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Tiling Rectangles and 2-Deficient Rectangles
with L-Pentominoes

By Monica Kane

Abstract. We investigate tiling rectangles and 2-deficient rectangles with L-pentominoes. First, we

determine exactly when a rectangle can be tiled with L-pentominoes. We then determine locations for

pairs of unit squares that can always be removed from an m ×n rectangle to produce a tileable 2-deficient

rectangle when m ≡ 1 (mod 5), n ≡ 2 (mod 5) and when m ≡ 3 (mod 5), n ≡ 4 (mod 5).

1 Introduction

A polyomino is a two-dimensional shape made of one or more unit squares connected
at their edges, as in Figure 1. The shapes used in the game Tetris, for example, are
polyominoes made of four squares (called tetrominoes), and the game involves trying to
fit the pieces together, almost like a jigsaw puzzle, as they fall in the space provided.

Figure 1: Some polyominoes.

The game of Tetris can lead to further puz-
zles to explore: Given a rectangle of a particular
size, could it be completely filled with Tetris
pieces? Or, if the rectangle could be almost
filled, but there were a hole or two inside, at
what locations could the holes be? What if we
use polyominoes made of five squares (called
pentominoes) instead of four? There is mathe-
matics behind puzzles like this which can be studied.

The goal of such a puzzle is to tile a region. We say that polyominoes tile a region
(that is, a region is tileable) when the region can be covered by polyominoes such that a)
every unit square in the region is covered by a unit square of exactly one polyomino, and
b) every unit square of the polyominoes used covers a unit square in the region.

Polyominoes were first introduced to mathematics by Solomon W. Golomb [4] in
1954. Ash and Golomb [2] and Chu and Johnsonbaugh [3] discuss tiling rectangles and
1-deficient rectangles, which are missing 1 unit square, with L-trominoes (made of 3 unit
squares), and Nitica [6] studies the problem for L-tetrominoes. There is less available
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2 Tiling Rectangles and 2-Deficient Rectangles with L-Pentominoes

research about tiling 2-deficient rectangles, which are missing 2 unit squares, although
Aanjaneya [1] discusses this topic for trominoes, as do Ash and Golomb [2] briefly.

Figure 2: The L-pentomino.

Since much of the existing research focuses on tro-
minoes and tetrominoes, we will study tiling with a
different polyomino, the L-pentomino, shown in Figure
2. Furthermore, since there is little available research
on tiling 2-deficient rectangles, we will focus on using
the L-pentomino to tile rectangles and 2-deficient rect-
angles. An example of such a tiling is given in Figure
3.

Figure 3: A 2-deficient rectangle tiled with L-pentominoes.

Figure 4: The 8 orientations of the L-
pentomino.

In section 2, we will discuss tiling rectan-
gles with L-pentominoes and will determine
exactly when a rectangle can be tiled with L-
pentominoes. In section 3, we will discuss tiling
2-deficient rectangles with L-pentominoes. We
will introduce two new approaches for tiling
2-deficient rectangles, and our main focus in
both will be on finding pairs of squares whose
removal from a rectangle yields a 2-deficient
rectangle that can be tiled.

We denote an m ×n rectangle (m rows, n
columns) by R(m,n), where m and n are non-
negative integers. We denote a 1-deficient
m ×n rectangle by R(m,n)−, and we denote a
2-deficient m ×n rectangle by R(m,n)−−. We
use (i , j ) to refer to the unit square in the i th
row and the j th column of a rectangle.

We use 8 orientations of the L-pentomino,
which are given and named in Figure 4. Any
further mention of pentominoes refers to L-
pentominoes, and any further mention of tiling
refers to tiling with L-pentominoes.

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022
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2 Tiling Rectangles with L-Pentominoes

Figure 5: A tiling of R(2,5).

A preliminary result is that R(2,5) can be tiled with pen-
tominoes, as shown in Figure 5.

As a result of this, any rectangle of the form R(2a,5b)
(or R(5a,2b)) can be tiled with pentominoes, since any
such rectangle can be divided into ab copies of R(2,5) (or
R(5,2)). As a result, we have the following lemma.

Lemma 2.1. A rectangle of the form R(2a,5b) is tileable.

If R(m,n) is tileable, then its area must be divisible by 5, the area of a pentomino;
that is, 5|mn. Therefore, m or n must be divisible by 5.

