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Abstract 

Doyel, Michael Joseph 

M.S.B.E. 

Rose-Hulman Institute of Technology 

June 2021 

Common Spatial Pattern Detection of Concept Semantic Relatedness Using Combined ERP and 

Frequency Spectrum Features 

Thesis Advisor: Dr. Alan Chiu 

 

One of the chief contributing factors to slowing down BCI spellers for users with profound 

disabilities is backtracking to delete mistakes or correct certain selections. The ability to design an 

EEG-based strategy to identify the desire to make corrections in the BCI speller would enhance 

the user experience and bit rate of the device. Past efforts suggested that Common Spatial Patterns 

(CSP) may show promise in helping detect and classify semantic violations in reading despite CSP 

not being widely used in event-related potential (ERP) applications. Semantic violations in EEG 

often exhibit deflections in the N400 and P600 region coinciding with the violation. This research 

aims to create a CSP model that can improve the classification accuracy of semantic violations in 

reading by incorporating neural oscillation information. Visual stimuli consisting of 150 pairs of 

nouns from Maguire et al. (2010) and Calvo et al. (2018) were presented, where the first word 

served as the Primer and the second word served as the Target. EEG signals from 14 channels 

were parsed to obtain the average N400 potential, the average P600 potential, and signal power in 

the alpha and theta bands, creating a 56-dimension (14 channels by 4 feature types) feature space. 

The CSP algorithm was implemented to improve orthogonality in the feature space, and the feature 

space dimension was reduced to 2. Three types of classification strategies Linear Discriminant 



   

Analysis (LDA), Naïve Bayes (LB), and K-Nearest Neighbor (KNN), were implemented. 

Graphical analysis by CSP showed that while individual features did not appear separable, a higher 

dimension dataset including all four feature types does demonstrate separability. The 10-fold 

validation results showed that two-class models optimized for individual subjects achieved 

accuracies ranging from 50% to 66% with LDA, 78% to 98% with KNN, and 76% to 100% with 

NB. Examining the mixing matrices during the dimension reduction step in CSP suggested that 

alpha frequency band and EEG locations P7, F4, F3, AF4, and FC6 consistently play a critical role 

in the success of these classifiers across the different subjects. 
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1. Introduction 

Augmentative and Alternative Communication (AAC) devices are used to reduce the daily 

stress and burden for those who suffer from an expressive communication disorder whether 

congenital or acquired [43]. In particular, high-end AAC’s referred to as Speech Generating 

Devices (SGD) are of great use to patients who require an AAC solution that can be operated with 

limited motor function, while still allowing the patient to retain a certain level of communicative 

complexity [43]. With an estimated 2 million Americans alone benefitting from the use of AAC 

devices, the ability to improve the flexibility and adaptability of these devices is paramount to 

increasing the quality of life for those who use this technology [44][4]. 

One of the current issues that results in significant time delays in the use of SGDs is the 

detection and correction of semantic violations in the generated text. A sentence such as, “He likes 

avocado and red onions on his socks”, is grammatically correct by syntax and would be difficult 

to detect and correct without cycling through a complete set of commands in order to be able to 

delete the semantic error. For Event-Related Potential (ERP) based Brain-Computer Interface 

(BCI) spellers, the rapid detection of semantic errors and their streamlined correction is a key step 

to increasing device speed and precision, which ultimately leads to an increase in quality of life 

[5][6]. 

The N400 ERP was identified as early as 1980 when Kutas et al. determined that semantic 

incongruities in sentences could be correlated with a strong negative deflection of the potential in 

an Electroencephalography (EEG) reading 400ms after the onset of the stimulus [7]. Since its 

discovery it has been the subject of many different research articles and studies in conjunction with 

many positive deflection ERPs such as the P300 and P600, however, many studies conducted have 

had differing and sometimes conflicting results when measuring semantic errors with these ERPs 
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[8], [9]. For this reason, spectral analysis is being used as an additional layer of verification in the 

experiments in order to account for subject attention in the tasks that may have some effect on the 

attenuation of these two ERPs [9]–[11]. 

The purpose of this thesis is to analyze event-related potentials in EEG data that correspond 

to detected semantic violations in text. This includes the analysis of ERP data in the N400 and 

P600 regions, as well as alpha and theta brainwaves that may correspond to the alertness of the 

individual being tested.  

With the inclusion of the P600 ERP and the alpha and theta brainwaves, it is believed that 

the model shown by Calvo et al. can achieve enhanced efficiency when these variables are 

accounted for either by accounting for lapses in attention or by analysis of later onset semantic 

recognition in the P600 region [12]. It is hoped that integrating many of these different variables 

can help inform the limits in which spatial coherence analysis can be employed to improve the 

detection and resolution of (BCI) speller technology.   
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2. Background Information 

2.1 Brain-Computer Interfaces 

The burden of illness placed on people living with degenerative disease and those who 

have suffered traumatic spinal cord injury is large and often restricts the level of independence and 

communication ability these people may have [43][44]. Brain-Computer Interfaces, or BCIs, 

provide an avenue for reconciling this loss of function and augmenting the user’s ability to 

communicate with the world through physical means. BCI devices can function in various roles 

while also utilizing many different brain wave signals to accomplish their goals.  Inputs can include 

EEG signals measured from electrodes on the scalp, EOG signals which measure the movement 

of the eyes, ECoG implantations in the scalp, and even measurements of pupil size 

oscillation[1][13]. These inputs then undergo filtering, algorithmic feature extraction, and 

classification to isolate meaningful data which is then implemented in the BCI hardware to 

generate a real-world output [14][1][15]. Because this type of technology focuses on creating 

outputs based on brainwaves from the central nervous system (CNS), it provides alternate solutions 

for accomplishing tasks that may otherwise require vocal or musculoskeletal function [11]. For 

example, in a tetraplegic patient with no voluntary control over speech, BCIs can provide a rapid 

and non-invasive method for artificial speech synthesis [16].  Additionally, BCIs have even shown 

promise in more complex motor control of prostheses and robotic implementations that can further 

patient ability for independence and self-care [14]. 

However, despite their many uses, BCI devices are not without their downsides. A major 

roadblock for many BCI technologies is the ability to translate the results found in a lab setting to 

a real-world scenario, as lab environments are often carefully controlled and may not have the 
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variety of stimuli that a person would be subject to in a normal use case [17]. Furthermore, these 

devices can be costly and oftentimes require extensive training periods and calibration for each 

subject, leading to slower access and more cumbersome use. Depending on the type of BCI, it may 

not be financially or technologically feasible for a consumer to use, such as devices utilizing fMRI, 

for other devices such as ECoG, users may be more wary of the invasive nature of these 

implementations. Additionally, it is also important that BCI devices be robust enough to survive 

sustained long-term use and potential rough handling by users without failure, while also meeting 

criteria for safety and functionality in technically challenging environments [1]. 

Fortunately, with the rapid expansion of research in the BCI field, many different groups 

are offering solutions that help to tackle some of these concerns [14]. OpenBCI is one such group 

that is aiming to reduce the cost of BCI systems by providing BCI hardware capable of research-

grade data collection for a fraction of the normal price.  In addition, the open source nature of the 

OpenBCI mission allows for collaboration in the BCI community, and they even provide an open-

source GUI, shown in Figure 1 below, capable of tracking live EEG data and interacting with 

matlab and other programming interfaces. Feasibility studies have demonstrated that BCIs 

constructed with the OpenBCI hardware can be used in an uncontrolled setting to produce results 

similar to that of current clinical-grade BCI systems. Since these implementations cost only around 

10-20% of the typical price of a clinical BCI, further advances that improve network stability and 

assist in detection of measurement artifacts could help bring BCI devices to many more people. 

However, it is important to note that these systems do not have any type of medical or FDA 

approval, so the current usage in patients is strictly limited [19]. 
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Figure 1. Cyton Board and OpenBCI GUI. Advances is BCI technology continue to make research and 
accessibility a greater reality for many more people. Low-cost tools such as this data collection board and data 

streaming GUI continue to foster innovation in the BCI field. 

2.2 Electroencephalography 

 Electroencephalography (EEG) is a non-invasive technique that allows for the 

measurement of electrophysiological activity in the brain. This measurement is done through the 

placement of electrodes on specific regions of the head through either a scalp cap or headset. The 

standardized placements for these electrodes are known as the 10-20, 10-10, and the 10-5 systems 

where the 20, 10, and 5 represent the percent subdivision between landmarks on the skull where 

an electrode is placed [1][20]. The 10-20 system was one of the first standardized electrode 

placements and consists of 21 total placement positions labeled by the area of the head they 

measure from and the hemisphere from which they are measuring [21]. The 10-10 system includes 

the electrodes from the 10-20 division while adding additional subdivisions for a total of 74 

electrodes. The same is true of the 10-5 system shown in Figure 2, which brings the total number 

of electrodes in this system to 142 and provides a high level of granularity to the measurements. 

The error associated with any one of these systems is directly related to the number of electrodes, 
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but also to the model of the head being used. Electrodes that are misplaced in respect to their 

theoretical models will generate deviant data, and it is therefore crucial that electrode placement 

on each individual subject is carefully controlled to ensure quality data is produced [1][22]. 

 

Figure 2. Complete diagram of a 10-5 EEG system illustrating the typical electrode placement on the scalp of 
the subject [1]. The 10-5 electrode setup contains the electrode locations for the 10-20 system in the solid 

black, the 10-10 system in the fuzzier black, and the 10-5 system in the additional white circles. 

 Because EEG data are typically in the realm of microvolts and millivolts, it is necessary to 

amplify these signals into larger values for data processing, and in most cases a signal will run 
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through an analog-to-digital converter (ADC) in order to enable processing and storage of the 

signal. As an EEG signal is a continuous-time signal, it must be sampled  to be useful in application 

and to avoid aliasing, which is a distortion to the original signal due to an improper sampling 

frequency. Sampling at the Nyquist frequency allows for a near-perfect reconstruction of the signal 

and avoid aliasing as shown in Figure 3, because most activity in EEG scalp recordings lies at 

80Hz and below, a sampling rate of 160Hz is sufficient, but depending on the types of filtering 

used a lower value may be appropriate [1][23]. 

 

Figure 3. Demonstration of the negative effects of aliasing on time-domain data [2]. You can see that as the 
original signal as sampled and replotted at an improper sampling frequency, the reconstructed signal becomes 

distorted and loses much of the info contained in the original signal. 

 After sampling the data, an EEG destined for use in a BCI device will need to undergo a 

few more steps before it can be used to create meaningful outputs. Since EEG signals with 

frequencies above 40Hz tend to have a low signal to noise ratio (SNR), these components are 

generally filtered out with the use of a bandpass filter ranging from 0.5Hz to 40Hz that also 

removes some amplification artifacts. For EEG data sampled at a higher rate than the Nyquist 

frequency it may be useful to decimate the signal to the Nyquist rate for more efficient data 
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processing. It is also best practice to normalize a signal by subtracting the mean value of the signal 

from itself [9][10][24]. At this point the signal can then be processed through spatial filtering to 

extract event-related potentials and other useful data while also providing a metric to analyze and 

assess data. 

2.3 Event-Related Potentials & Rhythms 

 One of the key ways in which EEG data is analyzed is through event-related potentials 

(ERPs). An ERP is an electrical response in the brain that correlates to stimuli presented in the 

environment and is generally measured through the use of EEG [25]. These time-domain signals 

allow for researchers to correlate associations and actions with EEG readings for use in research, 

and their non-invasive nature has made them exceedingly popular in a wide array of studies [8], 

[26]–[29]. ERPs generally fall within preselected time windows and derive their names from these 

windows and the direction in which the EEG signal deflects from their mean. For example, an 

N400 component is an ERP signal component that usually produces a negative voltage peak within 

the time frame of 350-500ms after the onset of a stimulus. Furthermore, these specific ERPs are 

usually elicited by specific events such as semantic or grammatical incongruities in sentence 

structure while reading, allowing their presence to be used as a form of detection for these 

incongruities in EEG data[30]. 

 The N400 and P600 ERPs are of particular interest in studies of language comprehension 

as both of these have been shown to relate to violations in syntax as well as semantic incongruity 

in language [26], [31], [32]. Semantic violations are known to elicit a P600 response that has been 

attributed to a mental repair of incorrect sentence structure, however, they have also been shown 

to appear in some contexts with N400 peaks. N400 peaks generally occur when an unexpected 



   

9 
 

change occurs in a sentence such as “He went to the barbershop for a salad” as opposed to the 

expected “He went to the barbershop for a haircut.”. The expectancy of a word in a given context 

can also change the magnitude in which the N400 component appears [7], [26], [33][34]. These 

two ERPs can be seen as they appear in the time domain in Figure 4 below. 

 

Figure 4. N400 and P600 ERP time-domain responses to a presented stimulus. Both of these ERPs are tied to 
language comprehension and understanding and may serve as markers for semantic understanding [3]. 

