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On Isomorphic K-Rational Groups of Isogenous
Elliptic Curves Over Finite Fields

By Ben Kuehnert, Geneva Schlafly, and Zecheng Yi

Abstract. It is well known that two elliptic curves are isogenous if and only if they have same number of

rational points. In fact, isogenous curves can even have isomorphic groups of rational points in certain

cases. In this paper, we consolidate all the current literature on this relationship and give an extensive

classification of the conditions in which this relationship arises. First we prove two ordinary isogenous

elliptic curves have isomorphic groups of rational points when they have the same j -invariant. Then, we

extend this result to certain isogenous supersingular elliptic curves, namely those with equal j -invariant

of either 0 or 1728, using Vlăduţ’s characterization of the group structure of rational points.

1 Introduction

Elliptic curves have long been of great interest in mathematics due to their rich algebraic
structure and their unique morphisms known as isogenies. In 1966, Sato and Tate proved
that two elliptic curves defined over the same finite field are isogenous if and only if they
have the same number of rational points [6]. This theorem offers a helpful tool to relate
the study of multiple elliptic curves’ algebraic structures to that of the isogenies between
them.

The structure of the group of K-rational points of an elliptic curve over a finite field
is a central area of study in number theory. In brief, an elliptic curve E is a curve of the
form y2 = x3 +Ax +B. In 1999, Vlăduţ in [7] determined the possible group structures
of elliptic curves over Fpr , specifically when they have a cyclic group of rational points
based on its trace of Frobenius and the finite field over which the elliptic curve is defined.
For prime p 6= 2,3 and r > 0 integer, the field Fpr is the field of characteristic p with pr

elements. In 2001, Wittmann determined the possible group structures of E(Fpr ) for all
elliptic curves defined over Fpr with isomorphism classes of groups.

Following the technical details we will provide in Section 2, we combine these two
results to characterize the differences in the group structure of rational points of an
elliptic curve based on the field that the elliptic curve is defined over. Specifically, for an
elliptic curve defined over Fpr , we will show the possible structures of E(Fpr ) depending

Mathematics Subject Classification. 14H52, 14K22, 11Y01, 11N25, 11G07, 11G20, 11B99
Keywords. Elliptic curves, Mappings, Isogenies, Orders of Elliptic Curves, j -invariants.
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2 Isogenous Elliptic Curves

on whether r is odd or even. This allows us to link the group structures of E(Fpr ) and
E(Fp s ) when r and s have different parity. In this context, we also condense Vlăduţ’s work
to analyze the occurrence of both cyclic and non-cyclic groups of rational points.

With this classification of groups of rational points at hand, we then study the sit-
uations in which two isogenous curves have isomorphic groups of rational points. In
Section 3, we will give a proof that two ordinary elliptic curves with the same j -invariant
are isogenous if and only if they have isomorphic groups of rational points. In Section 4
and Section 5, we will then extend this statement to isogenous supersingular elliptic
curves when their j -invariants are either 0 or 1728.

2 Preliminaries

2.1 Elliptic Curves

We introduce some elementary features of elliptic curves. Let K be a field and K be its
algebraic closure (e.g. if K is the real numbers, then K would be the complex numbers).
In this paper, fields will be assumed to have characteristic not 2 or 3. In this case, an
elliptic curve can be defined by Weierstrass normal form given by

y2 = x3 +Ax +B,

with A,B ∈ K such that the discriminant, ∆= 4A3 +27B2, is nonzero. The discriminant
being nonzero guarantees that the curve is non-singular, meaning that the curve does
not contain any cusps or self-intersections.

For an elliptic curve E defined over a field K, we will define two important sets. The
first is

E/K = E(K) = {(x, y) ∈ K
2

: y2 = x3 +Ax +B}∪ {∞}

where the element ∞ is called the point at infinity. To understand what the point ∞
means, we must consider the equation in its projective form, as Y2Z = X3 +AXZ2 +BZ3.
This is obtained by the following relationships on coordinates:

x = X

Z
, y = Y

Z

In projective coordinates, the point ∞ is defined as the point (0 : 1 : 0) of the curve, and
will serve as an identity element under a well-defined operation on E/K described below.
Note that this set is infinite in general. The second set is the K-rational points, denoted

E(K) = {(x, y) ∈ K2 : y2 = x3 +Ax +B}∪ {∞}.

For two distinct points, P and Q, not equal to ∞ on an elliptic curve, namely P,Q ∈
E(K), the point P+Q can be uniquely defined by the following process. The point P+Q is
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Ben Kuehnert, Geneva Schlafly, and Zecheng Yi 3

computed by first calculating the line intersecting both P and Q. This line will intersect
the elliptic curve at a third point, call it R. Finally, draw a vertical line through R and
denote the point at which this line intersects the curve as P+Q. This addition process
uniquely defines P+Q. Points that share a vertical line are inverses, and when adding
a point to itself, we use the tangent line. Under this operation (E(K),+) is a group. See
Figure 1 for some examples of this group operation for an elliptic curve defined over R.