However, meeting this requirement is not enough to guarantee that a rectangle is
tileable. Any rectangle with a side length of 1 cannot be tiled, since each L-pentomino is
2 units wide. For rectangles with a side length of 3, we have the following theorem.

Theorem 2.2. R(3,n) is not tileable for any positive value of n.

We can suppose, to the contrary, that there is a tiling for some rectangle R(3,n). Then
some pentomino must cover the top left square, (1,1). There are 3 orientations of the
pentomino that can do so: P1, P2, and P3.

If P3 is used to cover (1,1), then the square (3,1) cannot be covered, as shown in Figure
6.

Figure 6: P3 is used to cover (1,1).

Suppose P2 is used to cover (1,1). Some pentomino must cover the square (2,1),
and P3 is the only orientation that can do so. But this renders squares (2,2) and (2,3)
impossible to cover, as shown in Figure 7.

Figure 7: P2 is used to cover (1,1).

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022



4 Tiling Rectangles and 2-Deficient Rectangles with L-Pentominoes

Similarly, suppose P1 is used to cover (1,1). Some pentomino must cover the square
(3,1), and P4 is the only orientation that can do so. But this renders squares (2,2) and
(2,3) again impossible to cover, as shown in Figure 8.

Figure 8: P1 is used to cover (1,1).

Therefore, R(3,n) cannot be tiled.
We find a similar result when attempting to tile a rectangle with one side length of 5

and the other side length odd.

Theorem 2.3. R(5,n) is tileable if and only if n is even.

If n is even, then R(5,n) is of the form R(5a,2b) and therefore is tileable. We now
need to show that if n is odd, then R(5,n) is not tileable. Suppose, to the contrary, that
there exists a tiling for some R(5,2k +1) with k ∈Z. Then some pentomino must cover
the square (1,1). Then, by the enumeration of positions as in the previous argument, it
can be shown that the only workable option for tiling the leftmost edge of the rectangle
is to use R(5,2), as shown in Figures 9 and 10. (See the appendix for the full enumeration
of positions for this theorem.)

Then the portion of the rectangle that remains to be tiled is R(5,2k −1). By the same
reasoning, the only workable option is to place another R(5,2), reducing the remaining
portion of the rectangle to R(5,2k −3). After repeating this process of placing a R(5,2)
k −2 more times, the remaining portion of the rectangle is R(5,1). By our assumption, a
tiling for R(5,2k +1) exists, but R(5,1) cannot be tiled. This is a contradiction.

Thus, if n is odd, there is no tiling for R(5,n).

Figure 9: P5 is used to cover (1,1)
and P8 is used to cover (5,1).

Figure 10: P6 is used to cover (1,1)
and P7 is used to cover (2,1).

We now have enough information to determine exactly when any m ×n rectangle
is tileable. If m = 0 or n = 0, we say that R(m,n) is trivially tileable. If both m and n are
positive, then the following theorem applies.

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022
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Theorem 2.4. Let m,n > 0, with m = 5k for some k ∈Z.

• If n is even, then R(5k,n) is tileable.

• If n is odd:

– If n = 5, then R(5k,n) is tileable if and only if k is even.

– If n ̸= 5, then R(5k,n) is tileable if and only if k ≥ 2 and n ≥ 7.

Proof. Suppose n is even. Then R(5k,n) is of the form R(5a,2b) and can therefore be
tiled.

Now suppose n is odd.
Consider n = 5. If R(5k,n) is tileable, then by theorem 2.3, 5k is even, and so k must

be even. Conversely, if k is even, then R(5k,n) is of the form R(2a,5b) and can therefore
be tiled.

Consider n ̸= 5. Suppose R(5k,n) is tileable. Then k ̸= 1 by theorem 2.3, and so k ≥ 2.
Furthermore, n ̸= 1 since R(5k,1) cannot be tiled, and n ̸= 3 by theorem 2.2, and so n ≥ 7.
Conversely, suppose k ≥ 2 and n ≥ 7. We will show by induction that R(5k,7) is tileable,
and use this to show that R(5k,n) is tileable.

If k is even, then the base case is R(10,7) (a tiling of R(7,10) is given in Figure 11).
As inductive hypothesis, suppose R(5(2h),7) can be tiled for some h ∈Z. Then we can
use a tiling of R(5(2h),7) and a tiling of R(10,7) to obtain a tiling of R(5(2h)+10,7) =
R(5(2(h +1)),7).

