified into one 

of the desired land cover types based on the predefined 

discriminant functions. 

In Naïve Bayes classification, each class is enclosed in a 
region in spectral space where its discriminant function is 
larger than that of all other classes. These class regions are 
separated by decision boundaries, where the decision 
boundary between class i and j occurs when: 

gi() = gj() (24) 

In this study, the linear discriminant function and quadratic 
discriminant function are utilised. 

For linear discriminant function,        , thus: 
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which can be rewritten as: 
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This is a linear function in N dimensions that forms the 
decision boundary between class   and  . 

For quadratic discriminant function,      , thus: 
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which can be rewritten as: 

 (    )
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This is a quadratic function in N dimensions that forms the 
decision boundary between class   and  . 

C. Classification Accuracy 

Classification accuracy is one of the key parameters 
required to judge the quality of land cover classification and 
can be defined as the degree to which the derived image 
classification conforms to the „truth‟ [20]. One of the most 
important components in accuracy assessment is reference 
pixels [21]. In this study, make use of Google Maps and the 
available ground truth knowledge of the study area in 
collecting the reference pixels [22]. To do so, a systematic 
sampling is performed where the chosen reference pixels are 
distributed in a predefined pattern. Studies have shown that 
the most widely used technique to analyse reference data is to 
use a confusion or error matrix [23]. A confusion matrix 
works by comparing classification result with reference 
information, while accuracy is conveyed in terms of 
percentage of overall classification accuracy and producer 
accuracy [24],[25]. The acceptable of overall accuracy is 85%, 
with no class less than 70% accurate [26]. Kappa statistics 

have been used as early as the 1980s as an additional 
classification accuracy measure to compensate for chance 
agreement [23]. 

Producer accuracy is a measure of the accuracy of a 
particular classification scheme and shows the percentage of a 
particular ground class that has been correctly classified. The 
minimum acceptable accuracy for a class is 70% [26]. This is 
calculated by dividing each of the diagonal elements in the 
table by the total of the column in which it occurs: 

Producer          
   

   
  (30) 

where, 

                         
                    

              

 A measure of behaviour of a classification can be 
determined by the overall accuracy, which is the total 
percentage of pixels correctly classified: 

Overall          
∑    
 
   

 
  (31) 

where Q and U represent the total number of pixels and 
classes respectively. The minimum acceptable overall 

accuracy is 85% [28]. The Kappa coefficient   is a second 
measure of classification accuracy which incorporates the off-
diagonal elements as well as the diagonal terms to give a more 
robust assessment of accuracy than overall accuracy. This is 
computed as: 

  
∑

   
 

 
    ∑

      
  

 
   

  ∑
      
  

 
   

 (32) 

Where ca. is row sum and c.a is column sum. 

IV. RESULT AND DISCUSSION 

Fig. 2 shows the study area displayed in (a) RGB, (b) red, 
(c) green and (d) blue channel with the corresponding 
histograms. It is obvious that the study area has two main 
groups of which are natural and artificial land covers or 
objects. This scenario is indicated by the bimodal nature of the 
red, green and blue channel histogram. For all histogram, it 
can be seen that the separation of the natural and artificial 
objects occur at the valley that is about at DN of 120 in which 
natural object pixels correspond to the lower DN values while 
artificial object pixels correspond to the higher DN values. 

Fig. 3 shows the result of K-Means clustering for 5 
clusters. By comparing with the RGB image in Fig. 2(a), most 
of the objects have been sensibly clustered. Due the nature of 
the K-Means clustering in which clustering process is merely 
based on statistical properties of the image, as expected there 
are clusters with more than one object and there are objects 
having more than one cluster. Shrub clusters (green) can be 
seen at the top right and bottom right of the image. There 
seems to be two road clusters with low-level road cluster 
(violet) stretches from the lower left to the upper right of the 
image while high-level road cluster (dark green) can be seen 
stretches from near the bottom middle to the top right of the 
image. Grassy ground cluster (maroon) can be seen mostly 
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between the shrub and low-level road cluster. Finally, vehicle 
cluster (turquoise) can be seen on both roads. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. The Scene Under Study in (a) RGB, (b) Red, (c) Green and (d) Blue 

Channel with the Corresponding Histograms. 