∞

Neutral element ∞

•P

•−P

Inverse element −P

•P •Q •

•
P+Q

Addition P+Q

•P •

•
2P

Doubling P+P

Figure 1: Group law of elliptic curves

Note that E(K) ⊆ E(K), in particular, E(K) is a subgroup of E(K). This geometric
description of the group law can also be expressed by the well-known formulas for
computing operations within E(K). Suppose P = (x1, y1) and Q = (x2, y2) with P 6= Q, then
if x1 6= x2, P+Q = (x3,−`x3 −m), where

`= y1 − y2

x1 −x2
, m = x1 y2 −x2 y1

x1 −x2
, x3 =

x1x2
2 +x2

1 x2 +A(x1 +x2)+2B−2y1 y2

(x1 −x2)2
,

and if y1 6= 0, 2P = (x4,−`x4 −m), where

`= 3x2
1 +A

2y1
, m = −x3

1 +Ax1 +2B

2y1
, x4 =

x4
1 −2Ax2

1 −8Bx1 +A2

4y2
1

.

These formulas still hold when K is a finite field whose characteristic does not equal
2. So if we let q = pr where p is prime and r ∈N and let K = Fq , E(K) is a finite abelian
group. The following notions and results concerning the size and structure of elliptic
curves play an important role.

Theorem 2.1 (Hasse, [3]). Let E be an elliptic curve over a finite field Fq . Then,

#E(Fq ) = q +1− t

where |t | ≤ 2
p

q.

The following theorem provides characterization of the structure of the elliptic curve
group E(Fq ).

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022



4 Isogenous Elliptic Curves

Theorem 2.2 (Theorem 4.1 in [8]). Let E be an elliptic curve over a finite field Fq . Then
E(Fq ) ∼= (Z/n1Z)⊕ (Z/n2Z) or E(Fq ) ∼= (Z/nZ) for some integer n ≥ 1, or for some integers
n1,n2 ≥ 1 with n1|n2.

2.2 Isogenies Between Elliptic Curves.

The isogenies between elliptic curves will be crucial in understanding their structure. In
this section we provide definitions of an isogeny and state some fundamental properties
of this type of a map.

Definition 2.3 ([5], Section 4). . Let E1 and E2 be two elliptic curves. An isogeny between
E1 and E2 is a morphism

α : E1 −→ E2

satisfying α(∞E1 ) =∞E2 . E1 and E2 are isogenous if there is an isogeny α between them
with α(E1) 6= {∞E2 }.

We do not consider the trivial map α=∞E. We say that two curves are isogenous over
K if there is an isogeny of E1 to E2 defined over K. Note that an isogeny is not necessarily
an isomorphism because an isogeny may have a non-trivial kernel. Also note that an
isomorphism is not necessarily an isogeny, because an isomorphism may not map ∞E1

to ∞E2 .
The notion of isogeny can be defined from a computational viewpoint via rational

maps.

Definition 2.4. (Isogeny of Elliptic Curves) [[8], Section 8.6]. Let E1 and E2 be elliptic
curves defined over a field K. An isogeny is a homomorphism from E1(K̄) to E2(K̄) that is
given by rational functions

α : E1(K̄) −→ E2(K̄)

α : (x, y) 7→
(

px

qx
,

py

qy

)
where px , qx , py , qy are polynomials in the coordinates of the point (x, y).

Example 2.5. Let E : y2 = x3+Ax+B be an elliptic curve. An example of an isogeny is the
“multiplication by m" map which sends a point P ∈ E to [m]P (m 6= 0), where the group
law on E is written additively using the following formulas for [m]P in terms of the so
called division polynomials ψm(x, y):

[m]P =
(

x −ψm−1ψm+1

ψ2
m

,
ψ2m

2ψ4
m

)

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022



Ben Kuehnert, Geneva Schlafly, and Zecheng Yi 5

The division polynomials ψi (x, y) are given by:

ψ1 = 1
ψ2 = 2y
ψ3 = 3x4 +6Ax2 +12Bx −A2

ψ4 = 4y
(
x6 +5Ax4 +20Bx3 −5A2x2 −4ABx −8B2 −A3

)
, for m ≥ 2,

ψ2m+1 =ψm+2ψ
3
m −ψm−1ψ

3
m+1, for m ≥ 3.

ψ2m =
(
ψm
2y

)
· (ψm+2ψ

2
m−1 −ψm−2ψ

2
m+1

)
,

More details about rational maps and division polynomials can be found in Section 3.2
of [8].

Definition 2.6. (Degree of an isogeny). Let ϕ : E1 → E2 be an isogeny of elliptic curves,

with α : (x, y) 7→
(

px
qx

,
py

qy

)
. Then the degree of α is the maximum of the degrees of the

polynomials px and qx .

The following theorem is a direct consequence of the Sato-Tate’s Isogeny Theorem
from [6], showing that isogeny classes of curves are in one-to-one correspondence with
the orders of the curves’ K-rational points.

Theorem 2.7. Two elliptic curves E(K) and E′(K) are isogeneous if and only if

#E(K) = #E′(K).

When K is a finite field, it makes sense to talk about the Galois group, Gal(K/K), since the
algebraic closure and separable closure of K coincide. The Galois group is the set of field
automorphisms of K that leave K fixed, which forms a group under composition. For
E,E′ two elliptic curves defined over K and φ : E → E′ an isogeny, Gal(K/K) acts on φ by
acting on its coefficients. For σ ∈ Gal(K/K), we denote the image of φ under the action of
σ by φσ. The following lemma provides a tool to determine whether an isogeny is
defined over K.

Lemma 2.8. Let E,E′ be two elliptic curves defined over a finite field K, σ ∈ Gal(K/K), and
φ : E → E′ be an isogeny. Then φ is defined over K if and only if φσ =φ for all σ.

Proof. If φ is defined over K, then all its coefficients lie in K, thus are preserved by any
σ ∈ Gal(K/K). On the other hand, if φ has a coefficient lying in K\K, there would exist
σ ∈ Gal(K/K) that does not preserve this coefficient since K is the largest subfield of K
preserved by Gal(K/K).