If k is odd, then the base case is R(15,7) (a tiling of R(7,15) is given in Figure 12). As
inductive hypothesis, suppose R(5(2h +1),7) can be tiled for some h ∈Z. Then we can
use a tiling of R(5(2h+1),7) and a tiling of R(10,7) to obtain a tiling of R(5(2h+1)+10,7) =
R(5(2(h +1)+1),7).

Therefore, for all k ≥ 2, R(5k,7) is tileable.
Now, consider R(5k,n) with k ≥ 2 and n ≥ 7. We can decompose this rectangle with

vertical cuts into the following subrectangles:

R(5k,7)+m ·R(5k,2)

for some m ≥ 0. R(5k,7) is tileable by the inductions above, and each copy of R(5k,2) is
tileable by lemma 2.1. Thus, R(5k,n) is tileable.

Now that we know exactly when a rectangle can be tiled with L-pentominoes, we can
use these results to study tiling 2-deficient rectangles.

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022



6 Tiling Rectangles and 2-Deficient Rectangles with L-Pentominoes

Figure 11: A tiling of R(7,10). Figure 12: A tiling of R(7,15).

3 Tiling 2-Deficient Rectangles with L-Pentominoes

As before, a region is tileable only if its area is divisible by 5, and so the 2-deficient
rectangle R(m,n)−− is tileable only if mn −2 ≡ 0 (mod 5). As a result, we will focus on
2-deficient rectangles with m ≡ 1 (mod 5), n ≡ 2 (mod 5) or with m ≡ 3 (mod 5), n ≡ 4
(mod 5). Our goal is to find locations where the missing unit squares can be so that the
2-deficient rectangle is tileable. Pairs of squares in such locations are called good [2].
Meanwhile, a pair of squares is called bad if its removal from a rectangle produces a
2-deficient rectangle that is impossible to tile [2].

We now focus on showing that certain pairs of squares are good. The following
example introduces one approach to this kind of problem.

3.1 Splitting a 2-Deficient Rectangle into Subrectangles

Consider a rectangle of the form R(1+5k,2+5l )−−, k ≥ 1, l ≥ 0, that is missing a horizontal
domino from its corner. Without loss of generality, let the horizontal domino be in the
upper left corner.

Figure 13: Splitting R(1+5k,2+5l )−− into subrectangles when a horizontal domino is
missing from its corner.

We can split the rectangle into three pieces: the missing domino {(1,1), (1,2)}, the
rectangle R(5k,2) underneath the domino, and the rectangle R(1+5k,5l ), as shown in
Figure 13. We denote this splitting by the following equation:

R(1+5k,2+5l )−− = {(1,1), (1,2)}+R(5k,2)+R(1+5k,5l ). (1)

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022
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We now must determine when each of these subrectangles is tileable.
We know that R(5k,2) is always tileable because it is of the form R(5a,2b).
Consider R(1+5k,5l ). If k is odd, then R(1+5k,5l ) is tileable because it is of the

form R(2a,5b). If k is even and l = 1, then the rectangle is of the form R(m,5) with m
odd, which is not tileable by theorem 2.3. But if k is even and l ≥ 2, then R(1+5k,5l ) is
tileable by theorem 2.4, and if k is even and l = 0, then R(1+5k,5l ) is trivially tileable.

Thus, we can conclude that a rectangle of the form R(1+5k,2+5l )−−, k ≥ 1, l ≥ 0, is
tileable when missing a horizontal domino from its corner, except when k is even and
l = 1.

Splitting a 2-deficient rectangle into tileable subrectangles in this way is one method
of showing that a 2-deficient rectangle is tileable when a certain pair of unit squares is
missing. In the following theorem, we use this method in a more generalized way that
gives multiple good pairs of squares. This next theorem involves tiling 2-deficient m ×n
rectangles with m ≡ 3 (mod 5), n ≡ 4 (mod 5).

Theorem 3.1. In a rectangle of the form R(3+5k,4+5l )−−, k ≥ 1, l ≥ 0, good horizontal
dominoes include {(2+5i ,2+5 j ), (2+5i ,3+5 j )}, 0 ≤ i ≤ k, 0 ≤ j ≤ l , excluding j = 1,
j = l −1 when k is even.