From the perspective of BCI, signals such as these give a physical metric for which 

assistive devices can be designed around and improved. A current issue for users who rely on ERP-

based BCI spellers is the ability of these devices to provide rapid and accurate communication 

[5][35]. Feature detection of ERP signals in conjunction with other metrics such as power spectral 
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density in the theta and alpha bands related to attentiveness could allow for better design and error 

correction in these devices that can be tailored to the specific errors associated with individual 

ERPs. 

Neural rhythms are repetitive electrical activities that appear on EEG and relate to different 

types of neural activity in the brain. Many of these rhythms have been shown to correlate with 

attention and focus as well as restfulness, which make these rhythms good candidates as features 

for EEG analysis as they can be used to determine whether a subject was focused on the task and 

examine how task results may differ based on this focus. Unlike ERPs which occur in the time 

domain of an EEG signal, neural rhythms are features that occur in the frequency domain of an 

EEG signal. Alpha and theta waves are of particular note as their presence indicates levels of both 

alertness and relaxation, which are key control variables in EEG research [36], [37]. 

 Alpha rhythms are those that occur between 8-12 hertz in the frequency domain of an EEG 

signal measured on the occipital lobe. In general, alpha waves are not highly prevalent in most 

EEG readings of awake and alert subjects as they are at their strongest when a subject is in a restful 

state with their eyes closed[36]. However, high levels of alpha waves in an EEG experiment can 

indicate confounding variables such as drowsiness of a subject or lack of focused attention on a 

task. Measuring this activity is important in adjusting the parameters of a classification filter based 

on the attention that a subject may be allocating to the task at hand [37]. Theta rhythms are similar 

to alpha rhythms though they occur in the range of 4-8 hertz and are generally strongest around 

the hippocampus. Studies have linked these theta rhythms not only to alertness and activation of 

the hippocampus, but also to semantic memory and translation of thought to motion, both of which 

are useful in a two class setting examining semantic relationships in language [38]. 
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2.4 Common Spatial Patterns 

 Common Spatial Patterns or CSP is a mathematical method used to maximize the variance 

between multivariate signals through rotation on the axis. By inputting a multi-channel time signal 

into a CSP algorithm, it is possible to classify the most variant of these channels and use them to 

maximize the discrimination achieved [39]. This allows for the analysis of large quantities of 

channel data while simultaneously helping to remove unnecessary channels that don’t vary in any 

meaningful way [15], [24], [40]. CSP, in its most basic sense, is a rotational separation of two sets 

of data that projects both vector spaces in their most orthogonal position. Based on this 

transformation, it becomes possible to sort each point into either class one or class two depending 

on their location from the origin point[15], [24]. Because this axial rotation around the origin 

ignores the overall mean of each data set, it makes CSP a useful tool for analyzing data where 

there is significant overlap in the mean, such as applications of extracting event-related potentials 

from signal noise as the CSP algorithm can increase the variance of these ERPs to help distinguish 

them from the background signal[39]. 

2.5 Classification Algorithms 

 Classification algorithms are algorithms that can be used to sort data into specific classes 

and groupings based on information available in the data. Naïve Bayes (NB), is a classification 

algorithm based on Bayes Theorem. It makes its predictions based on the probability of events 

occurring given a subset of variables. In this case, that subset of variables is the feature inputs from 

our EEG and CSP analysis. K-Nearest Neighbor (KNN), is an algorithm that classifies data points 

based on their nearest neighbor just as the name suggests. The K value gives the weighting for 
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how many neighbors are looked at, so K = 3 will classify a point based on the 3 nearest neighbors. 

An example of this classification style for a 3 class dataset can be seen in Figure 5 below. 

 

Figure 5. KNN classification for a 3 class data set. This figure illustrates the original data spread, a 
classification method using only the first nearest neighbor, and a set that looks at the five closest neighbors to 

each point [45]. 

Discriminant Analysis functions by creating a decision surface that partitions and separates the 

data based on the training set. Two types of discriminant analysis are shown in Figure 6 below, 

these are the quadratic and linear discriminant analysis (QDA & LDA). 
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Figure 6. Examples of LDA and QDA analysis of two datasets. It is apparent that the QDA decision surface 

looks very similar to the separation achieved by a CSP filtering algorithm [46]. 

2.6 Overview of Calvo et al. Experiment 

 The dataset used in this study was initially collected by Calvo et al. for their research into 

classifying EEG data based on semantic groupings. The EEG collected for their study was based 

on semantic response to groupings of concrete nouns such as Oven-Sink and Cow-Milk. Eighteen 

postgraduate students from the Center of Computing research at the National Polytechnic Institute 

in Mexico City served as the subjects for the experiment. A total of 150 word pairs were presented 

to each subject in blocks of 30, with a word pair appearing on screen in size 70 Arial font for 5 

seconds. The left and right arrow keys would be pressed by each subject to indicate whether they 

thought the word pairs were semantically related or not. EEG data would be recorded using the 

Emotic EPOC headset with a 10-20 electrode system using 14 channels at AF3, F7, F3, FC5, T7, 

P7, O1, O2, P8, T8, FC6, F4, F8, and AF4. The sampling bandwidth for this experiment was 0.2 - 
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45 Hz. Information about the arrow keystrokes, timing data, stimulus onset, and reset periods were 

saved to a separate event file to be used with the data in processing[12]. 
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3. Methods 

3.1 Overview of Original Methods 

In order to examine the relationship between ERPs in EEG data and semantic violations in 

reading, an experiment was designed around eliciting ERP responses using sentences containing a 

semantic violation in the last word. Unfortunately, due to the COVID-19 pandemic, it was not 

possible to implement this experimental method, but it is described in detail here for potential 

future applications. Twenty randomly assorted college-aged students, both male and female, would 

have observed sentence sets presented via rapid serial visual presentation (RSVP) and would have 

pressed a button to indicate whether or not they believed that the sentence made semantic sense. 

For the presentation, 60 sentences pairs were created at a middle school reading level for 

presentation. The sentence pairs can be found in Appendix B of this work. These sentence pairs 

included one sentence that was normal and would not generally elicit an ERP response, while the 

second sentence was an exact copy with one word replaced so as to create a semantic violation in 

the sentence. Each of these sentences was structured so that the semantic violation would fall at 

the end of the sentence and would always be a noun so as to control for any artifacts that may have 

arisen with other word types in the presentation. The timing between words during the RSVP 

protocol was also designed to be slightly randomized to alleviate the effects of a subject 

anticipating words as they came on screen [41], [42]. 

EEG data during the experiment would have been recorded using the OpenBCI 3D printed 

headset with electrodes placed in the international 10-20 format. The OpenBCI Cyton and Daisy 

boards would have assisted in streaming the live data to the OpenBCI data collection GUI where 
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they could be recorded and monitored in real-time. These data could have then been subsequently 

migrated to Matlab for more extensive analysis of both the ERPs generated and the alpha and theta 

components that govern alertness in subjects. 

Complete descriptions of the processes used to find subjects, testing environments and 

equipment, changes to the project due to COVID-19, and data processing methods can be found 

in the following sections. Section 3.2 details how subjects would have been selected for this 

project, IRB review and protections for these subjects, as well as subject compensation. Section 

3.3 outlines in detail the original setup of the experimental area and what environmental and 

subject variables we attempted to control for in the experiment. Section 3.4 covers how this project 

changed due to the COVID-19 pandemic and how this thesis was adapted due to changes in lab 

accessibility and remote learning. Finally, section 3.5 covers the process used for analyzing 

collected data and extracting specific ERPs and neural oscillations to assess the feasibility of 

detecting semantic violations. 

3.2 Subject Selection & Compensation for Planned Experiments 

Before the beginning of subject selection, all research assistants and those working on the 

project were required to complete the Biomedical CITI training to obtain IRB approval for 

research. Research subjects would have completed a pre-experiment survey that would allow for 

exclusion based on emotional stress, neurological function, and vision as these are critical elements 

that could potentially skew EEG data. The research excluded the participation of minors as well 

as other protected groups unable to give voluntary informed consent.   

Subject participation in this research would have been completely voluntary and recruiting 

would be carried out through standard methods such as word of mouth and normal advertising. 
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Each subject would be required to complete an informed consent document and would have a 

subject ID assigned to them. These IDs would have then be used when referencing the data and 

the informed consent forms would have been stored separately in order to retain the anonymity of 

the test subjects. Testing subjects would have also filled out a survey prior to the experiment that 

gauged emotional state and exhaustion of the subject, as well as collecting data on other factors 

such as visual impairment, age, handedness, biological sex, existence of neurological disorder, and 

comfort with the experimental setting and procedures. After completing the experiment and 

finishing an exit survey, test subjects would have been compensated with a $25 gift card. 

3.3 Testing Environment for Planned Experiments 

 The testing environment was designed to control for as many outside variables as possible 

that could have interfered with the collection of clean EEG data. The subject would have sat in a 

copper mesh enclosure like the one seen in Figure 7 that would act as a faraday cage to isolate the 

sensitive electrodes within from any outside noise.  



   

18 
 

 

Figure 7. Faraday Cage Setup with monitor system in the BCI research lab. Subjects would have sat in this 
enclosure while wearing one of the two headsets seen in the photo. The RSVP protocol would have been 

implemented on the screen in the enclosure with data live streaming to researchers in the room. 

The room would have been kept darker to help maintain subject attention on the screen and 

reduce distractions that may have been present in the environment. The screens that the subjects 

viewed would be set to a fixed viewing angle, and the RSVP protocol would be adjusted to have 

the ideal presentation angle on the screen for viewing. Research assistants would have been with 

the subject at all times of testing to view the data and administer the test, however these assistants 

would have remained out of view and as quiet as possible to ensure that they did not create a 

distraction for the research subjects. Additionally, with 120 sentences total, sentences would have 

been given to the test subjects in blocks of 30 with breaks of 5 minutes in between to minimize the 

fatigue that subjects may have faced throughout the entire experiment. For each sentence 

presented, there would have been a period of time after the completion of the sentence where the 
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subject was to press one of two buttons indicating whether the sentence seemed to make semantic 

sense. Data from each subject would have been streamed to the OpenBCI GUI where it could be 

recorded and viewed in real-time to monitor for any issues with the headset or controls that could 

invalidate the experiment. 

3.4 Changes in Research Methods 

With school and lab closures during the COVID-19 pandemic, the scope and focus of this 

thesis changed significantly from the procedures outlined above. Because it became impossible to 

gather data from subjects in real-time, and since the equipment for EEG recording is quite 

specialized, the project shifted goals and instead focused on analyzing currently available data. For 

this, we used the data obtained by Calvo et al. in their paper “Measuring concept semantic 

relatedness through common spatial pattern feature extraction on EEG signals.” [12]. These data 

sets were chosen for a variety of different reasons. Firstly the research for which this data was 

acquired was also aimed at measuring the ability to detect changes in EEG signals based on 

semantic clues in read text, similar to the initial experiment proposed above for our own research. 

Secondly, the research methodology established by Calvo et al. was similar to the methodology of 

the original experimentation project. Subjects were university students, the electrode number and 

placements were the same, the presentation of the word pairs was done with RSVP, and the testing 

was done autonomously with the subjects using a button to select whether or not they believed the 

words to be semantically related. Finally, Calvo et al. used common spatial pattern filtering to 

classify their EEG signals based on P300 and N400 components of the waveform. However, they 

did not extend this classification to include P600, alpha, and beta components, which also hold 

relation to semantic violations and alertness respectively. 
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With this in mind, the new aim of this thesis was adjusted to look at whether or not the 

inclusion of P600, alpha, and beta components of EEG would allow for more accurate detection 

of semantic violations and act as an improvement over the original data. By adding additional 

dimensions to the common spatial pattern analysis, we believe that we can further increase the 

variance between signals with a semantic violation and those without one to better separate these 

cases from each other. We also aim to look at the feasibility of implementing common spatial 

pattern classification in EEG research to determine if it is realistic to use this type of classification 

or if a different type of classification is needed. This aim arose from the fact that Calvo et al. 

achieved high levels of accuracy in their classification despite using common spatial pattern 

classification on raw data sets in some instances, despite this not generally being a use for common 

spatial pattern classification. We plan to confirm that the results achieved are not due to errors 

created by noise introduced in the signal. 

3.5 Analysis of Data Provided by Calvo et al. 

As mentioned before, EEG data from Calvo et al. was collected in a very similar manner 

to the original experimental setup of this project. Light and sound were controlled for in the 

environment, the experiment was autonomous, and stimuli were presented on a screen in a similar 

manner with a subject pressing a button to relay whether they believed the words to be semantically 

related or not. Because the RAW data from this experiment were published publicly online, we 

were able to access the data to test the ability to further refine the detection protocol laid out by 

Calvo et al. For our analysis, the two of the key components necessary are the timing data and 

subject responses mentioned in the introduction. A workflow for the entire study can be seen in 

Figure 8. 
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Figure 8.  Workflow of the overall thesis process. Steps include sorting and feature extraction, CSP filtering of 
the extracted features, and classification of CSP results for analysis. 