The j -invariant of an elliptic curve is an important invariant of curves. For a curve
E : y2 = x3 +Ax +B in Weierstrass normal form, the j -invariant is given by

j (E) = 1728 · 4A3

4A3 +4B2
.

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022



6 Isogenous Elliptic Curves

For most j -invariants j ∈ Fp there are, up to isomorphism, exactly two elliptic curves E
over Fp with j (E) = j : a curve E and its quadratic twist. The exceptions are j = 0 when
p = 1 mod 3 and j = 1728 when p = 1 mod 4. In the first case there are six curves and
in the second case there are four curves. The following theorems are well known results
about j -invariants.

Theorem 2.9 (Proposition III.1.4 in [5]). Let K be a field and E1, E2 elliptic curves over K.
Then there is an isomorphism from E1 to E2 defined over K if and only if j (E1) = j (E2).
Moreover given j0 ∈ K, there exists an elliptic curve E over K with j -invariant equal to j0.

Theorem 2.10 (Theorem 2.19 in [8]). Let E1 : y2
1 = x3

1 +A1x1 +B1 and
E2 : y2

2 = x3
2 +A2x2 +B2 be elliptic curves defined over K. If j (E1) = j (E2) then there exists a

µ ∈ K with
A2 =µ4A1, B2 =µ6B1

such that the transformation

x2 =µ2x1, y2 =µ3 y1

is an isomorphism over K.

2.3 Endomorphisms

An endomorphism of an elliptic curve E is an isogeny from E to itself. The set EndK(E) of
endomorphisms over K has a ring structure with the following operations. Let E/K be an
elliptic curve and let α,β ∈ EndK(E). Then, α+β will be the pointwise addition of
functions. So for P ∈ E/K, (α+β)(P) = α(P)+β(P). Multiplication will be given by
function composition, so α ·β= α◦β. The structure is exactly the same for the ring
EndK(E) of endomorphisms defined over K.
An example of an endomorphism is the multiplication by n map, denoted by [n] where
n is a nonzero integer. For an elliptic curve E/K and a point P ∈ E/K, the map is defined
via

[n]P = nP = P+·· ·+P︸ ︷︷ ︸
n times

Note that [0] maps everything to zero, so it is constant, and not an isogeny by definition.
This map has some noteworthy properties:

• [n +m] = [n]+ [m] as (n +m)P = nP+mP

• [nm] = [n]◦ [m] as (nm)P = n(mP).

With the multiplication by n map defined, we will also introduce the definition of
torsion points here. Given an elliptic curve E/K, E[n] := {P ∈ K | nP =∞}, that is E[n] is
the set of point that goes to infinity under the multiplication by n map. We also have the
following theorem concerning the group structure of E[n]:

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022



Ben Kuehnert, Geneva Schlafly, and Zecheng Yi 7

Theorem 2.11 (Theorem 3.2 in [8]). Let E be an elliptic curve defined over K and n be a
positive integer. If the characteristic of K does not divide n or is 0, then

E[n] ∼=Z/nZ⊕Z/nZ.

If the char(K) = p > 0 and p|n, then we can write n = pr n′ with p - n′. Then

E[n] ∼=Z/n′Z⊕Z/n′Z or Z/nZ⊕Z/n′Z.

Definition 2.12. Let E be an elliptic curve defined over a finite field Fpr , then E is
ordinary if E[p] ∼=Z/pZ and E is supersingular if E[p] ∼= 0.

The proof of the following theorem can be found in [8, Proposition 4.31].

Theorem 2.13. For E an elliptic curve over a finite field Fpr , E is supersingular if and only
if #E(Fpr ) ≡ 1 mod p.

Another important endomorphism is the Frobenius endomorphism. Let E/Fq . Then,
the Frobenius endomorphism is defined by

πq :E/Fq → E/Fq

(x, y) 7→ (xq , y q )

Lemma 2.14 (Lemma 4.5 in [8]). Let E/Fq be an elliptic curve, and let (x, y) ∈ E(Fq ). Then,

1. πq (x, y) ∈ E(Fq ) and

2. (x, y) ∈ E(Fq ) if and only if πq (x, y) = (x, y).

Corollary 2.15. If an endomorphism φ ∈ EndFq
(E) commutes with the Frobenius

endomorphism πq , then φ ∈ EndFq (E).

Proof. Suppose φ commutes with πq . Let P be a point in E(Fq ). Then,

πq ◦φ(P) =φ◦πq (P).

Since P ∈ E(Fq ), then πq (P) = P. Hence,

(φ(P))q =φ(Pq ) =φ(P).

This means that φ(P) ∈ E(Fq ). Therefore, φ restricted to E(Fq ) maps into E(Fq ), and is
thus defined over Fq by Lemma 2.8.

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022



8 Isogenous Elliptic Curves

3 Ordinary Elliptic Curves with Equal j -Invariant

In this section we will discuss the relationship between isogenous elliptic curves’
Fq -rational points with equal j -invariant.

Theorem 3.1. If E/Fq is an ordinary elliptic curve, then EndFq
(E) is commutative.

Proof. The commutativity of EndFq
(E) follows from EndFq

(E) being an order in an

imaginary quadratic field when E/Fq is ordinary. See Theorem 10.6 in [8].

Corollary 3.2. If E/Fq is ordinary, then EndFq
(E) = EndFq (E).