Proof. First, note that R(3,4)−− is tileable, as shown in Figure 14.

Figure 14: A tiling of R(3,4)−−.

We define Ri j (3,4)−− to be the tileable rectangle R(3,4)−− positioned (within a rect-
angle R(3+5k,4+5l )−−) so that it is missing the domino {(2+5i ,2+5 j ), (2+5i ,3+5 j )},
0 ≤ i ≤ k, 0 ≤ j ≤ l . Figure 15 shows these different locations for Ri j (3,4)−− within the
rectangle R(13,19)−−.

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022



8 Tiling Rectangles and 2-Deficient Rectangles with L-Pentominoes

Figure 15: Locations of Ri j (3,4)−− in R(13,19)−−.

Let k ≥ 1 and l ≥ 0.
When k is odd, we split the rectangle into subrectangles according to the following

equation:

R(3+5k,4+5l )−−

= Ri j (3,4)−−+R(5i ,4)+R(5(k − i ),4)+R(3+5k,5 j )+R(3+5k,5(l − j ))
(2)

for 0 ≤ i ≤ k and 0 ≤ j ≤ l .
This splitting of the rectangle is shown in Figure 16.

Figure 16: Splitting R(3+5k,4+5l )−− into tileable subrectangles according to Equation
2.

In order to find good locations for the domino, we need to determine when these
subrectangles are tileable.

The subrectangles R(5i ,4) and R(5(k − i ),4) are always tileable since they are of
the form R(5a,2b). Since k is odd, then m = 3+ 5k is even, and so R(3+ 5k,5 j ) and
R(3+5k,5(l − j )) are of the form R(2a,5b) and therefore are tileable.

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022
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Thus, {(2+ 5i ,2+ 5 j ), (2+ 5i ,3+ 5 j )} for 0 ≤ i ≤ k, 0 ≤ j ≤ l are good horizontal
dominoes when k is odd.

When k is even, R(3+5k,4+5l )−− can be split into tileable subrectangles as in Equa-
tion 2 but with two exceptions. As before, R(5i ,4) and R(5(k − i ),4) are tileable since
they are of the form R(5a,2b). However, since k is even, then m = 3+5k is odd. Then
R(3+5k,5 j ) is tileable when j = 0 or when j ≥ 2 and is not tileable only when j = 1 (by
theorem 2.4). Similarly, R(3+5k,5(l − j )) is tileable when l − j = 0 or when l − j ≥ 2 and
is not tileable only when j = l −1 (by theorem 2.4). As a result, we exclude the cases
j = 1 and j = l −1 when k is even.

Thus, {(2+5i ,2+5 j ), (2+5i ,3+5 j )} for 0 ≤ i ≤ k, 0 ≤ j ≤ l , excluding dominoes with
j = 1 or j = l −1 when k is even, are good horizontal dominoes.

It is important to note that excluding these dominoes from our set of good dominoes
does not necessarily mean that these dominoes are bad, since a 2-deficient rectangle
that is missing one of these dominoes may be tileable some other way. However, we
exclude them because this particular splitting does not prove that these dominoes are
good.

We can use a similar method to study tiling 2-deficient m ×n rectangles with m ≡ 1
(mod 5), n ≡ 2 (mod 5).

Theorem 3.2. In a rectangle of the form R(1+5k,2+5l )−−, k ≥ 1, l ≥ 0, good horizontal
dominoes include {(1 + 5i ,1 + 5 j ), (1 + 5i ,2 + 5 j )} and {(6 + 5i ,1 + 5 j ), (6 + 5i ,2 + 5 j )},
0 ≤ i ≤ k −1, 0 ≤ j ≤ l , excluding the following cases when both k is even and l is odd:

• i = 1, j = 1

• i = 1, j = l −1

• i = (k −1)−1, j = 1

• i = (k −1)−1, j = l −1.

Proof. First, note that R(6,2)−− is tileable, as in Figures 17 and 18.
Define RAi j (6,2)−− to be the tileable rectangle RA(6,2)−−, shown in Figure 17, posi-

tioned (in a rectangle R(1+5k,2+5l )−−) so that it is missing the domino {(1+5i ,1+
5 j ), (1+5i ,2+5 j )}, 0 ≤ i ≤ k −1, 0 ≤ j ≤ l .