Because the aim of this work is to analyze whether ERP and other EEG components can 

be used to classify semantic violations a large portion of the collected EEG data is unnecessary. In 

order to streamline the data used and to isolate the relevant time periods for each stimulus a 

MATLAB program, found in Appendix C, was created to read in the event file for a given subject 

and strip off the matrix position where that stimulus began. This was done by creating a separate 

vector start(k) in a simple for loop that inserts the start time in the third column of every second 

row into the vector. Furthermore, a simple vector type(k) can be created in the same manner that 

records the yes and no data recorded in the fifth column of the event file. 

Using the start(k) and type(k) vectors, it is possible to sort through each of the five blocks 

of data and strip out each event. Each of the 14 channels is sorted, taking data from 13 samples 

before the event onset, and 127 samples after the event onset to capture the window required for 

normalization and analysis. The channel data were concatenated across all five blocks so that each 

channel had a dataset consisting of all 150 trials. Additionally, these datasets were split based on 

whether or not the subject indicated a semantic relation between each word pair. This was 

determined using the string value in the provided event files and sorting each data set according to 
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that value. Two counters were used in an if statement to increment based on whether a yes or no 

result occurred.  

After all the channels had been sorted, each channel had the first 13 values in each row 

averaged into a mean to baseline average each signal against the background noise present during 

the experiment. After baseline averaging of signals, each channel of yes and no data were plotted 

on a subject by subject basis to look at individual differences in channel amplitude to see if N400 

and P600 regions are appreciably different in the data sets. Baseline corrected data were then be 

separated into two 3D matrices, YesBlock and NoBlock, for the extraction of features from each 

trial and for the condensing of each feature into the appropriate vector space for the CSP algorithm. 

The large blocks allow for easy access to each trial stimulus for all 18 subjects, while the N400 

and P600 blocks allow for CSP of the time signal. It is notable that N400 takes the average value 

from 58 to 84 samples of the signal while P600 takes the average value from 90 to 128 samples. 

These windows correspond with the time period in which the N400 and P600 components should 

reach their peak respectively and account for the sampling rate of 128 hertz as well as the 13 

samples of baseline left in front of each stimulus signal. 

For the theta and alpha wave components, the time-series data was converted into the 

frequency domain with a Fourier transform in order to extract the useful information. Because all 

the data was partition into the 3D vectors YesBlock and NoBlock, an fft was performed selecting 

the second dimension to ensure the proper transformation. Finally, using a nested for loop, the 

double-sided power spectrum of the function was determined and alpha and theta frequency data 

was ascertained from this power spectrum and sorted into the proper vectors. After this sorting, 

the overall 14 channel matrices for each feature, N400, P600, alpha, and theta, were plotted in a 

histogram to compare the average values of the data sets between the yes and no responses. For 
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data sets with a significant overlap of the mean, CSP processing was a good way to make the data 

more separable for classification. An overall workflow for this data processing can be found in 

Figure 9 below. 

 

Figure 9.  Workflow for the separation and sorting of EEG data provided by Calvo et al. 
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3.6 Implementation of CSP 

 After the processing and sorting of the four features was completed, the data was ready to 

be input into the CSP algorithm. To understand how the CSP algorithm works, an example of CSP 

with a sample signal has been provided. Given a pair of three-channel EEG signals Mx and My, a 

CSP algorithm maximizes the variance between these signals when the channels otherwise appear 

to be inseparable as they are in the data shown in Figure 10. 

 

 

Figure 10. Example plotting of the channels of data Mx and My. These data have mean values with significant 
overlap, making CSP a viable option for their separation. 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Channel 2

-2

-1

0

1

2

3

4

C
ha

nn
el

 1

Example Data Plotting Mx vs My

Mx Example Set

My Example Set

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Channel 3

-2

-1

0

1

2

3

4

C
ha

nn
el

 1

Example Data Plotting Mx vs My

Mx Example Set

My Example Set

-2 -1 0 1 2 3 4

Channel 3

-2

-1

0

1

2

3

4

C
ha

nn
el

 2

Example Data Plotting Mx vs My

Mx Example Set

My Example Set



   

25 
 

First, we compute the covariance matrices for each signal and then create a composite of both 

signals using the following equations: 

𝑅𝑅𝑥𝑥 = 𝑀𝑀𝑥𝑥∗ 𝑀𝑀′𝑥𝑥
∑ 𝑚𝑚11 + 𝑚𝑚22 + … 𝑚𝑚𝑛𝑛𝑛𝑛
𝑛𝑛
𝑖𝑖=1

    (1) 

𝑅𝑅𝑠𝑠𝑠𝑠𝑚𝑚  =  𝑅𝑅𝑥𝑥  +  𝑅𝑅𝑦𝑦     (2) 

This Rsum value can be decomposed into eigenvalue and eigenvector components Λsum and Usum, 

respectively. When combined with the covariance matrices, a Whitening Transform can be used 

to create two signals with common eigenvectors S1 and S2: 

𝑊𝑊 =  �𝛬𝛬𝑐𝑐−1𝑈𝑈𝑐𝑐       (3)  

 

𝑆𝑆𝑥𝑥 = 𝑊𝑊 ∗  𝑅𝑅𝑥𝑥 ∗ 𝑊𝑊′ 𝑆𝑆𝑦𝑦 = 𝑊𝑊 ∗  𝑅𝑅𝑦𝑦 ∗ 𝑊𝑊′   (4) 

Where 

𝑆𝑆𝑥𝑥 = 𝐵𝐵𝛬𝛬𝑥𝑥𝐵𝐵′           𝑆𝑆𝑦𝑦 = 𝐵𝐵𝛬𝛬𝑦𝑦𝐵𝐵′           𝛬𝛬𝑥𝑥 + 𝛬𝛬𝑦𝑦 = 𝐼𝐼   (5) 

In this case, with I as the identity matrix, the corresponding eigenvectors of Sx and Sy will always 

sum to one. This means that larger eigenvector values in Sx lead to smaller corresponding 

eigenvector values in S,y which makes the eigenvectors particularly useful for classification in a 

two-class problem. Using the projection matrix MCSP: 

𝑀𝑀𝑀𝑀𝑆𝑆𝑀𝑀 = 𝐵𝐵′ ∗ 𝑊𝑊     (6)  

each trial can be decomposed into the resulting mapping matrix Z. 
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𝑍𝑍𝑥𝑥 = 𝑀𝑀𝑀𝑀𝑆𝑆𝑀𝑀 ∗ 𝑀𝑀𝑥𝑥             𝑍𝑍𝑦𝑦 = 𝑀𝑀𝑀𝑀𝑆𝑆𝑀𝑀 ∗ 𝑀𝑀𝑦𝑦     (7)  

The final result is a pair of matrices Zx and Zy that are mapped orthogonally to one another from 

the origin, point as illustrated below in Figure 11 [24]. 

 

Figure 11. Plot of CSP Transformed Data from Mx and My. As opposed to the original data set, this data is 
orthogonal on the X and Y axis and shows a much greater separation than before. 

This result can be replicated with higher dimensional matrices such as the 14xN matrices 

containing the ERP data for N400 and P600 as well as theta and alpha wave data where N is the 

number of responses for each class of answer from the subject. For this analysis the variance 

between yes and no responses for N400, P600, alpha, and theta waves was calculated to determine 

if any of these variables were sufficiently separable on their own. In addition, these four matrices 

were also combined into matrices Q and F as 56xN to observe if additional discrimination was 

possible with a combination of different ERPs and neural rhythms. In addition to looking at the 

two most distinct eigenvectors generated by the CSP algorithm, the entire eigenvector space was 
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also viewed to determine if the inclusion of more dimensions would allow for better sorting for 

each data class. The implementation workflow for this CSP algorithm is shown in Figure 12. 

 

Figure 12.  Workflow for the implementation of CSP filtering for extracted feature data. 

 Validation was done by implementing a linear and quadratic discriminant analysis 

algorithm in MATLAB using the fitcdisc function. Processed data was split into ten sections, and 
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a ten-fold cross-validation method was used to verify the data sorting and check overall 

separability. For comparison, the data was also classified using the ten-fold cross-validation 

method with a Naïve Bayes (NB) classifier using the fitcnb function, and a K-Nearest Neighbor 

(KNN) classifier using fitcknn. After completion of this step, the entire original dataset was band-

-pass filtered between 0.5 and 40Hz and a CSP algorithm and ten-fold cross-validation was done 

for this filtered data. The implementation of this validation is illustrated in Figure 13 below. 

 

Figure 13.  Workflow for the implementation of classifier algorithms on filtered CSP data. Each classifier 
could be easily adjusted so that all four could be used on the data. 

 



   

29 
 

4. Results 

4.1 Time-Series Amplitude Analysis 

The collected data from each subject was input into a sorting algorithm to separate the data 

into two classes, yes and no. For each subject, the number of yes and no responses was dependent 

on their personal trial responses, and as such, the number of answers in each class varies between 

subjects. After the initial sorting of all 150 trials into two matrices, their time-series was plotted 

and viewed to determine if separability can be achieved when using singular features such as N400 

and P600 ERPs similar to Figure 14 below. While individual trials vary wildly, looking at the 

average yes and no responses across multiple subjects indicates that there may be features that 

allow for separation of the data. Averages across the time domain data show differences in 

response between yes and no classes both across the entire signal and in the N400 and P600 

regions. The regions where N400 and P600 ERP peaks are likely to occur are shaded in dark grey, 

and these ERPs would most typically appear in a signal where the subject indicated that the two 

words were not semantically related. 
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Figure 14: Illustration of differing amplitudes in the EEG signals across multiple channels for one subject. 
There is wide variability in the response, but it is clear that yes and no responses have some differences. Some 

shaded regions also appear to show deflections that are possibly indicative of the N400 and P600 ERPs. 

In the averaged signals, it is possible to see some deflections in the N400 and P600 ranges 

that could possibly be attributed to a semantic response in the no category. However, while the 

time-series data shows differences in the signals depending on the subject response, this does not 

necessarily indicate that the data will be easily separable outright as there are significant areas of 

overlap in many data sets. In order to test whether or not the data contained in the time domain can 

be used for classification, a simple comparison of the mean of each feature can be made to 

determine their overlap. 

4.2 Histogram Mean Analysis 

 One of the simplest methods available of separating two classes of data is the comparison 

of their mean. Using histograms, it is possible to compare the response values across all trials to 

determine if the mean is separable enough to be considered for classification purposes, as shown 

in Figure 15. For this study, all of the subject histograms displayed relatively similar results that 

indicate the data is inseparable. 
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Figure 15: Histogram of average voltage values of four separate features from Subject 1 Channel 6. The 
overlap in mean of these features shows that they are inseparable by mean and will likely need to be processed 

in a way that ignores the data mean. 

Across all subjects, channels, and features, the average value of each data set had 

significant overlap, which indicates a relatively similar mean for the data. This precluded the use 

of classification methods that depend on the separation of the mean of two data sets. However, a 

method that performs a transform of the data is still a viable option for classifying these two data 

sets. After band-pass filtering the data from 0.5 - 40Hz the mean of the two data sets remains 

inseparable as indicated by Figure 16, though the filtered data does show better overlap with the 

removal of signal noise. 
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Figure 16: The filtered data for Subject 14 still has an inseparable mean, which indicates that the mean 
overlap was likely not due to additional signal noise. 

4.3 Common Spatial Pattern Analysis 

 After verifying the inseparable means of the single feature RAW and filtered EEG data, 

CSP became a good option for maximizing the variance between the datasets as it allows data with 

overlapping means to be separated by projecting them orthogonally against each other. Each of the 

four data features for each subject was run through the CSP algorithm to determine whether or not 

a single feature could be used to classify the data. These results are illustrated graphically below 

in Figure 17 using the two features of greatest variance for each feature. 
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Figure 17: The four features selected for analysis are all shown here to be individually inseparable. To create 
separation with these features, they will need to be combined into a higher dimensional dataset. 

For these four features, CSP could not generate appreciable separation and variance 

between the two data classes, which indicates that each feature alone doesn’t provide enough 

granularity for response classification. Running validation tests using the unmixing matrix 

generated by these cases verifies that the single features are not separable enough by themselves, 

as illustrated in Figure 18. These trends hold true for both the RAW EEG data set and the filtered 

EEG data set. 
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Figure 18: Validation data overlayed onto the CSP transformation confirms that this data is still linked. Each 
feature validation set is clumped within the general mean of the training set. 

 

Tables 1 and 2 below show the results of using both Naïve Bayes and K-Nearest Neighbor 

classifiers on each distinct feature. While one subject did reach a classification rate as high as 70% 

with single feature classification, the overall trend for most subjects was only a moderate increase 

over random chance. 
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Table 1. Naïve Bayes Analysis with Ten-Fold Validation for all 18 research subjects. Values in the table 
represent the percentage of correct classifications based on the classification error of the 10-fold validation. 
Each subject had the four individual features of interest classified with this method, with Subject 4 having the 
highest classification rate at 69.30%. Overall rates indicate single features are not robust enough for accurate 
classification. 