Proof. Let φ ∈ EndFq
(E). Since EndFq

(E) is commutative, then φ commutes with πq ,

hence φ ∈ EndFq (E). Thus, EndFq
(E) ⊆ EndFq (E). Trivially, EndFq (E) ⊆ EndFq

(E) since all

isogenies defined over Fq are also defined over Fq . Thus,

EndFq
(E) = EndFq (E)

Theorem 3.3. Suppose E1 and E2 are ordinary elliptic curves defined over Fq with
j (E1) = j (E2). Then,

#E1(Fq ) = #E2(Fq ) ⇐⇒ E1(Fq ) ∼= E2(Fq )

Proof. We proceed as Proposition 14.19 in [2]. Suppose E1(Fq ) ∼= E2(Fq ), then
#E1(Fq ) = #E2(Fq ), as isomorphisms of finite groups preserve order. Conversely, suppose
#E1(Fq ) = #E2(Fq ). By Theorem 2.7, these curves are isogenous over Fq , so there exists
some isogeny λ : E1 → E2 defined over Fq . Next, since j (E1) = j (E2), there exists an
isomorphism φ : E2 → E1 defined over Fq by Theorem 2.10. Consider φ◦λ which is in
EndFq

(E1). Since E1 is ordinary, this endomorphism can be defined over Fq by

Corollary 3.2, so φ◦λ ∈ EndFq (E1). Let σ ∈ Gal(Fq /Fq ). Then,

φσ ◦λ=φσ ◦λσ = (φ◦λ)σ =φ◦λ

Since isogenies are surjective, we have that φσ =φ. This holds for all such σ, so by
Lemma 2.8 φ is defined over Fq . Finally, as both E1 and E2 are isomorphic over Fq , we
conclude that E1(Fq ) ∼= E2(Fq ) via Theorem 2.7.

4 The case when the j -invariant j = 0

In this section we consider the elliptic curves with j -invariant j = 0, i.e. elliptic curves of
the form E(Fq ) : y2 = x3 +B. We prove that when the j -invariant is 0, two curves are in

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022



Ben Kuehnert, Geneva Schlafly, and Zecheng Yi 9

the same isogeny class if and only if they have isomorphic groups of Fq -rational points.
Recall that two curves are in the same isogeny class if an only if they have the same
number of Fq rational points. We will show that two curves with j = 0 have the same
number of Fq -rational points if and only if the group of Fq -rational points are
isomorphic. We will prove this statement in two cases: the case when j = 0 and the
elliptic curve is supersingular and the case when j = 0 and the elliptic curve is ordinary.
The following two theorems classify the number or Fq -rational points of elliptic curves
with j -invariant j = 0. The proof of Theorem 4.1 can be found in [1] (Theorem 2.4 and
Theorem 2.5).

Theorem 4.1. For p ≡ 2 mod 3, if E is an elliptic curve with j -invariant j = 0 defined
over Fq , then

1. if q is an odd power of p, then #E(Fq ) = q +1; and

2. if q is an even power of p, then

#E(Fq ) ∈ {q +1+2
p

q , q +1−p
q , q +1+2

p
q , q +1−2

p
q}.

Theorem 4.2 (Gauss). Let E(Fp ) : y2 = x3 + r be an elliptic curve and p ≡ 1 mod 3. Then

#E(Fp ) =


p +1+2a if r is sextic residue modulo p

p +1−2a if r is cubic residue but not quadratic residue modulo p

p +1−a ±3b if r is quadratic residue but not cubic residue modulo p

p +1+a ±3b if r is neither quadratic nor cubic residue modulo p,

where a,b satisfy the conditions a2 +3b2 = p, b > 0, and a ≡ 2 mod 3. If If p ≡ 2 mod 3,
then #E(Fp ) = p +1.

We now introduce an important invariant of elliptic curves, the trace of Frobenius.

Definition 4.3. The trace of Frobenius of an elliptic curve E/Fq , denoted by m, is
defined as m = q +1−#E(Fq ).

With the notion of the trace of Frobenius, we are able to prove the following lemma
which describes a sufficient condition for an elliptic curve with j = 0 defined over Fp to
be ordinary.

Lemma 4.4. An elliptic curve E : y2 = x3 + r defined over Fp is ordinary if p ≡ 1 mod 3.

Proof. Here we consider the relationship between p and the trace of Frobenius,
m = p +1−#E(Fp ). By Theorem 4.2, when p ≡ 1 mod 3, we have

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022



10 Isogenous Elliptic Curves

m ∈ {±2a,−a ±3b, a ±3b} where a ≡ 2 mod 3 and b > 0. These conditions give us the
following inequalities:

|2a| ≤ a2 = p −3b2 < p,

|−a ±3b| ≤ |a|+ |3b| < a2 +3b2 = p,

|a ±3b| ≤ |a|+ |3b| < a2 +3b2 = p.

Thus, p does not divide any of the elements in {±2a,−a ±3b, a ±3b}. Hence, p does not
divide the trace of Frobenius. Therefore, when p ≡ 1 mod 3, E is ordinary.

Remark 4.5. Observe that |2a| ≤ a2 = p −3b2 < p. So p - 2a and p -−2a. Additionally,
we have that

|−a ±3b| ≤ |a|+ |3b| < a2 +3b2 = p

and
|a ±3b| ≤ |a|+ |3b| < a2 +3b2 = p,

which implies p does not divide any of the elements in {2a,−2a,−a ±3b, a ±3b}. Since
p does not divide the trace of Frobenius when p ≡ 1 mod 3, every elliptic curve defined
over Fp is ordinary.