Define RBi j (6,2)−− to be the tileable rectangle RB(6,2)−−, shown in Figure 18, posi-
tioned (in a rectangle R(1+5k,2+5l )−−) so that it is missing the domino {(6+5i ,1+
5 j ), (6+5i ,2+5 j )}, 0 ≤ i ≤ k −1, 0 ≤ j ≤ l .

Note that RAi j (6,2)−− and RBi j (6,2)−− with the same values of i and j occupy the
same position in R(1+5k,2+5l )−−; only the locations of the missing domino are different.

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022



10 Tiling Rectangles and 2-Deficient Rectangles with L-Pentominoes

Figure 17: A tiling of RA(6,2)−−. Figure 18: A tiling of RB(6,2)−−.

Let k ≥ 1 and l ≥ 0.
This time, we will consider two different ways of splitting the rectangle into subrect-

angles.
The first option is to split the rectangle into subrectangles according to the following

equation:

R(1+5k,2+5l )−−

= Ri j (6,2)−−+R(5i ,2)+R(5(k −1− i ),2)+R(1+5k,5 j )+R(1+5k,5(l − j ))
(3)

for 0 ≤ i ≤ k −1 and 0 ≤ j ≤ l , where Ri j (6,2)−− represents either tiling, RAi j (6,2)−− or
RBi j (6,2)−−.

This first splitting is shown in Figure 19.

Figure 19: Splitting R(1+5k,2+5l )−− vertically into subrectangles according to Equation
3.

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022
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When k is odd, all of the subrectangles in Figure 19 are of the form R(2a,5b) or
R(5a,2b) and therefore are tileable by lemma 2.1.

Thus, {(1+5i ,1+5 j ), (1+5i ,2+5 j )} and {(6+5i ,1+5 j ), (6+5i ,2+5 j )}, 0 ≤ i ≤ k −1,
0 ≤ j ≤ l are good dominoes when k is odd.

The second option is to split the rectangle into subrectangles according to the follow-
ing equation:

R(1+5k,2+5l )−−

= Ri j (6,2)−−+R(5i ,2+5l )+R(5(k −1− i ),2+5l )+R(6,5 j )+R(6,5(l − j ))
(4)

for 0 ≤ i ≤ k −1 and 0 ≤ j ≤ l , where Ri j (6,2)−− represents either tiling, RAi j (6,2)−− or
RBi j (6,2)−−.

This second splitting is shown in Figure 20.

Figure 20: Splitting R(1+5k,2+5l )−− horizontally into subrectangles according to Equa-
tion 4.

When l is even, all of the subrectangles in Figure 20 are of the form R(2a,5b) or
R(5a,2b) and therefore are tileable by lemma 2.1.

Thus, {(1+5i ,1+5 j ), (1+5i ,2+5 j )} and {(6+5i ,1+5 j ), (6+5i ,2+5 j )}, 0 ≤ i ≤ k −1,
0 ≤ j ≤ l are good dominoes when l is even.

When both k is even and l is odd, R(1+5k,2+5l )−− can be split into tileable subrect-
angles as in Figure 19 but with two exceptions. Since k is even, R(1+5k,5 j ) is tileable
when j = 0 or when j ≥ 2 and is not tileable only when j = 1 (by theorem 2.4). Similarly,
R(1+5k,5(l − j )) is tileable when l − j = 0 or when l − j ≥ 2 and is not tileable only when

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022



12 Tiling Rectangles and 2-Deficient Rectangles with L-Pentominoes

j = l −1 (by theorem 2.4). In a similar way, we can split R(1+5k,2+5l )−− as in Figure 20,
but again there are two exceptions. Since l is odd, R(5i ,2+5l ) is not tileable only when
i = 1, and R(5(k −1− i ),2+5l ) is not tileable only when i = (k −1)−1 (by theorem 2.4).

Therefore, when these conditions on i and j occur simultaneously, neither Equation
3 nor Equation 4 provides a way to split R(1+5k,2+5l )−− into tileable subrectangles.
Then, when both k is even and l is odd, we exclude the following cases:

• i = 1, j = 1

• i = 1, j = l −1

• i = (k −1)−1, j = 1

• i = (k −1)−1, j = l −1.

The excluded locations for Ri j (6,2)−− are shown in Figure 21.
Thus, {(1+5i ,1+5 j ), (1+5i ,2+5 j )} and {(6+5i ,1+5 j ), (6+5i ,2+5 j )} for 0 ≤ i ≤ k−1,

0 ≤ j ≤ l , excluding the four cases listed above when both k is even and l is odd, are good
dominoes.