 

Table 2. K-Nearest Neighbor Analysis with Ten-Fold Validation for all 18 research subjects. Values in the 
table represent the percentage of correct classifications based on the classification error of the 10-fold 
validation. Each subject had four individual features of interest classified separately, with subject 17 having the 
highest classification rate at 70.67%. While this rate was considerably greater than random chance, it also 
appears to be a one-off anomaly in the data, though it could indicate the strong semantic responses present 
during semantic violations. 

 

Subject N400 P600 Alpha Theta
S1 51.82 52.56 49.09 49.84
S2 50.92 61.81 55.78 53.17
S3 56.06 60.94 58.44 49.32
S4 52.79 58.88 61.35 69.30
S5 58.46 52.08 58.00 59.06
S6 55.26 59.76 53.01 55.41
S7 57.20 57.58 56.60 62.78
S8 53.50 50.85 58.84 52.22
S9 56.08 54.98 53.76 56.48
S10 64.37 64.53 56.62 49.84
S11 62.67 63.33 59.33 54.00
S12 57.05 58.04 48.30 53.75
S13 58.07 54.74 61.23 60.99
S14 51.82 52.56 49.09 49.84
S15 59.10 54.05 57.10 54.78
S16 58.93 55.71 60.58 53.08
S17 62.37 54.58 61.99 54.18
S18 55.04 52.15 61.87 54.35
Total Average 56.85 56.88 56.42 55.18

Subject N400 P600 Alpha Theta
S1 53.33 49.33 50.67 48.67
S2 52.00 52.67 56.00 52.67
S3 58.00 60.00 58.00 49.33
S4 51.33 54.67 58.67 60.00
S5 62.67 54.67 58.67 63.33
S6 56.00 63.33 60.67 64.00
S7 51.33 57.33 46.00 56.00
S8 66.67 54.00 57.33 51.33
S9 56.67 61.33 58.67 67.33
S10 56.00 61.33 53.33 60.00
S11 66.67 55.33 51.33 58.00
S12 60.00 52.00 55.33 53.33
S13 56.67 51.33 62.67 57.33
S14 53.33 49.33 50.67 48.67
S15 49.33 46.00 50.00 52.00
S16 61.33 41.33 50.67 44.00
S17 70.67 54.00 56.00 49.33
S18 58.67 49.33 58.00 44.67
Total Average 57.81 53.74 55.15 54.44
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To generate a dataset that would be more separable than any single feature, all four features 

were combined into a single feature space. This new feature space comprising fourteen channels 

from four features has a total of 56 dimensions for analysis. With this new higher dimensional data 

set, it was possible to obtain separation between the two classes for all 18 like that shown in Figure 

19. The data here were highly orthogonal, and it was clear that each class was aligned on a separate 

axis. 

 

Figure 19: The four features combined create two data sets that can be projected orthogonally to each other 
after CSP processing for each individual subject. 
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Using the unmixing algorithm to project the validation data set onto the subject set shows 

more promising results than the single figure trials. The validation set projection in Figure 20  

shows a clear separation from the mean when plotted over the training set. 

 

Figure 20: Validation set data plotted over the original CSP transformation shows that an unmixing matrix 
generated from this transform does separate the data to some degree for independent subjects. 

 For higher-dimensional sets, it was not possible to look at the spread of data to visually 

assess whether or not separation and proper classification occurs during the validation step, so 

instead, a linear discriminant algorithm was created to classify the results of each set. This 

algorithm was used in a ten-fold cross-validation of all 18 subjects, and it allowed for the 

examination of 2, 28, and 56 features of RAW and filtered data for each subject. After the ten-fold 

validation process the average value and maximum value of the correct answers were found for 
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each subject. The values shown in Table 3 indicate the classification percentage for LDA for the 

given feature sets. 

Table 3. Linear Discriminant Analysis with Ten-Fold validation for all 18 subjects and six feature groupings. 
Values in the table represent the percentage of correct classifications based on the classification error of the 10-
fold validation. LDA was overall an ineffective method at classifying the data, performing worse in some cases 
than using single features for classification. 

 

Overall, LDA does not appear to be an effective way to classify data that has been modified 

through CSP. Subjects 1 and 6 had the highest classification rate at 66.67% with two features using 

RAW data, while many other subjects barely achieved classification at a rate higher than random 

chance. However, while linear discriminants were ineffective, quadratic discriminants showed 

much better results, as outlined below in Table 4. 

 

 

 

 

Subject Two Feature Twenty Eight Feature Fifty Six Feature Filtered Two Feature Filtered Twenty Eight Feature Filtered Fifty Six Feature
S1 66.67 65.33 54.00 50.67 57.33 46.00
S2 50.00 62.00 54.00 50.67 60.00 47.33
S3 53.33 58.00 48.00 56.00 60.00 50.00
S4 51.33 58.67 41.33 47.33 52.00 43.33
S5 53.33 51.33 48.00 43.33 52.67 52.00
S6 62.67 61.33 50.67 64.00 63.33 46.00
S7 59.33 64.67 51.33 58.00 54.67 48.00
S8 47.33 52.67 40.00 49.33 50.00 39.33
S9 66.67 64.67 55.33 65.33 66.00 52.67
S10 43.33 47.33 42.67 52.67 50.67 42.67
S11 49.33 60.67 59.33 52.00 61.33 50.00
S12 50.67 60.00 54.00 54.00 59.33 49.33
S13 59.33 62.67 51.33 54.00 64.67 52.67
S14 66.67 65.33 54.00 56.67 68.67 79.01
S15 56.67 68.67 52.67 58.67 44.67 41.33
S16 62.00 50.00 38.00 56.00 50.00 43.33
S17 56.00 66.67 54.67 57.33 65.33 49.33
S18 59.33 56.00 57.33 48.00 60.00 48.00
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Table 4. Quadratic Discriminant Analysis with Ten-Fold validation for all 18 subjects and four feature 
groupings. Due to the nature of CSP, the 56 feature covariance matrices become too similar to perform QDA 
on these sets. Values in the table represent the percentage of correct classifications based on the classification 
error of the 10-fold validation. 

 

 QDA heavily outperforms LDA, with all subjects achieving high levels of classification 

accuracy. These results are very competitive with the results achieved by Naïve Bayes and K-

Nearest Neighbor classification found below in Tables 5 and 6, respectively. 

 

 

 

 

 

 

 

Subject Two Feature Twenty Eight Feature Filtered Two FeatuFiltered Twenty Eight F
S1 75.33 96.67 83.33 96.67
S2 90.00 98.67 88.67 100.00
S3 79.33 93.33 88.00 97.33
S4 87.33 98.00 84.00 99.33
S5 83.33 99.33 81.33 100.00
S6 100.00 98.67 100.00 94.67
S7 86.67 99.33 80.00 95.33
S8 85.33 100.00 80.67 98.67
S9 100.00 99.33 100.00 100.00
S10 82.00 96.67 83.33 98.00
S11 82.00 100.00 88.00 99.33
S12 81.33 98.67 80.00 98.67
S13 94.67 97.33 92.00 98.00
S14 75.33 96.67 85.33 98.00
S15 86.67 100.00 76.67 96.67
S16 77.33 97.33 92.67 100.00
S17 90.67 98.67 90.00 98.67
S18 90.00 96.67 88.67 99.33
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Table 5. Naïve Bayes with Ten-Fold validation for all 18 subjects and six feature groupings. Values in the 
table represent the percentage of correct classifications based on the classification error of the 10-fold 
validation. For higher-level feature sets NB appears to have extraordinarily accurate classification. 

 

Table 6. K-Nearest Neighbor with Ten-Fold validation for all 18 subjects and six feature groupings. Values in 
the table represent the percentage of correct classifications based on the classification error of the 10-fold 
validation. The accuracy of KNN appears to increase for 28 features but sharply declines when using all 56 
features. 

 

Looking across all 18 subjects and four classifications methods with two features, KNN 

was the best method for 3 subjects, filtered KNN was the best method for 2 subjects, NB was the 

best method for 2 subjects with filtered NB being best for 4. QDA was the best classifier for 2 

while filtered QDA was the best method for 2. Finally, there was no subject for which LDA or 

filtered LDA was the best classifier. The remaining slots were all ties that went between two or 

Subject Two Feature Twenty Eight Feature Fifty Six Feature Filtered Two Feature Filtered Twenty Eight Feature Filtered Fifty Six Feature
S1 76.55 100.00 100.00 82.75 98.61 99.31
S2 90.75 100.00 100.00 88.14 100.00 100.00
S3 79.65 99.25 99.25 88.75 100.00 100.00
S4 87.01 100.00 100.00 84.33 100.00 99.28
S5 83.75 99.30 99.30 81.71 100.00 100.00
S6 100.00 100.00 100.00 100.00 100.00 100.00
S7 89.08 100.00 100.00 85.00 100.00 100.00
S8 85.83 100.00 100.00 80.44 100.00 100.00
S9 100.00 100.00 100.00 100.00 100.00 100.00
S10 83.07 99.31 99.31 84.24 100.00 100.00
S11 82.00 100.00 100.00 88.00 100.00 99.33
S12 81.70 100.00 100.00 80.63 100.00 100.00
S13 93.97 100.00 100.00 93.39 98.44 100.00
S14 76.55 100.00 100.00 85.40 99.34 100.00
S15 88.37 100.00 100.00 79.25 100.00 100.00
S16 77.53 100.00 100.00 92.21 100.00 100.00
S17 91.04 100.00 100.00 93.59 100.00 100.00
S18 90.22 98.03 98.73 88.11 99.37 99.37

Subject Two Feature Twenty Eight Feature Fifty Six Feature Filtered Two Feature Filtered Twenty Eight Feature Filtered Fifty Six Feature
S1 86.67 90.00 55.33 88.67 84.00 44.67
S2 91.33 88.00 50.00 83.33 94.00 56.67
S3 79.33 84.00 50.67 85.33 92.00 54.67
S4 84.67 90.67 43.33 85.33 88.67 49.33
S5 78.67 92.67 57.33 77.33 93.33 56.67
S6 98.00 82.00 60.00 95.33 91.33 64.67
S7 78.67 83.33 61.33 90.67 90.00 53.33
S8 86.00 92.67 52.00 85.33 92.00 45.33
S9 89.33 92.67 58.67 83.33 90.67 62.67
S10 82.67 84.00 48.00 81.33 84.00 47.33
S11 86.67 92.67 56.67 86.00 88.67 56.67
S12 88.67 89.33 56.00 77.33 90.00 48.67
S13 91.33 89.33 60.67 92.00 91.33 61.33
S14 86.67 90.00 55.33 84.67 89.33 70.99
S15 82.67 85.33 61.33 79.33 87.33 48.67
S16 79.33 88.67 50.67 92.00 91.33 42.67
S17 88.00 92.67 58.00 90.00 88.00 65.33
S18 85.33 87.33 60.00 84.00 88.67 53.33
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more different classification methods. These results can be seen in Figure 21 below. Figure 22 

contrasts the results in this study with those achieved by Calvo et al.. 

 

Figure 21: Classification percentages show that all of the cases except LDA provide a significant increase 
over random chance in detecting possible semantic errors in reading. 

 

Figure 22: Comparison of best classifiers with the best results obtained by Calvo et al. The methods and 
classifiers outlined in this paper outperform the Calvo NB and KNN in 12 out of 17 cases. Subject 16 is 

excluded as this subject was not included in the data from the original paper.  
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5. Discussion 

 The primary goal of this research was to examine the viability of using CSP to classify 

semantic responses using N400, P600, theta and alpha waves. Increasing the accuracy of a BCI is 

important in improving the quality of life for the end-user, and an algorithm that would allow for 

the easy detection and correction of semantic violations would be a significant boon for those 

living with advanced disabilities. Based on preliminary research presented by Calvo et al. it 

appeared promising that CSP could allow for high accuracy classification of semantic violations 

even though CSP is not generally used in conjunction with event-related potentials. The findings 

given here appear to support the results by Calvo et al.. Ten-fold validation of CSP data provided 

by all 18 subjects shows that for many different combinations of features, CSP and classification 

can properly sort the results at a rate significantly better than random chance. Classification 

accuracy does seem to be related to the subject, as different subjects have classification accuracies 

as different as twenty percent. 

 To gauge the effectiveness of CSP, the original dataset was partitioned into 150 segments 

and then each segment had four features extracted from it. These four features were then put into 

a CSP algorithm to see if they were individually separable. Some of the features did have 

separability and classification at a slightly higher rate than random chance, however, this rate was 

not enough to be useful. This does indicate, however that many of these different features may 

play a small part in categorizing semantic violations as they occur. A combination of these different 

features responsible for categorizing semantic responses led to a very separable dataset with high 

classification accuracy. With the combination of four features with 14 channels of data each, the 

final result was a 56 feature matrix for use in the CSP algorithm. However, the use of all 56 features 
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does not provide an increase in performance for all classifiers, and for the case of KNN 56 features 

actually reduced the effectiveness of the classifier. This may be due to the fact that all 56 feature 

eigenvalues are ordered from smallest to largest in CSP, and as you approach the center, the 

eigenvalues become similar in magnitude and, therefore, less separable. Adding in these similar 

magnitude eigenvalues likely decreases the effectiveness of the classifier algorithm as it creates an 

unmixing function where similar data values for both classes begin to overlap. 