The following lemma characterizes the group structure of E(Fq ) knowing the structure of
E(Fp ).

Lemma 4.6. Let E(Fq ) : y2 = x3 + r be an elliptic curve with q = pr and r ∈ F×p . If E is
ordinary over Fp , then E is ordinary over Fq .

Proof. Since E be an ordinary elliptic curve over Fp . By Definition 2.12 for ordinary
elliptic curves we have that E[p] ∼=Z/pZ. Since Fq is of characteristic p, the fact that
E[p] ∼=Z/pZ implies that E(Fq ) is ordinary by the same definition.

Now we give an integrated classification of ordinary (and resp. supersingular) elliptic
curves when j = 0. To do so, we first need the following proposition. The proof of this
proposition can be found in [1].

Theorem 4.7. Let a,r ∈ F×q , then for elliptic curves E and E′ given by

E : y2 = x3 + r

E′ : y2 = x3 +a6r,

we have E(Fq ) = E′(Fq ).

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022



Ben Kuehnert, Geneva Schlafly, and Zecheng Yi 11

Remark 4.8. Let R denote the image of the map from F×q to F×q given by r 7→ r 6. Then it
gives at most 6 cosets of R in Fq , which are referred as sextic residue classes of Fq . From
the proposition above we have that the order of an elliptic curve E : y2 = x3 + r only
depends on the sextic residue class of r .

Theorem 4.9. Let E(Fq ) be a non-singular elliptic curve with j (E) = 0 and q = pr . Then E
is supersingular if and only if p ≡ 2 mod 3.

Proof. As mentioned earlier in the paper, the elliptic curves considered in this paper are
defined over a field of characteristic p 6= 2,3. Thus, we need to consider the following
two cases: p ≡ 1 mod 3 and p ≡ 2 mod 3.
Suppose p ≡ 2 mod 3, then by Theorem 4.1 the trace of Frobenius is

m = q +1−#E(Fq ) =
{

0 if q is an odd power of p

±2
p

q or ±p
q if q is an even power of p.

Thus if q = pr and p | m = 0, then E is supersingular.
Now suppose p 6≡ 2 mod 3, i.e. p ≡ 1 mod 3. For any non-elliptic curve E : y2 = x3 + r
and r ∈ F×q , there is an r ′ ∈ F×q distinct from r such that r and r ′ are in the same sextic
residue class over F×q . Indeed, when q > 7, it is clear that each sextic residue class of F×q
contains at least two elements. When q = 7, we have only one sextic class which
contains all elements of F×q . Let mr be the trace of the elliptic curve y2 = x3 + r and mr ′

be the trace of the elliptic curve y2 = x3 + r ′. By Proposition 4.7, we have that the elliptic
curves have the same number of rational points, and thus mr = mr ′ .
By Lemma 4.4 and Lemma 4.6, along with the fact that p -mr ′ and r ′ ∈ F×q , we have that
p -mr and E(Fq ) is ordinary.

In the next two subsections we will discuss the relationship between group order and
group structure of Fq -rational points of elliptic curves when the curves are ordinary and
when the curves are supersingular separately in the following two subsections.
According to Theorem 4.9, these two cases correspond to p ≡ 1 mod 3 and p ≡ 2 mod 3
respectively.

4.1 Group Structure of Ordinary Elliptic Curves

According to Theorem 4.9, we know that E is ordinary if p ≡ 1 mod 3. Therefore, the
results for ordinary elliptic curves will hold here. We conclude that for elliptic curves
E1,E2 defined over Fq , if their Fq -rational points have the same cardinality, then
E1(Fq ) ∼= E2(Fq ).
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4.2 Group Structure of Supersingular Curves

We first discuss the case when the elliptic curves are supersingular, i.e. when p ≡ 2
mod 3. The following theorem of Vlăduţ describes the group structure of the group of
Fq -rational points of elliptic curves defined over Fq .

Theorem 4.10 (Theorem 2.1 in [7]). A finite abelian group G of order N = q +1−m, with
m2 ≤ 4q, is isomorphic to E(Fq ) for E over Fq if and only if one of the following conditions
holds:

1. p does not divide m, and G ∼=Z/A×Z/B, where B|A and B|(m −2).

2. q is an odd power of p and one of the following holds:

(a) m = 0, p ≡ 1,2 mod 4, and G is cyclic.

(b) m = 0, p ≡ 3 mod 4, and G is either cyclic or G ∼=Z/((q +1)/2)Z×Z/2Z.

(c) p = 2 or 3, m =±ppq, and G is cyclic.

3. q is an even power of p and one of the following holds:

(a) m =±2
p

q and G ∼= (Z/(
p

q ∓1)Z)2.

(b) m =±pq, and p = 3 or p ≡ 2 mod 3, and G is cyclic.

(c) m = 0, and p ≡ 2,3 mod 4, and G is cyclic.

Using Theorem 4.10 and Lemma 4.11 below, we will show that two supersingular elliptic
curves with j -invariant j = 0 have the same number of Fq -rational points if and only if
their groups of Fq -rational points are isomorphic.

Lemma 4.11. When p ≡ 11 mod 12 and q is an odd power of p,
E(Fq ) ∼=Z/((q +1)/2)Z×Z/2Z if and only if E[2] ⊆ E(Fq ).

