Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015.

Supporting Information

for Adv. Funct. Mater., DOI: 10.1002/adfm.201404553

Vinylogous Urethane Vitrimers

Wim Denissen, Guadalupe Rivero, Renaud Nicolaÿ, Ludwik Leibler, Johan M. Winne, * and Filip E. Du Prez*

Supporting Information

Vinylogous urethane vitrimers

Wim Denissen, Guadalupe Rivero, Renaud Nicolaÿ, Ludwik Leibler, Johan Winne, Filip E. Du Prez

Figure S1: NMR spectra of a pure *N*-butyl vinylogous urethane (upper), *N*-benzyl vinylogous urethane (lower) and of the resulting mixture after 10, 30 and 60 minutes at 140°C.

Calculation activation energy

The decrease of the reactant as a function of time is described by ^[28]:

$$[Reactant] = 1 - (x_{\infty} - \exp\left(\frac{-kt}{x_{\infty}}\right))$$

With x_{∞} = equilibrium concentration of the products = $\frac{5}{6}$

Fitted for k = initial rate

The activation energy was calculated by plotting ln k versus 1000/T.

$$RT + CC$$

$$y(x) = -59400 \text{ x / 8.314 + 13}$$

$$y(x) = -59400 \text{ x / 8.314 + 13}$$

$$y(x) = -59400 \text{ x / 8.314 + 13}$$

$$y(x) = -59400 \text{ x / 8.314 + 13}$$

$$y(x) = -10$$

$$y(x) = -59400 \text{ x / 8.314 + 13}$$

$$y(x) = -10$$

$$y(x) = -59400 \text{ x / 8.314 + 13}$$

Figure S2: The activation energy was calculated by plotting lnk vs 1/T.

$$\ln k = -\frac{E_a}{RT} + cte$$

Figure S3: Control experiment to discard the occurrence of side reactions.

Figure S4: Conversion of the acetoacetate function to vinylogous urethanes followed by FTIR. After curing, close to full conversion was observed.

3

Figure S5: Solubility test on the poly(vinylogous urethane) network: the network is insoluble after 24h at 100°C in NMP (left). Upon addition of benzyl amine, the network dissolves as a result of exchange reactions (right).

Figure S6: DSC thermogram of the poly(vinylogous urethane) network.

Figure S7: DMTA of the poly(vinylogous urethane) network. A modulus of 2.4 GPa and a rubbery plateau of 10 MPa were measured.

Figure S8: TGA of the poly(vinylogous urethane) network under air and nitrogen atmosphere.

Figure S9: Isothermal TGA of the poly(vinylogous urethane) network at 150°C and 180°C. The isothermal TGA of a commercial epoxy (EPON 828 cured with DETA) at 150°C is shown as a reference.

Figure S10: Young modulus and maximal stress of the poly(vinylogous urethane) network before and after up to four consecutive recycling cycles.

Figure S11: DSC thermograms of the poly(vinylogous urethane) network before and after up to four consecutive recycling cycles.

Figure S12: FT-IR spectra of the poly(vinylogous urethane) network before and after up to four consecutive recycling cycles.

7

 Table S1: Soluble fraction of the original poly(vinylogous urethane) network and the recycled samples.

Sample	Soluble fraction (%)
As synthesized	9 - 13
1 x recycled	6 - 8
2x recycled	9 - 11
3x recycled	12 - 15
4x recycled	8 - 12

^{a)} The lowest and highest value of three measurements are shown.

Figure S13 Sol fraction of a 1x recycled sample at 100°C in NMP as a function of time.