 It was believed that the orthogonality gained from CSP would allow for the use of LDA, 

QDA, NB, or KNN for classification. LDA was ineffective as a classifier as it was unlikely to find 

a bound between the data that would not split both datasets in half. QDA, on the other hand, was 

able to create quadratic surfaces that encapsulated each class of data and led to high accuracy 

classification. Across all 18 subjects there was no singular greatest classifier, KNN worked best 

for 3 subjects, filtered KNN for 2 subjects, NB for 2 subjects, filtered NB for 4 subjects, QDA for 

2 subjects, and filtered QDA for 2 subjects, with LDA and filtered LDA remaining as the best 

classifier for no subjects. Aside from LDA, all subjects regardless of classification type were able 

to achieve results appreciably surpassing random chance, indicating that with proper feature 

selection, CSP may be a method that is useful for a wide variety of subjects. When comparing to 

Calvo et al., the methods outlined here outperform their CSP method for 12 out of 17 subjects with 

subject 16 excluded, though it is unclear how many features and dimensions Calvo et al. analyzed 

in their work. Additionally all of these cases were completed with ten-fold validation instead of 

the random single sampling completed by Calvo et al. Additional analysis of the unmixing 

algorithms showed that the electrodes responsible for the highest weighted eigenvalues were P7, 

F4, F3, AF4, and FC6. F3 and P7 are of particular interest because these two electrodes are located 

in the general vicinity of Broca’s area and Wernicke’s area, respectively, areas of the brain 
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associated with language comprehension and function. The remaining three electrode locations 

can be found on the frontal right hemisphere, which could indicate the use of some problem solving 

and motor function impulses that allowed each subject to select and press the button to decide the 

class of each stimulus. 

 Despite the promising data results, there are a few different issues that still need to be 

addressed within the dataset and analysis. Firstly, the analysis achieved a high rate of success when 

classifying the provided EEG data within the stimulus range, however, three of the electrode 

locations that were important in creating separation in CSP are also associated with motor planning 

and function. This indicates that it is probable that these locations were responding to a subject’s 

preparation and pressing of the button indicating whether the groups were semantically related or 

not, as opposed to a response based solely on semantic reactions to the word groupings. Further 

experiments looking to control for this would be well served by finding a different way to label 

these sentences outside of the collected EEG data. Some alternatives could include running the test 

twice, once without buttons and once with them to obtain labels and compare the two datasets. 

Secondly, another issue with this analysis is that it is based on averaging time windows to obtain 

singular values for N400 and P600 features. While this is a general way in which this feature 

analysis is done, different methods could better preserve the feature data and lead to higher quality 

feature extraction. Using a matching algorithm for N400 and P600 features or using a wavelet 

sweep across the signal may not only preserve more of the critical data points of each feature, but 

it may also help to mitigate errors that occur if an N400 or P600 peak has a quicker or more delayed 

onset. 

 There are a few different possibilities that could explain away the differences between the 

data presented here and the results provided by Calvo et al. Firstly, Calvo et al. looked at a 
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classification based on ERPs alone, looking at the N400 region and P300 region, while this thesis 

examined classification based on a mixture of ERP and neural rhythms including N400, P600, 

alpha, and theta rhythms. While the addition of additional features should not negatively affect the 

CSP algorithm, as CSP allows for the selection of only dimensions providing the highest variance, 

using different ERPs for analysis could have an effect on the final result. Numerically the methods 

shown here appear to increase classification performance, however a direct comparison with Calvo 

et al. is still difficult for a variety of reasons. Firstly, it is not clear how Calvo et al. isolated their 

N400 and P300 components. This research handled N400, P600, alpha, and theta components by 

averaging the data points in the ranges where these features typically occur in order to get single 

average values for each trial. Differences in how these features were isolated could lead to 

potentially different results between studies. Secondly, it is unclear how Calvo et al. implemented 

their CSP filtering from their paper. An important part of the CSP algorithm is determining how 

many features are being examined from the overall set of features, as shown here using 2 features 

and using 56 features can lead to dramatically different results based on the classification method 

being used. With a more detailed overview of how data analysis and classification were done, it 

may be possible to understand how the two experiments differed and pinpoint discrepancies in the 

data processing. This would also aid in better supporting CSP as a possible method for use outside 

of only neural oscillations. 

 Based on these findings, it is clear that more research needs to be done to understand the 

full extent to which CSP using ERPs can be used in the classification of semantic responses. Calvo 

et al. presented strong results suggesting that CSP is a potent tool in semantic violation detection 

with ERPs, while this study supports the idea that CSP may have beneficial implications in 

classifying semantic relationships in reading. It will be vital that future studies clearly outline what 
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methods are used for isolating features for CSP, how many CSP features are used, how these 

features are extracted from the EEG signal, what types of classifications methods are used, how 

these methods are implemented, and what experimental conditions data was collected in. This 

uniformity will allow for a clear verdict on the application of CSP technology and will also 

improve the functionality of this technology in real-world settings. By standardizing the methods 

used in this research, it will become increasingly easier to determine whether results are realistic 

or skewed due to other unforeseen mitigating factors. 

 As with any experiment involving human subjects, many of the results were highly variable 

and dependent on the specific subject. Subjects may achieve different results based on the mood 

they were in during testing, their relaxation in their testing environment, their ability to remain 

focused throughout the experiment, and even simply due to the placement of the electrodes on 

their head. In addition, since every subject had a different number of yes and no responses, it is 

quite possible that there are confounding words circumstances where subjects answered that words 

were classified differently than they may generally classify them in their head, as some subjects 

heavily favored yes answers while others heavily favored no answers. Additionally, as this 

experiment took place in Spanish with translations of the original words, there may be specific 

rhyming schemes or other associations that are not translated well and could cause erroneous 

answers. There may also be different modes of semantic processing that come into play when a 

word is found in a sentence as opposed to when it is only compared to another word. Future 

experiments that observe the differences when these violations occur in conversational sentences 

may achieve better results and will likely be more applicable to BCI users. 
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6. Limitations 

 The clearest and most obvious limitations of this research were those imposed by the 

COVID-19 pandemic. With school closings and students being sent home, it was then impossible 

to continue the research as originally planned and it became difficult to assess many of the research 

goals. One of the major changes brought on by this was the shift from collecting data based on 

semantic violations in sentences to using the data provided by an experiment that observed 

semantic responses between different words that were displayed consecutively to subjects. It is 

unclear how much of a difference this change could have had on the overall project, and the use 

of different research groups’ datasets introduced problems with learning how the dataset was 

organized and collected. Ideally, in the future, this research could be completed in its full scope 

using the sentence pairs attached in the appendices, then EEG data for these sentence sets could 

be compared to see if ongoing semantic violations in sentences lead to greater and more separable 

N400 and P600 response in subjects. In this future experiment it may also be possible to remove 

the button pressing marker in order to remove a confounding variable and present more solid 

evidence that classification can be done based on semantic violations alone. 

 Additionally, another limitation of this research is the ability to compare and contrast 

methods with other similar research projects. Often these projects are published but do not contain 

sufficient details on how the analysis was conducted in order to allow for a direct comparison. 

Increased transparency of the methods used in BCI research would significantly improve the 

ability of different researchers to recreate and validate the experiments of others. Even with this 

research looking at CSP with Naïve Bayes classification, it is still unknown whether Calvo et al. 

used different methods for isolating features, a different algorithm and parameters for the Bayesian 

model training, or even how many features of the CSP matric were utilized in generating their 
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datasets. Access to this information would significantly improve the direct comparisons and allow 

for more concrete answers on which methods are actually viable for continued research. 

 Finally, one last significant limitation of this research is the sample size. Across 18 subjects 

150 word pairs are available for each subject, which only allows for a very minimal amount of 

training for an algorithm. Having access to much larger training sets will allow for much better 

models and possibly greater accuracy. It will also be more akin to a real-world situation where a 

BCI device is being trained continuously by the user instead of being trained on a small training 

set then tested. 
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7. Conclusion 

 This study has helped broaden the understanding of Common Spatial Patterns in ERP-

based error detection and has shown that this model may have some promise for specific users of 

BCI technology. Furthermore, by analysis of specific semantic related ERP components, the 

study shows that CSP used in conjunction with classifier models such as LDA, QDA, NB, or 

KNN can provide classification results greater than random chance for data sets with inseparable 

means. This assertion challenges previous understandings in BCI research that state CSP is not 

useful when dealing with ERP-based data. Additional studies will help to solidify the degree to 

which CSP can be used and implemented in BCI devices, as well as identifying and 

understanding indicators that suggest which subjects will benefit the most from CSP-based ERP 

classification devices.  
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8. Future Work 

The most important future work to determine the usefulness of CSP-based ERP detection 

algorithms will be repeated experiments that indicate the full applicability of CSP in these 

scenarios. It will be important to include full sentence trials, as well as testing of other types of 

classifier algorithms such as Decision Trees and Support Vector Machines. In a future 

experiment, a classification by committee algorithm that allows each classifier to vote may help 

to further improve the performance by combining many of the best-case scenarios. Additionally, 

it will be equally important that these studies carefully outline and explain their methods and 

procedures so that these tests can be repeated and verified with new data, or existing data can be 

reanalyzed using new features as our understanding of neurophysiology continues to grow. 

Additional studies can also examine other uses of CSP outside of semantic classification, as it 

may be a relatively useful tool in any situation where data means between two classes are the 

same. Finally, if CSP is established as a useful technology for ERP-based detection, the next big 

step will be translating this technology to real-world situations outside of a lab. This means 

designing robust EEG equipment and rejection criteria that can handle a subject interacting with 

the entire world, not just a screen for an experiment. These technologies must be able to function 

with a high degree of precision regardless of the circumstances for them to have an appreciable 

use for end-users. 
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Appendix B 

Semantic Violation Pairs 
Middle-school reading level 
Violation at the end of the sentence (violations are all nouns) 
First sentence is the violation, second sentence is the correct version 
 
1. 
She flew the flag at the top of the hamburger. 
She flew the flag at the top of the flagpole.  
 
2. 
He went to school on a February. 
He went to school on a Thursday. 
 
3. 
The class gathered around the teacher’s purple. 
The class gathered around the teacher’s desk. 
 
4. 
The blanket was warm and afternoon. 
The blanket was warm and soft. 
 
5. 
She left her book on the top bicycle. 
She left her book on the top shelf. 
 
6. 
They came back down the hiking milk. 
They came back down the hiking trail. 
 
7. 
He went to the barber shop for a salad. 
He went to the barber shop for a haircut. 
 
8. 
They bought a computer from the pizza. 
The bought a computer from the store. 
 
9.  
She drinks tea with her toast in the sweater. 
She drinks tea with her toast in the morning.  
 
10.  
He turned the light on with the light turnip. 
He turned the light on with the light switch. 
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11. 
They visited the town fair last cucumber. 
They visited the town fair last week. 
 
12. 
The navy cruiser sailed across the basketball. 
The navy cruiser sailed across the ocean. 
 
13. 
The astronaut jumped from the shuttle and landed on the squash. 
The astronaut jumped from the shuttle and landed on the moon. 
 
14. 
She bought tickets for her favorite rock dishwasher. 
She bought tickets for her favorite rock band. 
 
15. 
The sun rose in the umbrella. 
The sun rose in the east. 
 
16. 
He went bird-watching to catch a glimpse of a shark. 
He went bird-watching to catch a glimpse of an owl. 
 
17. 
They went to the mall to buy a new pair of pancakes. 
They went to the mall to buy a new pair of jeans. 
 
18.  
He and his father attended a baseball eggplant. 
He and his father attended a baseball game.  
 
19. 
It was raining, so she grabbed her lamp. 
It was raining, so she grabbed her umbrella. 
 
20.  
He loves putting chocolate sauce on his television. 
He loves putting chocolate sauce on his sundaes. 
 
21. 
He likes avocado and red onions on his socks.  
He likes avocado and red onions on his toast.  
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22.  
I think I can finish this homework yesterday.  
I think I can finish this homework today.  
 
23.  
She always likes working out, so she often goes to the pub.  
She always likes working out, so she often goes to the gym.  
 
24.  
He studies Russian because he wants to go to Australia.  
He studies Russian because he wants to go to Russia.  
 
25.  
I’m on a diet, but I cannot stop eating food at the parking lot.  
I’m on a diet, but I cannot stop eating food at night.  
 