Proof. By Theorem 2.11, we know that E[2] ∼=Z/2Z×Z/2Z. If E[2] ⊆ E(Fq ), E(Fq ) is not
cyclic. Moreover, for q satisfying the conditions in the lemma, we know m = 0 as is
shown in the proof of Theorem 4.9. Thus E(Fq ) must be isomorphic to
Z/((q +1)/2)Z×Z/2Z by Theorem 4.10 (2b).
For the other direction, if E(Fq ) is isomorphic to Z/((q +1)/2)Z×Z/2Z, then since q is
an odd power of p and p ≡ 11 mod 12, we know that 2 divides (q +1)/2. So E(Fq )
contains a subgroup isomorphic to Z/2Z×Z/2Z; that subgroup must be contained in
E[2]. By Theorem 2.11, this implies that E[2] ⊆ E(Fq ).

Theorem 4.12. If E1(Fq ) and E2(Fq ) are two elliptic curves with j (E1) = j (E2) = 0 and
p ≡ 2 mod 3, then #E1(Fq ) = #E2(Fq ) if and only if E1(Fq ) ∼= E2(Fq ).
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Proof. If E1(Fq ) ∼= E2(Fq ), then clearly #E1(Fq ) = #E2(Fq ). It remains to prove that the
converse also holds. First, assume that q is an odd power of p. By Theorem 4.1, all
elliptic curves E(Fq ) with j (E) = 0 and p ≡ 2 mod 3 have order

#E(Fq ) = q +1.

So the trace of Frobenius, denoted by m, is equal to zero, i.e.

m = q +1−#E(Fq ) = 0.

Since p ≡ 2 mod 3 and the field the characteristic of the field Fq is not equal to 2, we
can either have p ≡ 1 mod 4 or p ≡ 3 mod 4. From Theorem 4.10 (2a), if p ≡ 1 mod 4,
then E(Fq ) is cyclic. From Theorem 4.10 (2b), if p ≡ 3 mod 4, then E(Fq ) is either cyclic
or isomorphic to Z/((q +1)/2)Z×Z/2Z.
We will now show that when j (E) = 0 and p ≡ 3 mod 4, the case Z/((q +1)/2)Z×Z/2Z is
eliminated and E(Fq ) is always cyclic. First notice that the conditions of p ≡ 2 mod 3
and p ≡ 3 mod 4 is equivalent to p ≡ 11 mod 12.
Since j (E) = 0, the equation of E is of the form y2 = x3 +c where c ∈ Fq and c 6= 0. So the
2-torsion points of E are given by

{(x1,0), (x2,0), (x3,0),∞} (1)

for some x1, x2, x3 ∈ Fq satisfying the equation x3 + c = 0. Notice that when p ≡ 11
mod 12, we have 3 - p −1 and thus the map x 7→ x3 on F×q is an automorphism. So

x3 + c = 0 has only one solution in Fq , thus only two points (counting ∞) in (1) are in
E(Fq ). Therefore, E[2] 6⊆ E(Fq ) and the case E(Fq ) ∼=Z/((q +1)/2)Z×Z/2Z is excluded by
Lemma 4.11. Thus E(Fq ) is always cyclic when p ≡ 2 mod 3 and q is an odd power of p.
So if E1 and E2 have the same order, we know that

E1(Fq ) ∼=Z/(q +1)Z∼= E2(Fq ).

Next, assume that q is an even power of p. Then by Theorem 4.1, the trace of Frobenius
is

m = q +1−#E(Fq ) =±2
p

q or ±p
q .

If m =±pq , then by Theorem 4.10 (3b) we have that E(Fq ) is cyclic, i.e.
E1(Fq ) ∼= A ∼= E2(Fq ) where

A ∈ {Z/(q +1+p
q)Z, Z/(q +1−p

q)Z}.

If m =±2
p

q , then by Theorem 4.10 (3c) we have that

E1(Fq ) ∼= B ∼= E2(Fq ),

where
B ∈ {Z/(

p
q −1)Z×Z/(

p
q −1)Z, Z/(

p
q +1)Z×Z/(

p
q +1)Z}.

Therefore, in the case when p ≡ 2 mod 3, if two curves defined over Fq with j = 0 have
the same number of Fq -rational points, their groups of Fq -rational points are
isomorphic.
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5 The case when the j -invariant is j = 1728

In this section, we consider elliptic curves E over a finite field Fq with j -invariant
j = 1728, which means E is of the form

y2 = x3 +Ax, (2)

where A ∈ Fq . We will discuss whether two elliptic curves defined over Fq with j = 1728
have same number of Fq -rational points if and only if their group of Fq -rational points
are isomorphic. Similar to what we did in the last section, we will discuss this question
in two cases: when E is ordinary and when E is supersingular.

Remark 5.1. Its automorphism group Aut (E) has order 4, with one automorphism
mapping (x, y) to (−x, i y).

Theorem 5.2. Let E be an elliptic curve defined over Fq and p ≡ 3 mod 4.

1. If q is an odd power of p, then #E(Fq ) = q +1.

2. If q is an even power of p, then #E(Fq ) ∈ {q +1 , q +1±2
p

q}

Proof. The proof follows directly from Theorem 3.6 and 3.7 in [1].

The following theorem allows us to study supersingular and ordinary elliptic curves with
j -invariant j = 1728 separately based on the characteristic of the underlying field Fq .

Theorem 5.3. Let E be an elliptic curve over the field Fq of characteristic p 6= 2 and with
j -invariant j = 1728. Then E is supersingular if and only if p ≡ 3 mod 4.

Proof. Suppose p ≡ 3 mod 4. By Theorem 5.2 the trace of Frobenius is

m =
{

0 if q is an odd power of p

0 or ±2
p

q if q is an even power of p.