  

Fig. 3. 5-Cluster K-Means Clustering of the Study Area. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. RGB Image (Left) and Clustered Image (Right) for (a) Bright 

Vehicle, (b) Grassy Ground, (c) Shrub and (d) Road (Normal). 

The outcome from the K-Means clustering is used to assist 
in selecting the training pixels for Naïve Bayes classification. 
In doing so, both the RGB and K-Means clustering image are 
displayed side by side and zoomed at the targeted objects. The 
zoom-in images for vehicle, grassy ground, shrub and road are 
shown in Fig. 4(a), (b), (c) and (d), respectively. This has 
provided a practically way for the spatial and spectral 
homogeneity criteria to be met in selecting the training pixels 
[8]. 

 

Fig. 5. Overall Classification Accuracy and Kappa Coefficient Versus 

Training Set Size using Linear Discriminant Analysis. 

 
Shrub 

 
Low-level road 

 
High-level road 

 
Grassy ground 

 Vehicle 
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Fig. 6. Individual Class Classification Accuracy (Producer Accuracy) Versus Training Set Size for Classified Images using Linear Discriminant Analysis. 

A. Naïve Bayes Classification using Linear Discriminant 

Analysis 

For Naïve Bayes classification, the 9 classes identified are 
1) Bright Vehicle, 2) Dark Vehicle, 3) Grassy Ground, 
4) Shrub, 5) Road (Normal), 6) Road (Bright), 7) Road 
(Shadow), 8) Road Mark and 9) Steel Bridge. Due to the high 
image resolution, for Road class, three labels have been used 
to represent three different illumination conditions of the road. 
Fig. 5 shows plots of overall classification accuracy (top) and 
Kappa coefficient (bottom) versus training set size for the 
Naïve Bayes classification that is based on linear discriminant 
analysis. The 20 training set size gives highest overall 
classification accuracy (94.44%) and Kappa coefficient 
(0.9395) compared to the other sets. Plots of classification 
accuracy (producer accuracy) versus training set for all classes 
are shown in Fig. 6. It can be seen that Grassy Ground, Shrub 
and Road (Shadow) have the most stable accuracies for all 
training pixel sets while the least stable classes are Road 
Mark, Steel Bridge and Bright Vehicle. This is the due to the 
facts that stable classes have more abundant homogeneous 
pixels compared to least stable classes in which can be 
visually seen from the K-means clustering image in Fig. 3. For 
the rest of the classes, generally high classification accuracies 
are gained at smaller compared to bigger training sets sizes. 

Fig. 7 shows the Naïve Bayes classified image using linear 
discriminant analysis. From visual comparison with the RGB 
image in Fig. 2(a), it is obvious that the most objects are 
correctly classified except for Road Mark, Steel Bridge and 

Bright Vehicle. It can be seen that there are Bright Vehicle 
and Steel Bridge pixels that have been incorrectly assigned to 
the Road Mark class in which is also indicated by the 
confusion matrix in Table I. There also Road Mark pixels that 
have been incorrectly assigned to the Steel Bridge class and 
Bright Vehicle class. Table II shows the object, pixel count, 
pixel percentage and the corresponding area for classified 
image using linear discriminant analysis. The largest classes 
are Road (Normal), Grassy Ground and Road (Bright) with the 
corresponding area percentage of 26.9%, 22.9% and 18.8%. 
The smallest classes are Dark Vehicle, Bright Vehicle and 
Road Mark with the corresponding area percentage of 0.1%, 
0.4% and 1.2%. 