26.  
My friend often goes to the theater to watch a cheesecake. 
My friend often goes to the theater to watch a movie.  
 
27.  
She likes to drink a cup of coffee with some socks.  
She likes to drink a cup of coffee with some snacks.  
 
28.  
This TV show is the most popular in the textbook.  
This TV show is the most popular in the world.  
 
29.  
My laptop was broken because I dropped the test.  
My laptop was broken because I dropped it.  
  
30. 
No student sleeps in water. 
No student sleeps in class. 
   
31. 
The container has 6 arms.  
The container has 6 drawers.  
 
32.  
This teacher gives me a lot of HW every single detergent.  
This teacher gives me a lot of HW every single class.  
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33.  
Speaking of coffee, Starbucks has many different kinds of shoes.  
Speaking of coffee, Starbucks has many different kinds of coffee.  
 
34. 
A belt is normally made of eggs.  
A belt is normally made of leather.  
 
35.  
In the U.S, if you are under 21years old, you cannot drink socks.  
In the U.S, if you are under 21years old, you cannot drink alcohol.  
 
36.  
Some people prefer to stay home instead of going out because they get tired of socks.   
Some people prefer to stay home instead of going out because they get tired of social 
interaction.   
 
37.  
My friend likes to drink wine with a slice of cork.  
My friend likes to drink wine with a slice of cheese.  
 
38.  
My laptop often shuts down suddenly because of its bad taxi.  
My laptop often shuts down suddenly because of its bad battery.  
 
39.  
My friend and my brother were born in the same laundry.  
My friend and my brother were born in the same country.  
 
40.  
My friend broke my glasses finger.  
My friend broke my glasses frame.  
 
41.  
He turned the corner and went up the pineapple. 
He turned the corner and went up the stairs. 
 
42.  
Her new bicycle was purple and eggs. 
Her new bicycle was purple and black. 
 
43. 
The pirate ship sank in the middle of the shoe. 
The pirate ship sank in the middle of the sea. 
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44. 
She opened the blinds and saw the octopus. 
She opened the blinds and saw the sunrise.  
 
45. 
He picked her up for their Saturday movie squirrel. 
He picked her up for their Saturday movie date.  
 
46.  
The fireplace flickered with orange and red lamppost. 
The fireplace flickered with orange and red flames. 
 
47.  
He stole a pair of shoes from the local kangaroo.  
He stole a pair of shoes from the local mall. 
 
48.  
She guarded her treasure chest with her vegetable. 
She guarded her treasure chest with her life. 
 
49.  
The ski slopes were packed with skiers and turnips. 
The ski slopes were packed with skiers and snowboarders. 
 
50. 
He went to the airport to catch a late toothbrush. 
He went to the airport to catch a late flight. 
 
51. 
I looked out the window to see three feet of unicycles. 
I looked out the window to see three feet of snow. 
 
52. 
With a mighty roar, the lion scared off the eggplant. 
With a mighty roar, the lion scared off the zebras.  
 
53.  
Her chocolate chip cookies were sweet and orangutan. 
Her chocolate chip cookies were sweet and soft.  
 
54. 
On Sundays, he did his kettle. 
On Sundays, he did his laundry. 
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55. 
They walked across the plaza to the river spaghetti. 
They walked across the plaza to the river park. 
 
56. 
As a carpenter, he constructed tables and January. 
As a carpenter, he constructed tables and chairs. 
 
57. 
She was a very successful computer tomato. 
She was a very successful computer programmer. 
 
58. 
They went swimming on the hottest day of the avocado. 
They went swimming on the hottest day of the summer. 
 
59. 
He was only late by a few lawnmower. 
He was only late by a few minutes. 
 
60. 
Her dress featured green and yellow mailboxes. 
Her dress featured green and yellow flowers. 
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Appendix C 

% Biomedical Engineering Thesis Processing 
% Written by: Michael Doyel 
% November 20th, 2020 
% Thesis Advisor: Dr. Chiu 
% 
% The data in this module was taken from the paper Measuring Concept  
% Semantic Relatedness through Common Spatial Pattern Feature Extraction  
% on EEG Signals. This data was used in place of data obtained in the 
% labs at Rose-Hulman due to the ongoing COVID-19 crisis. In this module 
% the data is parsed and examined for the N400 and P600 waveforms that help 
% to identify semantic violation. Frequency domain features such as alpha 
% and theta waves are also isolated for CSP analysis. From there we can 
% work to use the data to assist in the machine learning of a BCI system. 
%  
% 
% Sampling Frequency is 128Hz and is band limited from 0 to 45 Hz 
% Sample 100ms before stimulation and average this value, then adjust 
% post stimulus N400 and P600 based on this value. Only 128 samples after  
% stimulus need to be viewed 400ms is at 51.2 samples and 600ms is at 76.8 
% ms. It may be wise to do 350-550 for N400 meaning average 45 to 71 
% samples. P600 will be the average of 77 to 115 samples. Note some sources 
% disagree on N400, here we use 350 to 550 samples, but some sources state 
% that 250 to 500 is a better standard which would use 32 to 64. 
% Total samples analyzed for each word will be 141, 100ms being 13 samples 
% before stimulus 
%  
% For 141 samples N400 is (58 to 84) P600 is(90 to 128) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clc 
clear all 
  
% Load the proper subject data file 
load('S1.mat');  
  
% Indicate the subject number for labeling of datasets 
S = 1;           
  
% Initialize two vectors for sorting of data 
start = zeros(150,1);  
type = zeros(150,1); 
  
% This for loops strips off the start times for stimulus & Y/N data 
% start(k) contains the start time of every stimulus 
% type(k) contains the subject response for each stimulus 
for k = 1:150           
    eval(['start(k) = str2num(Eventos_S' num2str(S) '{2*k,3});']) 
    eval(['type(k) = Eventos_S' num2str(S) '{2*k,5};']) 
end 
  
CT1 = 1; 
CT2 = 1; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% The next five for loops act as a sorting function. They strip away the 13 
% samples before a stimulus occurs as well as the 128 samples after the 
% stimulus occurs in order to get a full second of data for every stimulus. 
% The yes and no responses are placed in separate matrices based on the 
% string value found in the type(k) matrix. The five separate data blocks 
% are concatenated into two yes and no blocks which contain all 150 word 
% responses 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Block One 
for k = 1:30            
    if type(k) == 83    
        eval(['CH1Y(CT1,:) = MuestreoB1_S' num2str(S) '(1, start(k)-13:start(k)+127);']); 
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        eval(['CH2Y(CT1,:) = MuestreoB1_S' num2str(S) '(2, start(k)-13:start(k)+127);']); 
        eval(['CH3Y(CT1,:) = MuestreoB1_S' num2str(S) '(3, start(k)-13:start(k)+127);']); 
        eval(['CH4Y(CT1,:) = MuestreoB1_S' num2str(S) '(4, start(k)-13:start(k)+127);']); 
        eval(['CH5Y(CT1,:) = MuestreoB1_S' num2str(S) '(5, start(k)-13:start(k)+127);']); 
        eval(['CH6Y(CT1,:) = MuestreoB1_S' num2str(S) '(6, start(k)-13:start(k)+127);']); 
        eval(['CH7Y(CT1,:) = MuestreoB1_S' num2str(S) '(7, start(k)-13:start(k)+127);']); 
        eval(['CH8Y(CT1,:) = MuestreoB1_S' num2str(S) '(8, start(k)-13:start(k)+127);']); 
        eval(['CH9Y(CT1,:) = MuestreoB1_S' num2str(S) '(9, start(k)-13:start(k)+127);']); 
        eval(['CH10Y(CT1,:) = MuestreoB1_S' num2str(S) '(10, start(k)-13:start(k)+127);']); 
        eval(['CH11Y(CT1,:) = MuestreoB1_S' num2str(S) '(11, start(k)-13:start(k)+127);']); 
        eval(['CH12Y(CT1,:) = MuestreoB1_S' num2str(S) '(12, start(k)-13:start(k)+127);']); 
        eval(['CH13Y(CT1,:) = MuestreoB1_S' num2str(S) '(13, start(k)-13:start(k)+127);']); 
        eval(['CH14Y(CT1,:) = MuestreoB1_S' num2str(S) '(14, start(k)-13:start(k)+127);']); 
        CT1 = CT1 + 1; 
    elseif type(k) == 78 
        eval(['CH1N(CT2,:) = MuestreoB1_S' num2str(S) '(1, start(k)-13:start(k)+127);']); 
        eval(['CH2N(CT2,:) = MuestreoB1_S' num2str(S) '(2, start(k)-13:start(k)+127);']); 
        eval(['CH3N(CT2,:) = MuestreoB1_S' num2str(S) '(3, start(k)-13:start(k)+127);']); 
        eval(['CH4N(CT2,:) = MuestreoB1_S' num2str(S) '(4, start(k)-13:start(k)+127);']); 
        eval(['CH5N(CT2,:) = MuestreoB1_S' num2str(S) '(5, start(k)-13:start(k)+127);']); 
        eval(['CH6N(CT2,:) = MuestreoB1_S' num2str(S) '(6, start(k)-13:start(k)+127);']); 
        eval(['CH7N(CT2,:) = MuestreoB1_S' num2str(S) '(7, start(k)-13:start(k)+127);']); 
        eval(['CH8N(CT2,:) = MuestreoB1_S' num2str(S) '(8, start(k)-13:start(k)+127);']); 
        eval(['CH9N(CT2,:) = MuestreoB1_S' num2str(S) '(9, start(k)-13:start(k)+127);']); 
        eval(['CH10N(CT2,:) = MuestreoB1_S' num2str(S) '(10, start(k)-13:start(k)+127);']); 
        eval(['CH11N(CT2,:) = MuestreoB1_S' num2str(S) '(11, start(k)-13:start(k)+127);']); 
        eval(['CH12N(CT2,:) = MuestreoB1_S' num2str(S) '(12, start(k)-13:start(k)+127);']); 
        eval(['CH13N(CT2,:) = MuestreoB1_S' num2str(S) '(13, start(k)-13:start(k)+127);']); 
        eval(['CH14N(CT2,:) = MuestreoB1_S' num2str(S) '(14, start(k)-13:start(k)+127);']); 
        CT2 = CT2 + 1; 
    end 
end 
  
%Block Two 
for k = 31:60 
    if type(k) == 83   % This for loop generates the Y and N data strings for the second block 
        eval(['CH1Y(CT1,:) = MuestreoB2_S' num2str(S) '(1, start(k)-13:start(k)+127);']); 
        eval(['CH2Y(CT1,:) = MuestreoB2_S' num2str(S) '(2, start(k)-13:start(k)+127);']); 
        eval(['CH3Y(CT1,:) = MuestreoB2_S' num2str(S) '(3, start(k)-13:start(k)+127);']); 
        eval(['CH4Y(CT1,:) = MuestreoB2_S' num2str(S) '(4, start(k)-13:start(k)+127);']); 
        eval(['CH5Y(CT1,:) = MuestreoB2_S' num2str(S) '(5, start(k)-13:start(k)+127);']); 
        eval(['CH6Y(CT1,:) = MuestreoB2_S' num2str(S) '(6, start(k)-13:start(k)+127);']); 
        eval(['CH7Y(CT1,:) = MuestreoB2_S' num2str(S) '(7, start(k)-13:start(k)+127);']); 
        eval(['CH8Y(CT1,:) = MuestreoB2_S' num2str(S) '(8, start(k)-13:start(k)+127);']); 
        eval(['CH9Y(CT1,:) = MuestreoB2_S' num2str(S) '(9, start(k)-13:start(k)+127);']); 
        eval(['CH10Y(CT1,:) = MuestreoB2_S' num2str(S) '(10, start(k)-13:start(k)+127);']); 
        eval(['CH11Y(CT1,:) = MuestreoB2_S' num2str(S) '(11, start(k)-13:start(k)+127);']); 
        eval(['CH12Y(CT1,:) = MuestreoB2_S' num2str(S) '(12, start(k)-13:start(k)+127);']); 
        eval(['CH13Y(CT1,:) = MuestreoB2_S' num2str(S) '(13, start(k)-13:start(k)+127);']); 
        eval(['CH14Y(CT1,:) = MuestreoB2_S' num2str(S) '(14, start(k)-13:start(k)+127);']); 
        CT1 = CT1 + 1; 
    elseif type(k) == 78 
        eval(['CH1N(CT2,:) = MuestreoB2_S' num2str(S) '(1, start(k)-13:start(k)+127);']); 
        eval(['CH2N(CT2,:) = MuestreoB2_S' num2str(S) '(2, start(k)-13:start(k)+127);']); 
        eval(['CH3N(CT2,:) = MuestreoB2_S' num2str(S) '(3, start(k)-13:start(k)+127);']); 
        eval(['CH4N(CT2,:) = MuestreoB2_S' num2str(S) '(4, start(k)-13:start(k)+127);']); 
        eval(['CH5N(CT2,:) = MuestreoB2_S' num2str(S) '(5, start(k)-13:start(k)+127);']); 
        eval(['CH6N(CT2,:) = MuestreoB2_S' num2str(S) '(6, start(k)-13:start(k)+127);']); 
        eval(['CH7N(CT2,:) = MuestreoB2_S' num2str(S) '(7, start(k)-13:start(k)+127);']); 
        eval(['CH8N(CT2,:) = MuestreoB2_S' num2str(S) '(8, start(k)-13:start(k)+127);']); 
        eval(['CH9N(CT2,:) = MuestreoB2_S' num2str(S) '(9, start(k)-13:start(k)+127);']); 
        eval(['CH10N(CT2,:) = MuestreoB2_S' num2str(S) '(10, start(k)-13:start(k)+127);']); 
        eval(['CH11N(CT2,:) = MuestreoB2_S' num2str(S) '(11, start(k)-13:start(k)+127);']); 
        eval(['CH12N(CT2,:) = MuestreoB2_S' num2str(S) '(12, start(k)-13:start(k)+127);']); 
        eval(['CH13N(CT2,:) = MuestreoB2_S' num2str(S) '(13, start(k)-13:start(k)+127);']); 
        eval(['CH14N(CT2,:) = MuestreoB2_S' num2str(S) '(14, start(k)-13:start(k)+127);']); 
        CT2 = CT2 + 1; 
    end 
end 
  