Since p divides m when m = 0, and p divides 2
p

q when q is an even power of p, E is
supersingular by 2.13.
Now suppose p ≡ 1 mod 4. Use a similar technique to the proof of Theorem 4.9, by
applying Theorem 4.2 for E : y2 = x3 +ax and extend the result from Fp to Fq . This
shows E is ordinary. Alternatively, see the proof of Theorem V.4.1 in [5].

5.1 Group Structure of Ordinary Curves

By Theorem 5.3, E(Fq ) with j -invariant 1728 is ordinary if and only if p ≡ 1 mod 4. Then
by Theorem 3.3, we have #E1(K) = #E2(K) if and only if E1(K) ∼= E2(K) and this concludes
the case of ordinary elliptic curves with j -invariant 1728.

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022



Ben Kuehnert, Geneva Schlafly, and Zecheng Yi 15

5.2 Group Structure of Supersingular Curves

By Theorem 5.3, E(Fq ) with j -invariant 1728 is supersingular if and only if p ≡ 3 mod 4.
As before, we will discuss the group structure of Fq -rational points separately according
to the two cases: when q is an odd power of p and when q is an even power of p.

5.2.1 When q is an odd power of p. The group structure of Fq -rational points in this
case corresponds to Theorem 4.10 (2b), from which we can see that there are two
possible group structures for E(Fq ). However, when q is an odd power of p, the order of
E(Fq ) is uniquely given by #E(Fq ) = q +1. So two elliptic curves having the same number
of Fq -rational points do not necessarily have isomorphic group of Fq -rational points.
The following example verifies our assertion.

Example 5.4. As shown in the fourth table ( j = 1728,r = 1) in the Appendix, over F7

there are six elliptic curves all of order 8. So, all the curves are isogeneous by Sato-Tate
Theorem, forming one isogeny class. But, there are two isomorphism classes with
distinct group structures. In this case these are Z/8Z and Z/2Z×Z/4Z.

Therefore, when q is an odd power of p and j = 1728, two elliptic curves having same
number of Fq -rational points does not imply that their groups of Fq -rational points are
isomorphic.

5.2.2 When q is an even power of p. On the other hand, in the following example
where q is an even power of p, two elliptic curves having the same number of
Fq -rational points does imply that the curves have isomorphic group structures.

Example 5.5. As shown in the fifth table ( j = 1728,r = 2) in the Appendix, over F72 there
are 48 elliptic curves of three distinct orders, forming three isogeny classes, by Sato-Tate
Theorem. All the curves within the same isogeny class have the same group structure.

In fact, this is true whenever q is an even power of p, and we will now prove this
statement.

Theorem 5.6. Let q = pr where p 6= 2 and r is even. If E1,E2 are supersingular elliptic
curves over Fq and the j -invariant is 1728, then

#E1(Fq ) = #E2(Fq ) ⇐⇒ E1(Fq ) ∼= E2(Fq ).

Proof. E1(Fq ) ∼= E2(Fq ) implies #E1(Fq ) = #E2(Fq ) by properties of isomorphic groups. So
we only need to show that if E1 and E2 have the same number of Fq rational points, then
they have isomorphic group structures.
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In proof of Theorem 5.3, we showed that when p ≡ 3 mod 4 and q is an even power of p,
m ∈ {0,2

p
q ,−2

p
q}. When m = 0, #E1(Fq ) = #E2(Fq ) = q +1. By Theorem 4.10 (3c), we

know both E1(Fq ) and E2(Fq ) are cyclic, that is

E1(Fq ) ∼=Z/(q +1)Z∼= E2(Fq ).

When m = 2
p

q , #E1(Fq ) = #E2(Fq ) = pr +1−2
p

q . By Theorem 4.10 (3a), we have

E1(Fq ) ∼= A ∼= E2(Fq ),

where A is given by
A =Z/(

p
q −1)Z×Z/(

p
q −1)Z.

When m =−2
p

q , #E1(Fq ) = #E2(Fq ) = pr +1+2
p

q . Again, by Theorem 4.10 (3a), we
have

E1(Fq ) ∼= B ∼= E2(Fq ),

where B is given by
B =Z/(

p
q +1)Z×Z/(

p
q +1)Z.

Therefore, we may conclude that when q is an even power of p and p ≡ 3 mod 4, two
elliptic with j -invariant 1728 have the same number of Fq rational points if and only if
their group of Fq rational points are isomorphic.

6 Conclusion

In this paper, we discussed the relationship between elliptic curves being isogenous and
elliptic curves having isomorphic group of rational points. Specifically, we focused on
the case of elliptic curves over finite fields with j -invariant 0 or 1728. By considering
ordinary elliptic curves and supersingular elliptic curves separately, we proved that two
elliptic curves with j -invariant 0 over a finite field Fpr are isogenous if and only if their
group of Fpr -rational points are isomorphic. We also proved that two elliptic curves with
j -invariant 1728 over a finite field Fpr with r even are isogenous if and only if their group
of Fpr -rational points are isomorphic. Specifically, we gave examples of isogenous
elliptic curves over Fpr with j -invariant 1728 not having isomorphic group of
Fpr -rational points when r is odd.