Figure 21: Excluded locations (outlined) for Ri j (6,2)−− in R(31,27)−−. (Shown in gray are
the horizontal dominoes {(1+5i ,1+5 j ), (1+5i ,2+5 j )} and {(6+5i ,1+5 j ), (6+5i ,2+5 j )}
for 0 ≤ i ≤ 5 and 0 ≤ j ≤ 5.)

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022
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Thus far, we have discussed only domino-deficient rectangles, but we can use this
same splitting technique to tile generally 2-deficient rectangles, whose two missing
squares may or may not form a domino.

For example, to find good pairs of squares for generally 2-deficient rectangles with
m ≡ 1, n ≡ 2 (mod 5), we can recreate the previous proof using tilings of a generally
2-deficient R(6,2)−− (such as RC(6,2)−− and RD(6,2)−−, shown in Figures 22 and 23).

Figure 22: A tiling of RC(6,2)−−. Figure 23: A tiling of RD(6,2)−−.

To find good pairs of squares for generally 2-deficient rectangles with m ≡ 3, n ≡ 4
(mod 5), we can use tilings such as those for a generally 2-deficient R(8,4)−− (such
as RA(8,4)−− and RB(8,4)−−, shown in Figures 24 and 25) and determine the splitting
equations for those rectangles.

Figure 24: A tiling of RA(8,4)−−. Figure 25: A tiling of RB(8,4)−−.

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022



14 Tiling Rectangles and 2-Deficient Rectangles with L-Pentominoes

3.2 Using Two 1-Deficient Rectangles

While this splitting technique is useful, it is not the only method for tiling 2-deficient
rectangles. Another approach is to use two tileable 1-deficient rectangles. For example,
Figure 26 shows a tiling of the 1-deficient rectangle R(6,6)−. From this tiling we have 8
different locations for the missing unit square, given in Figure 27, which are obtained
from rotations and reflections of the tiling of R(6,6)−. Using two copies of R(6,6)−, we
can obtain the 2-deficient rectangle R(6,12)−−. Figure 28 shows the pairs of missing
squares in R(6,12)−− that we know to be good: Any 1 square from the leftmost R(6,6)−

and any 1 square from the rightmost R(6,6)− is a good pair.

Figure 26: A tiling of R(6,6)−.
Figure 27: Some good unit squares in
R(6,6)−.

Figure 28: Some good pairs of unit squares in R(6,12)−−.
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We can use other tileable 1-deficient rectangles to get results in the same way. Figure
29 shows five tilings of the 1-deficient rectangle R(9,9)−. From these tilings we have 21
different locations for the missing unit square, given in Figure 30, which are obtained
from rotations and reflections of the tilings of R(9,9)−. Using two copies of R(9,9)−, we
can obtain the 2-deficient rectangle R(9,18)−−. Figure 31 shows the pairs of missing
squares in R(9,18)−− that we know to be good: Any 1 square from the leftmost R(9,9)−

and any 1 square from the rightmost R(9,9)− is a good pair.

Figure 29: Tilings of R(9,9)−.

Figure 30: Some good unit squares in R(9,9)−.

Figure 31: Some good pairs of unit squares in R(9,18)−−.

In this way, given a tiling of a 1-deficient rectangle R(m,n)−, we can obtain good
pairs of squares in the 2-deficient rectangles R(m,2n)−− and R(2m,n)−−.
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4 Appendix

Theorem 2.3. R(5,n) is tileable if and only if n is even.

Proof. If n is even, then R(5,n) is a rectangle of the form R(5a,2b) and therefore is
tileable.

We now need to show that if n is odd, then R(5,n) is not tileable. Suppose, on the
contrary, that there exists a tiling for some R(5,2k +1) with k ∈Z. Then some pentomino
must cover the square (1,1).

The pentominoes P4 and P8 cannot be used to cover (1,1) due to their orientation.
Any of the other 6 L-pentominoes could potentially cover (1,1), and so we have the
following 6 cases.

Case 1: Suppose P1 is used to cover (1,1), as in Figure 32. Some pentomino must
cover the square (3,1).