% Block Three 
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for k = 61:90 
    if type(k) == 83   % This for loop generates the Y and N data strings for the third block 
        eval(['CH1Y(CT1,:) = MuestreoB3_S' num2str(S) '(1, start(k)-13:start(k)+127);']); 
        eval(['CH2Y(CT1,:) = MuestreoB3_S' num2str(S) '(2, start(k)-13:start(k)+127);']); 
        eval(['CH3Y(CT1,:) = MuestreoB3_S' num2str(S) '(3, start(k)-13:start(k)+127);']); 
        eval(['CH4Y(CT1,:) = MuestreoB3_S' num2str(S) '(4, start(k)-13:start(k)+127);']); 
        eval(['CH5Y(CT1,:) = MuestreoB3_S' num2str(S) '(5, start(k)-13:start(k)+127);']); 
        eval(['CH6Y(CT1,:) = MuestreoB3_S' num2str(S) '(6, start(k)-13:start(k)+127);']); 
        eval(['CH7Y(CT1,:) = MuestreoB3_S' num2str(S) '(7, start(k)-13:start(k)+127);']); 
        eval(['CH8Y(CT1,:) = MuestreoB3_S' num2str(S) '(8, start(k)-13:start(k)+127);']); 
        eval(['CH9Y(CT1,:) = MuestreoB3_S' num2str(S) '(9, start(k)-13:start(k)+127);']); 
        eval(['CH10Y(CT1,:) = MuestreoB3_S' num2str(S) '(10, start(k)-13:start(k)+127);']); 
        eval(['CH11Y(CT1,:) = MuestreoB3_S' num2str(S) '(11, start(k)-13:start(k)+127);']); 
        eval(['CH12Y(CT1,:) = MuestreoB3_S' num2str(S) '(12, start(k)-13:start(k)+127);']); 
        eval(['CH13Y(CT1,:) = MuestreoB3_S' num2str(S) '(13, start(k)-13:start(k)+127);']); 
        eval(['CH14Y(CT1,:) = MuestreoB3_S' num2str(S) '(14, start(k)-13:start(k)+127);']); 
        CT1 = CT1 + 1; 
    elseif type(k) == 78 
        eval(['CH1N(CT2,:) = MuestreoB3_S' num2str(S) '(1, start(k)-13:start(k)+127);']); 
        eval(['CH2N(CT2,:) = MuestreoB3_S' num2str(S) '(2, start(k)-13:start(k)+127);']); 
        eval(['CH3N(CT2,:) = MuestreoB3_S' num2str(S) '(3, start(k)-13:start(k)+127);']); 
        eval(['CH4N(CT2,:) = MuestreoB3_S' num2str(S) '(4, start(k)-13:start(k)+127);']); 
        eval(['CH5N(CT2,:) = MuestreoB3_S' num2str(S) '(5, start(k)-13:start(k)+127);']); 
        eval(['CH6N(CT2,:) = MuestreoB3_S' num2str(S) '(6, start(k)-13:start(k)+127);']); 
        eval(['CH7N(CT2,:) = MuestreoB3_S' num2str(S) '(7, start(k)-13:start(k)+127);']); 
        eval(['CH8N(CT2,:) = MuestreoB3_S' num2str(S) '(8, start(k)-13:start(k)+127);']); 
        eval(['CH9N(CT2,:) = MuestreoB3_S' num2str(S) '(9, start(k)-13:start(k)+127);']); 
        eval(['CH10N(CT2,:) = MuestreoB3_S' num2str(S) '(10, start(k)-13:start(k)+127);']); 
        eval(['CH11N(CT2,:) = MuestreoB3_S' num2str(S) '(11, start(k)-13:start(k)+127);']); 
        eval(['CH12N(CT2,:) = MuestreoB3_S' num2str(S) '(12, start(k)-13:start(k)+127);']); 
        eval(['CH13N(CT2,:) = MuestreoB3_S' num2str(S) '(13, start(k)-13:start(k)+127);']); 
        eval(['CH14N(CT2,:) = MuestreoB3_S' num2str(S) '(14, start(k)-13:start(k)+127);']); 
        CT2 = CT2 + 1; 
    end 
end 
  
% Block Four 
for k = 91:120 
    if type(k) == 83   % This for loop generates the Y and N data strings for the fourth block 
        eval(['CH1Y(CT1,:) = MuestreoB4_S' num2str(S) '(1, start(k)-13:start(k)+127);']); 
        eval(['CH2Y(CT1,:) = MuestreoB4_S' num2str(S) '(2, start(k)-13:start(k)+127);']); 
        eval(['CH3Y(CT1,:) = MuestreoB4_S' num2str(S) '(3, start(k)-13:start(k)+127);']); 
        eval(['CH4Y(CT1,:) = MuestreoB4_S' num2str(S) '(4, start(k)-13:start(k)+127);']); 
        eval(['CH5Y(CT1,:) = MuestreoB4_S' num2str(S) '(5, start(k)-13:start(k)+127);']); 
        eval(['CH6Y(CT1,:) = MuestreoB4_S' num2str(S) '(6, start(k)-13:start(k)+127);']); 
        eval(['CH7Y(CT1,:) = MuestreoB4_S' num2str(S) '(7, start(k)-13:start(k)+127);']); 
        eval(['CH8Y(CT1,:) = MuestreoB4_S' num2str(S) '(8, start(k)-13:start(k)+127);']); 
        eval(['CH9Y(CT1,:) = MuestreoB4_S' num2str(S) '(9, start(k)-13:start(k)+127);']); 
        eval(['CH10Y(CT1,:) = MuestreoB4_S' num2str(S) '(10, start(k)-13:start(k)+127);']); 
        eval(['CH11Y(CT1,:) = MuestreoB4_S' num2str(S) '(11, start(k)-13:start(k)+127);']); 
        eval(['CH12Y(CT1,:) = MuestreoB4_S' num2str(S) '(12, start(k)-13:start(k)+127);']); 
        eval(['CH13Y(CT1,:) = MuestreoB4_S' num2str(S) '(13, start(k)-13:start(k)+127);']); 
        eval(['CH14Y(CT1,:) = MuestreoB4_S' num2str(S) '(14, start(k)-13:start(k)+127);']); 
        CT1 = CT1 + 1; 
    elseif type(k) == 78 
        eval(['CH1N(CT2,:) = MuestreoB4_S' num2str(S) '(1, start(k)-13:start(k)+127);']); 
        eval(['CH2N(CT2,:) = MuestreoB4_S' num2str(S) '(2, start(k)-13:start(k)+127);']); 
        eval(['CH3N(CT2,:) = MuestreoB4_S' num2str(S) '(3, start(k)-13:start(k)+127);']); 
        eval(['CH4N(CT2,:) = MuestreoB4_S' num2str(S) '(4, start(k)-13:start(k)+127);']); 
        eval(['CH5N(CT2,:) = MuestreoB4_S' num2str(S) '(5, start(k)-13:start(k)+127);']); 
        eval(['CH6N(CT2,:) = MuestreoB4_S' num2str(S) '(6, start(k)-13:start(k)+127);']); 
        eval(['CH7N(CT2,:) = MuestreoB4_S' num2str(S) '(7, start(k)-13:start(k)+127);']); 
        eval(['CH8N(CT2,:) = MuestreoB4_S' num2str(S) '(8, start(k)-13:start(k)+127);']); 
        eval(['CH9N(CT2,:) = MuestreoB4_S' num2str(S) '(9, start(k)-13:start(k)+127);']); 
        eval(['CH10N(CT2,:) = MuestreoB4_S' num2str(S) '(10, start(k)-13:start(k)+127);']); 
        eval(['CH11N(CT2,:) = MuestreoB4_S' num2str(S) '(11, start(k)-13:start(k)+127);']); 
        eval(['CH12N(CT2,:) = MuestreoB4_S' num2str(S) '(12, start(k)-13:start(k)+127);']); 
        eval(['CH13N(CT2,:) = MuestreoB4_S' num2str(S) '(13, start(k)-13:start(k)+127);']); 
        eval(['CH14N(CT2,:) = MuestreoB4_S' num2str(S) '(14, start(k)-13:start(k)+127);']); 
        CT2 = CT2 + 1; 
    end 
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end 
  
% Block Five 
for k = 121:150 
    if type(k) == 83   % This for loop generates the Y and N data strings for the fifth block 
        eval(['CH1Y(CT1,:) = MuestreoB5_S' num2str(S) '(1, start(k)-13:start(k)+127);']); 
        eval(['CH2Y(CT1,:) = MuestreoB5_S' num2str(S) '(2, start(k)-13:start(k)+127);']); 
        eval(['CH3Y(CT1,:) = MuestreoB5_S' num2str(S) '(3, start(k)-13:start(k)+127);']); 
        eval(['CH4Y(CT1,:) = MuestreoB5_S' num2str(S) '(4, start(k)-13:start(k)+127);']); 
        eval(['CH5Y(CT1,:) = MuestreoB5_S' num2str(S) '(5, start(k)-13:start(k)+127);']); 
        eval(['CH6Y(CT1,:) = MuestreoB5_S' num2str(S) '(6, start(k)-13:start(k)+127);']); 
        eval(['CH7Y(CT1,:) = MuestreoB5_S' num2str(S) '(7, start(k)-13:start(k)+127);']); 
        eval(['CH8Y(CT1,:) = MuestreoB5_S' num2str(S) '(8, start(k)-13:start(k)+127);']); 
        eval(['CH9Y(CT1,:) = MuestreoB5_S' num2str(S) '(9, start(k)-13:start(k)+127);']); 
        eval(['CH10Y(CT1,:) = MuestreoB5_S' num2str(S) '(10, start(k)-13:start(k)+127);']); 
        eval(['CH11Y(CT1,:) = MuestreoB5_S' num2str(S) '(11, start(k)-13:start(k)+127);']); 
        eval(['CH12Y(CT1,:) = MuestreoB5_S' num2str(S) '(12, start(k)-13:start(k)+127);']); 
        eval(['CH13Y(CT1,:) = MuestreoB5_S' num2str(S) '(13, start(k)-13:start(k)+127);']); 
        eval(['CH14Y(CT1,:) = MuestreoB5_S' num2str(S) '(14, start(k)-13:start(k)+127);']); 
        CT1 = CT1 + 1; 
    elseif type(k) == 78 
        eval(['CH1N(CT2,:) = MuestreoB5_S' num2str(S) '(1, start(k)-13:start(k)+127);']); 
        eval(['CH2N(CT2,:) = MuestreoB5_S' num2str(S) '(2, start(k)-13:start(k)+127);']); 
        eval(['CH3N(CT2,:) = MuestreoB5_S' num2str(S) '(3, start(k)-13:start(k)+127);']); 
        eval(['CH4N(CT2,:) = MuestreoB5_S' num2str(S) '(4, start(k)-13:start(k)+127);']); 
        eval(['CH5N(CT2,:) = MuestreoB5_S' num2str(S) '(5, start(k)-13:start(k)+127);']); 
        eval(['CH6N(CT2,:) = MuestreoB5_S' num2str(S) '(6, start(k)-13:start(k)+127);']); 
        eval(['CH7N(CT2,:) = MuestreoB5_S' num2str(S) '(7, start(k)-13:start(k)+127);']); 
        eval(['CH8N(CT2,:) = MuestreoB5_S' num2str(S) '(8, start(k)-13:start(k)+127);']); 
        eval(['CH9N(CT2,:) = MuestreoB5_S' num2str(S) '(9, start(k)-13:start(k)+127);']); 
        eval(['CH10N(CT2,:) = MuestreoB5_S' num2str(S) '(10, start(k)-13:start(k)+127);']); 
        eval(['CH11N(CT2,:) = MuestreoB5_S' num2str(S) '(11, start(k)-13:start(k)+127);']); 
        eval(['CH12N(CT2,:) = MuestreoB5_S' num2str(S) '(12, start(k)-13:start(k)+127);']); 
        eval(['CH13N(CT2,:) = MuestreoB5_S' num2str(S) '(13, start(k)-13:start(k)+127);']); 
        eval(['CH14N(CT2,:) = MuestreoB5_S' num2str(S) '(14, start(k)-13:start(k)+127);']); 
        CT2 = CT2 + 1; 
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% These for loops allow for the baseline averaging of the yes and no 
% responses based on the 13 samples of data that occured before the onset 
% of the stimulus. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Baseline of Yes reponses 
for n = 1:(CT1-1) 
    Baseline_CH1Y(n,1:141) = mean(CH1Y(n,1:13)); %Baseline average of first 13 samples of noise 
    Baseline_CH2Y(n,1:141) = mean(CH2Y(n,1:13)); 
    Baseline_CH3Y(n,1:141) = mean(CH3Y(n,1:13)); 
    Baseline_CH4Y(n,1:141) = mean(CH4Y(n,1:13)); 
    Baseline_CH5Y(n,1:141) = mean(CH5Y(n,1:13)); 
    Baseline_CH6Y(n,1:141) = mean(CH6Y(n,1:13)); 
    Baseline_CH7Y(n,1:141) = mean(CH7Y(n,1:13)); 
    Baseline_CH8Y(n,1:141) = mean(CH8Y(n,1:13)); 
    Baseline_CH9Y(n,1:141) = mean(CH9Y(n,1:13)); 
    Baseline_CH10Y(n,1:141) = mean(CH10Y(n,1:13)); 
    Baseline_CH11Y(n,1:141) = mean(CH11Y(n,1:13)); 
    Baseline_CH12Y(n,1:141) = mean(CH12Y(n,1:13)); 
    Baseline_CH13Y(n,1:141) = mean(CH13Y(n,1:13)); 
    Baseline_CH14Y(n,1:141) = mean(CH14Y(n,1:13)); 
end 
  