 

Fig. 7. Naïve Bayes Classified Image using Linear Discriminant Analysis. 
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TABLE I.  THE CONFUSION MATRIX FOR THE NAÏVE BAYES CLASSIFICATION THAT USES LINEAR DISCRIMINANT ANALYSIS 
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P
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Bright Vehicle 18 0 0 0 0 0 0 2 0 20 

Dark Vehicle 0 20 0 0 0 0 0 0 0 20 

Grassy Ground 0 0 20 0 0 0 0 0 0 20 

Shrub 0 0 0 20 0 0 0 0 0 20 

Road (Normal) 0 0 0 0 20 0 0 0 0 20 

Road (Bright) 0 0 0 0 0 20 0 2 0 22 

Road (Shadow) 0 0 0 0 0 0 20 0 0 20 

Road Mark 2 0 0 0 0 0 0 15 3 20 

Steel Bridge 0 0 0 0 0 0 0 1 17 18 

Total Ref. Pixels 20 20 20 20 20 20 20 20 20 180 

TABLE II.  CLASS WITH PIXEL COUNT, PIXEL PERCENTAGE OF THE AREA 

FOR CLASSIFIED IMAGE USING LINEAR DISCRIMINANT ANALYSIS 

Class Pixel (count) Pixel (%) Area (m2) 

Bright Vehicle 52454 0.4 1573.6 

Dark Vehicle 15163 0.1 454.9 

Grassy Ground 2744206 22.9 82326.2 

Shrub 2241943 18.7 67258.3 

Road (Normal) 3222214 26.9 96666.4 

Road (Bright) 2260668 18.8 67820 

Road (Shadow) 1053969 8.8 31619.1 

Road Mark 138904 1.2 4167.1 

Steel Bridge 270479 2.3 8114.4 

Total Classified Pixels 12000000 100.1 360000 

B. Naïve Bayes Classification using Quadratic Discriminant 

Analysis 

For the Naïve Bayes Classification using quadratic 
discriminant analysis (Fig. 8), a gradual decrease in the overall 
accuracy can be seen as the training set size increases 
compared to that of using the linear discriminant analysis. The 
highest overall classification accuracy of 88.89% and the 
highest Kappa coefficient of 0.875 are shared by the 10 and 20 
training set size. In term of individual class classification 
accuracy (producer accuracy) in Fig. 9, the most stable classes 
are Shrub, Road (Shadow) and Grassy Ground while the least 
stable classes are Road Mark, Steel Bridge and Road (Bright). 
A strange increasing trend occurs for Road (Bright). By 

comparing the linear and quadratic discriminant analysis plots, 
overall, quadratic trend looks smoother compared to linear 
discriminant trend in which likely due to the more flexible 
criteria of the quadratic discriminant decision space. The 
classes with somewhat common producer accuracy trends are 
Shrub, Grassy Ground, Road (Shadow) and Road (Normal) 
due to the abundant homogenous training pixels. The classes 
having the most distinct trends are Road (Bright), Dark 
Vehicle and Steel Bridge due to the least homogenous training 
pixels. 

 

Fig. 8. Overall Classification Accuracy and Kappa Coefficient Versus 

Training Set Size using Quadratic Discriminant Analysis. 
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Fig. 9. Individual Class Classification Accuracy (Producer Accuracy) Versus Training Set Size for Classified Images using Quadratic Discriminant Analysis. 

TABLE III.  THE CONFUSION MATRIX FOR THE NAÏVE BAYES CLASSIFICATION THAT USES LINEAR DISCRIMINANT ANALYSIS 

Reference Pixels 
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P
ix
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Bright Vehicle 18 0 0 0 0 0 0 11 0 29 

Dark Vehicle 0 20 0 0 0 0 0 0 0 20 

Grassy Ground 0 0 20 0 0 0 0 0 0 20 

Shrub 0 0 0 20 0 0 0 0 0 20 

Road (Normal) 0 0 0 0 20 0 0 0 0 20 

Road (Bright) 0 0 0 0 0 16 0 0 0 16 

Road (Shadow) 0 0 0 0 0 0 20 0 0 20 

Road Mark 2 0 0 0 0 0 0 6 0 8 

Steel Bridge 0 0 0 0 0 4 0 3 20 27 

Total Ref. Pixels 20 20 20 20 20 20 20 20 20 180 

 

Fig. 10. Naïve Bayes Classified Image using Quadratic Discriminant 

Analysis. 