Appendix: Data of group structures of E(Fpr )

The following are some data we collected on the group structure of E(Fpr ) for elliptic
curves with j -invariant 0 and 1728. For each j -invariant, we give three tables varying
the power of p, which we denote by r .
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For each prime, each sub-row represents an isogeny class. In the first column, an
example curve from that class is given, next is the number of curves in that isogeny class,
then the group structure(s) found among elliptic curves in that isogeny class. The final
row “Success” indicates whether the data agrees with statement “two elliptic curves over
Fpr are isogenous if and only if their group of rational points of Fpr are isomorphic”.
Note that elements of fields Fpr where r > 1 are represented as polynomials in Z.

j = 0, r = 1
p Example Order No. of EC Group Structure(s) Success
5 y2 = x3 +1 6 4 Z/6Z Yes

7

y2 = x3 +1 24 1 Z/2Z×Z/6Z
y2 = x3 +2 9 1 Z/3Z×Z/3Z Yes
y2 = x3 +3 13 1 Z/13Z
y2 = x3 +4 3 1 Z/3Z
y2 = x3 +5 7 1 Z/7Z
y2 = x3 +6 4 1 Z/2Z×Z/2Z

11 y2 = x3 +1 12 10 Z/12Z Yes

13

y2 = x3 +1 12 2 Z/2Z×Z/6Z
y2 = x3 +2 19 2 Z/19Z Yes
y2 = x3 +3 9 2 Z/3Z×Z/3Z
y2 = x3 +4 21 2 Z/21Z
y2 = x3 +5 16 2 Z/4Z×Z/4Z
y2 = x3 +6 7 2 Z/7Z

17 y2 = x3 +1 18 16 Z/18Z Yes
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j = 0, r = 2
p Example Order No. of EC Group Structure(s) Success

5

y2 = x3 + z 31 8 Z/31Z
y2 = x3 + z +3 21 8 Z/21Z Yes
y2 = x3 +3 16 4 Z/4Z×Z/4Z
y2 = x3 +2 36 4 Z/6Z×Z/6Z

7

y2 = x3 + z 37 8 Z/37Z
y2 = x3 + z +4 39 8 Z/39Z Yes
y2 = x3 +5z +4 52 8 Z/2Z×Z/26Z
y2 = x3 +2z +6 63 8 Z/3Z×Z/21Z
y2 = x3 + z +1 61 8 Z/61Z
y2 = x3 +2z +4 48 8 Z/4Z×Z/12Z

11

y2 = x3 + z 133 40 Z/133Z
y2 = x3 +4z +9 111 40 Z/111Z Yes
y2 = x3 +3z +3 100 20 Z/10Z×Z/10Z
y2 = x3 +2 144 20 Z/12Z×Z/12Z

j = 0, r = 3
p Example Order No. of EC Group Structure(s) Success
5 y2 = x3 + z 126 124 Z/126Z Yes

7

y2 = x3 + z 361 57 Z/19Z×Z/19Z
y2 = x3 + z2 381 57 Z/381Z Yes
y2 = x3 + z2 +3 364 57 Z/2Z×Z/182Z
y2 = x3 + z2 +4z 327 57 Z/327Z
y2 = x3 + z2 +1 307 57 Z/307Z
y2 = x3 +3z +5 324 57 Z/18Z×Z/18Z

11 y2 = x3 + z 1332 1330 Z/1332Z Yes
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j = 1728, r = 1
p Example Order No. of EC Group Structure(s) Success

5

y2 = x3 +x 4 1 Z/2Z×Z/2Z
y2 = x3 +2x 2 1 Z/2Z Yes
y2 = x3 +3x 10 1 Z/10Z
y2 = x3 +4x 8 1 Z/2Z×Z/4Z

7 y2 = x3 +x 8 6 Z/8Z, Z/2Z×Z/4Z No
11 y2 = x3 +x 12 10 Z/2Z×Z/6Z, Z/12Z No

13

y2 = x3 +x 20 3 Z/2Z×Z/10Z
y2 = x3 +2x 10 3 Z/10Z Yes
y2 = x3 +4x 8 3 Z/2Z×Z/4Z
y2 = x3 +7x 18 3 Z/3Z×Z/6Z

17

y2 = x3 +x 16 4 Z/4Z×Z/4Z
y2 = x3 +2x 20 4 Z/2Z×Z/10Z Yes
y2 = x3 +3x 26 4 Z/26Z
y2 = x3 +6x 10 4 Z/10Z

j = 1728, r = 2
p Example Order No. of EC Group Structure(s) Success

5

y2 = x3 + zx 18 6 Z/3Z×Z/6Z
y2 = x3 +2x 20 6 Z/2Z×Z/10Z Yes
y2 = x3 + (4z +3)x 34 6 Z/34Z
y2 = x3 +x 32 6 Z/4Z×Z/8Z

7
y2 = x3 + zx 50 24 Z/50Z
y2 = x3 + (2z +5)x 36 12 Z/6Z×Z/6Z Yes
y2 = x3 +x 64 12 Z/8Z×Z/8Z

11
y2 = x3 + zx 122 60 Z/122Z
y2 = x3 + (4z +9)x 100 30 Z/10Z×Z/10Z Yes
y2 = x3 +x 144 30 Z/12Z×Z/12Z

j = 1728, r = 3
p Example Order No. of EC Group Structure(s) Success

5

y2 = x3 + zx 130 31 Z/130Z
y2 = x3 + z2x 104 31 Z/2Z×Z/52Z Yes
y2 = x3 + (2z +2)x 122 31 Z/122Z
y2 = x3 +x 148 31 Z/2Z×Z/74Z

7 y2 = x3 +x 344 342 Z/2Z×Z/172Z, Z/344Z No
11 y2 = x3 +x 1332 1330 Z/2Z×Z/666Z, Z/1332Z No
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Appendix: Code

The code that generated the above data can be found at
https://github.com/bkuehnert/isogeny-data-collection
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