Figure 32: P1 is used to cover (1,1).
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Suppose P1 or P2 is used to cover (3,1). Then some pentomino must cover the square
(5,1), which renders squares (4,2), (4,3) unable to be covered. See Figures 33 and 34.

Figure 33: P1 is used to cover (3,1).

Figure 34: P2 is used to cover (3,1).

If P3 is used to cover (3,1), then square (5,1) cannot be covered, as shown in Figure
35.

Figure 35: P3 is used to cover (3,1).

If P4 is used to cover (3,1), then squares (2,2), (2,3) cannot be covered, as shown in
Figure 36.

Figure 36: P4 is used to cover (3,1).

Therefore, the pentomino P1 must not be used to cover square (1,1).
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Case 2: Suppose P2 is used to cover (1,1), as in Figure 37. Some pentomino must
cover square (2,1).

Figure 37: P2 is used to cover (1,1).

If P3 is used to cover (2,1), then squares (2,2), (2,3) cannot be covered, as shown in
Figure 38.

Figure 38: P3 is used to cover (2,1).

Suppose P5 is used to cover (2,1), as in Figure 39. Some pentomino must cover (3,2).

Figure 39: P5 is used to cover (2,1).

If P1, P2, or P4 is used to cover (3,2), then square (2,3) cannot be covered, as shown in
Figure 40.
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Figure 40: P1, P2, or P4 is used to cover (3,2).

If P3 is used to cover (3,2), then square (5,2) cannot be covered, as shown in Figure
41.

Figure 41: P3 is used to cover (3,2).

If P6 is used to cover (2,1), then squares (3,1), (4,1), (5,1) cannot be covered, as shown
in Figure 42.

Figure 42: P6 is used to cover (2,1).

Suppose P7 is used to cover (2,1). Then P3 must be used to cover (2,2), which renders
(2,3) unable to be covered. See Figure 43.

Figure 43: P7 is used to cover (2,1).
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Therefore, P2 must not be used to cover (1,1).
Case 3: Suppose P3 is used to cover (1,1), as in Figure 44. Some pentomino must

cover square (3,1).

Figure 44: P3 is used to cover (1,1).

Suppose P1 is used to cover (3,1). Then P4 must be used to cover (5,1), which renders
(4,2) and (4,3) unable to be covered, as shown in Figure 45.

Figure 45: P1 is used to cover (3,1).

Suppose P2 is used to cover (3,1). Then P3 must be used to cover (5,1), which renders
(4,2) and (4,3) again unable to be covered, as shown in Figure 46.

Figure 46: P2 is used to cover (3,1).

If P3 is used to cover (3,1), then (5,1) cannot be covered, as shown in Figure 47.
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Figure 47: P3 is used to cover (3,1).

Therefore, P3 must not be used to cover (1,1).
Case 4: Suppose P7 is used to cover (1,1), as in Figure 48. Then P4 must cover (5,1).

By horizontal symmetry, this case is equivalent to the case in Figure 39, and so we may
omit it here.

Figure 48: P7 is used to cover (1,1).

Case 5: Suppose P5 is used to cover (1,1), as in Figure 49. Some pentomino must
cover (5,1).

Figure 49: P5 is used to cover (1,1).

Suppose P4 is used to cover (5,1), as in Figure 50. By horizontal symmetry, this case is
equivalent to the case in Figure 43, and so we may omit it here.
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Figure 50: P4 is used to cover (5,1).

Suppose P8 is used to cover (5,1), as in Figure 51. By horizontal symmetry, this case is
equivalent to the only other remaining case, Case 6, in which P6 is used to cover (1,1)
and P7 is used to cover (2,1), as in Figure 52.

Figure 51: P5 is used to cover (1,1) and P8 is used to cover (5,1).

Figure 52: P6 is used to cover (1,1) and P7 is used to cover (2,1).

These are the final cases to consider. Since the original rectangle was R(5,2k +1),
then the portion of the rectangle that remains to be tiled is R(5,2k −1). By the same
reasoning, the only useful option is to place another R(5,2) (as we did in Figure 51 or
Figure 52), reducing the remaining portion of the rectangle to R(5,2k−3). After repeating
this process of placing a R(5,2) k−2 more times, the remaining portion of the rectangle is
R(5,1). By our assumption, a tiling for R(5,2k +1) exists, but we have already established
that R(5,1) cannot be tiled. This is a contradiction.

Thus, if n is odd, there is no tiling for R(5,n).
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