Fig. 10 shows the Naïve Bayes classified image using 
quadratic discriminant analysis. It is obvious that there are 
more incorrectly assigned pixels compared to that of the linear 
discriminant analysis. It can be seen that there are Road 
(Bright) pixels that have been incorrectly assigned to Steel 
Bridge class in which is also indicated by the confusion matrix 
in Table III. Table IV shows the class with the pixel count, 
pixel percentage of the area for classified image using 
quadratic discriminant analysis. The largest classes are Road 
(Normal), Shrub and Road (Shadow) with the corresponding 
area percentage of 30%, 23.6% and 18%. The smallest classes 
are Dark Vehicle, Bright Vehicle and Road Mark with the 
corresponding area percentage of 0.1%, 0.5% and 0.9%. 
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TABLE IV.  CLASS WITH PIXEL COUNT, PIXEL PERCENTAGE OF THE AREA 

FOR CLASSIFIED IMAGE USING QUADRATIC DISCRIMINANT ANALYSIS 

Class Pixel (count) Pixel (%) Area (m2) 

Bright Vehicle 54236 0.5 1627.1 

Dark Vehicle 10415 0.1 312.5 

Grassy Ground 1008987 8.4 30269.6 

Shrub 2827918 23.6 84837.5 

Road (Normal) 3602988 30 108089.6 

Road (Bright) 641307 5.3 19239.2 

Road (Shadow) 2160972 18 64829.2 

Road Mark 108365 0.9 3251 

Steel Bridge 1584812 13.2 47544.4 

Total Classified Pixels 12000000 100 360000 

 

Fig. 11. Area Percentage Versus Class for Quadratic and Linear Discriminant 

Analysis. 

Fig. 11 shows the area percentage versus class for the 
quadratic and linear discriminant analysis. From side-by-side 
area percentage comparison, Bright Vehicle, Dark Vehicle and 
Road Mark have about the same area sizes. 

The classes having the most distinct area sizes are Grassy 
Ground, Steel Bridge and Road (Bright). The linear shows a 
more realistic area percentage compared to the quadratic 
discriminant analysis particularly due to its Steel Bridge 
having higher is larger than other abundant objects such as 
Grassy Ground and Road (Bright). 

V. CONCLUSION 

In this study, Naïve Bayes classifications on a high-
resolution aerial image have been performed. K-means 
clustering of five clusters has been used as a guide in selecting 
the training pixels for the Naïve Bayes classification. The 
classification has been experimented for training set size 10 
through 100 for linear and quadratic discriminant analysis. 
From, the classification outcomes, training set size 20 has 
been chosen due to having the highest overall classification 
accuracy and Kappa coefficient where the linear with 94.44% 

overall classification accuracy and 0.9395 Kappa coefficient is 
higher than the quadratic discriminant analysis with 88.89% 
overall classification accuracy and 0.875 Kappa coefficient. 
The producer accuracy for individual classes of linear and 
quadratic discriminant analysis has yielded the classes having 
similar trends due to the availability of abundant homogenous 
training pixels compared with the classes with distinct trends 
due to the least homogenous training pixels. The linear 
discriminant analysis has been found to produce more realistic 
class area percentages of the study area compared to the 
quadratic discriminant analysis, particularly for Steel Bridge. 
Nevertheless, the performance of Naïve Bayes classification is 
greatly influenced by the way the sampling of the training 
pixels is made in which is not investigated in this study. 
Therefore, future work will take into consideration 
investigating the effects of different patterns of systematic 
sampling of training pixels on classification performance. 
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