%Baseline of No responses 
for m = 1:(CT2 - 1) 
    Baseline_CH1N(m,1:141) = mean(CH1N(m,1:13)); 
    Baseline_CH2N(m,1:141) = mean(CH2N(m,1:13)); 
    Baseline_CH3N(m,1:141) = mean(CH3N(m,1:13)); 
    Baseline_CH4N(m,1:141) = mean(CH4N(m,1:13)); 
    Baseline_CH5N(m,1:141) = mean(CH5N(m,1:13)); 
    Baseline_CH6N(m,1:141) = mean(CH6N(m,1:13)); 
    Baseline_CH7N(m,1:141) = mean(CH7N(m,1:13)); 
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    Baseline_CH8N(m,1:141) = mean(CH8N(m,1:13)); 
    Baseline_CH9N(m,1:141) = mean(CH9N(m,1:13)); 
    Baseline_CH10N(m,1:141) = mean(CH10N(m,1:13)); 
    Baseline_CH11N(m,1:141) = mean(CH11N(m,1:13)); 
    Baseline_CH12N(m,1:141) = mean(CH12N(m,1:13)); 
    Baseline_CH13N(m,1:141) = mean(CH13N(m,1:13)); 
    Baseline_CH14N(m,1:141) = mean(CH14N(m,1:13)); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Here each channel is baseline averaged 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
AVGBaselineCH1Y = Baseline_CH1Y - CH1Y;  
AVGBaselineCH1N = Baseline_CH1N - CH1N; 
AVGBaselineCH2Y = Baseline_CH2Y - CH2Y;  
AVGBaselineCH2N = Baseline_CH2N - CH2N; 
AVGBaselineCH3Y = Baseline_CH3Y - CH3Y;  
AVGBaselineCH3N = Baseline_CH3N - CH3N; 
AVGBaselineCH4Y = Baseline_CH4Y - CH4Y;  
AVGBaselineCH4N = Baseline_CH4N - CH4N; 
AVGBaselineCH5Y = Baseline_CH5Y - CH5Y;  
AVGBaselineCH5N = Baseline_CH5N - CH5N; 
AVGBaselineCH6Y = Baseline_CH6Y - CH6Y;  
AVGBaselineCH6N = Baseline_CH6N - CH6N; 
AVGBaselineCH7Y = Baseline_CH7Y - CH7Y;  
AVGBaselineCH7N = Baseline_CH7N - CH7N; 
AVGBaselineCH8Y = Baseline_CH8Y - CH8Y;  
AVGBaselineCH8N = Baseline_CH8N - CH8N; 
AVGBaselineCH9Y = Baseline_CH9Y - CH9Y;  
AVGBaselineCH9N = Baseline_CH9N - CH9N; 
AVGBaselineCH10Y = Baseline_CH10Y - CH10Y;  
AVGBaselineCH10N = Baseline_CH10N - CH10N; 
AVGBaselineCH11Y = Baseline_CH11Y - CH11Y;  
AVGBaselineCH11N = Baseline_CH11N - CH11N; 
AVGBaselineCH12Y = Baseline_CH12Y - CH12Y;  
AVGBaselineCH12N = Baseline_CH12N - CH12N; 
AVGBaselineCH13Y = Baseline_CH13Y - CH13Y;  
AVGBaselineCH13N = Baseline_CH13N - CH13N; 
AVGBaselineCH14Y = Baseline_CH14Y - CH14Y;  
AVGBaselineCH14N = Baseline_CH14N - CH14N; 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% In this section two 3D matrices are generated that hold 14 channel 
% response data for each word across the entire 1s duration of the 
% partitioned time. the first dimension is the 14 channels, the second 
% dimension is the stimulus sampling, the third dimension is the particular 
% trial being sampled. This section also generates the average values for 
% P600 and N400 for each trial and places them in their respective 
% matrices. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
YesBlock = zeros(14,141, size(AVGBaselineCH1Y,1)); 
NoBlock = zeros (14,141, size(AVGBaselineCH1N,1)); 
N400No = zeros(14, size(AVGBaselineCH1N,1)); 
N400Yes = zeros(14, size(AVGBaselineCH1Y,1)); 
P600No = zeros(14, size(AVGBaselineCH1N,1)); 
P600Yes = zeros(14, size(AVGBaselineCH1Y,1)); 
  
for k = 1:size(AVGBaselineCH1Y,1) 
        YesBlock(1,:,k) = AVGBaselineCH1Y(k,:); 
        YesBlock(2,:,k) = AVGBaselineCH2Y(k,:); 
        YesBlock(3,:,k) = AVGBaselineCH3Y(k,:); 
        YesBlock(4,:,k) = AVGBaselineCH4Y(k,:); 
        YesBlock(5,:,k) = AVGBaselineCH5Y(k,:); 
        YesBlock(6,:,k) = AVGBaselineCH6Y(k,:); 
        YesBlock(7,:,k) = AVGBaselineCH7Y(k,:); 
        YesBlock(8,:,k) = AVGBaselineCH8Y(k,:); 
        YesBlock(9,:,k) = AVGBaselineCH9Y(k,:); 
        YesBlock(10,:,k) = AVGBaselineCH10Y(k,:); 
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        YesBlock(11,:,k) = AVGBaselineCH11Y(k,:); 
        YesBlock(12,:,k) = AVGBaselineCH12Y(k,:); 
        YesBlock(13,:,k) = AVGBaselineCH13Y(k,:); 
        YesBlock(14,:,k) = AVGBaselineCH14Y(k,:); 
        N400Yes(1,k) = mean(AVGBaselineCH1Y(k,58:84)); 
        N400Yes(2,k) = mean(AVGBaselineCH2Y(k,58:84)); 
        N400Yes(3,k) = mean(AVGBaselineCH3Y(k,58:84)); 
        N400Yes(4,k) = mean(AVGBaselineCH4Y(k,58:84)); 
        N400Yes(5,k) = mean(AVGBaselineCH5Y(k,58:84)); 
        N400Yes(6,k) = mean(AVGBaselineCH6Y(k,58:84)); 
        N400Yes(7,k) = mean(AVGBaselineCH7Y(k,58:84)); 
        N400Yes(8,k) = mean(AVGBaselineCH8Y(k,58:84)); 
        N400Yes(9,k) = mean(AVGBaselineCH9Y(k,58:84)); 
        N400Yes(10,k) = mean(AVGBaselineCH10Y(k,58:84)); 
        N400Yes(11,k) = mean(AVGBaselineCH11Y(k,58:84)); 
        N400Yes(12,k) = mean(AVGBaselineCH12Y(k,58:84)); 
        N400Yes(13,k) = mean(AVGBaselineCH13Y(k,58:84)); 
        N400Yes(14,k) = mean(AVGBaselineCH14Y(k,58:84)); 
        P600Yes(1,k) = mean(AVGBaselineCH1Y(k,90:128)); 
        P600Yes(2,k) = mean(AVGBaselineCH2Y(k,90:128)); 
        P600Yes(3,k) = mean(AVGBaselineCH3Y(k,90:128)); 
        P600Yes(4,k) = mean(AVGBaselineCH4Y(k,90:128)); 
        P600Yes(5,k) = mean(AVGBaselineCH5Y(k,90:128)); 
        P600Yes(6,k) = mean(AVGBaselineCH6Y(k,90:128)); 
        P600Yes(7,k) = mean(AVGBaselineCH7Y(k,90:128)); 
        P600Yes(8,k) = mean(AVGBaselineCH8Y(k,90:128)); 
        P600Yes(9,k) = mean(AVGBaselineCH9Y(k,90:128)); 
        P600Yes(10,k) = mean(AVGBaselineCH10Y(k,90:128)); 
        P600Yes(11,k) = mean(AVGBaselineCH11Y(k,90:128)); 
        P600Yes(12,k) = mean(AVGBaselineCH12Y(k,90:128)); 
        P600Yes(13,k) = mean(AVGBaselineCH13Y(k,90:128)); 
        P600Yes(14,k) = mean(AVGBaselineCH14Y(k,90:128)); 
end 
  
for k = 1:size(AVGBaselineCH1N,1) 
        NoBlock(1,:,k) = AVGBaselineCH1N(k,:); 
        NoBlock(2,:,k) = AVGBaselineCH2N(k,:); 
        NoBlock(3,:,k) = AVGBaselineCH3N(k,:); 
        NoBlock(4,:,k) = AVGBaselineCH4N(k,:); 
        NoBlock(5,:,k) = AVGBaselineCH5N(k,:); 
        NoBlock(6,:,k) = AVGBaselineCH6N(k,:); 
        NoBlock(7,:,k) = AVGBaselineCH7N(k,:); 
        NoBlock(8,:,k) = AVGBaselineCH8N(k,:); 
        NoBlock(9,:,k) = AVGBaselineCH9N(k,:); 
        NoBlock(10,:,k) = AVGBaselineCH10N(k,:); 
        NoBlock(11,:,k) = AVGBaselineCH11N(k,:); 
        NoBlock(12,:,k) = AVGBaselineCH12N(k,:); 
        NoBlock(13,:,k) = AVGBaselineCH13N(k,:); 
        NoBlock(14,:,k) = AVGBaselineCH14N(k,:); 
        N400No(1,k) = mean(AVGBaselineCH1N(k,58:84)); 
        N400No(2,k) = mean(AVGBaselineCH2N(k,58:84)); 
        N400No(3,k) = mean(AVGBaselineCH3N(k,58:84)); 
        N400No(4,k) = mean(AVGBaselineCH4N(k,58:84)); 
        N400No(5,k) = mean(AVGBaselineCH5N(k,58:84)); 
        N400No(6,k) = mean(AVGBaselineCH6N(k,58:84)); 
        N400No(7,k) = mean(AVGBaselineCH7N(k,58:84)); 
        N400No(8,k) = mean(AVGBaselineCH8N(k,58:84)); 
        N400No(9,k) = mean(AVGBaselineCH9N(k,58:84)); 
        N400No(10,k) = mean(AVGBaselineCH10N(k,58:84)); 
        N400No(11,k) = mean(AVGBaselineCH11N(k,58:84)); 
        N400No(12,k) = mean(AVGBaselineCH12N(k,58:84)); 
        N400No(13,k) = mean(AVGBaselineCH13N(k,58:84)); 
        N400No(14,k) = mean(AVGBaselineCH14N(k,58:84)); 
        P600No(1,k) = mean(AVGBaselineCH1N(k,90:128)); 
        P600No(2,k) = mean(AVGBaselineCH2N(k,90:128)); 
        P600No(3,k) = mean(AVGBaselineCH3N(k,90:128)); 
        P600No(4,k) = mean(AVGBaselineCH4N(k,90:128)); 
        P600No(5,k) = mean(AVGBaselineCH5N(k,90:128)); 
        P600No(6,k) = mean(AVGBaselineCH6N(k,90:128)); 
        P600No(7,k) = mean(AVGBaselineCH7N(k,90:128)); 
        P600No(8,k) = mean(AVGBaselineCH8N(k,90:128)); 
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        P600No(9,k) = mean(AVGBaselineCH9N(k,90:128)); 
        P600No(10,k) = mean(AVGBaselineCH10N(k,90:128)); 
        P600No(11,k) = mean(AVGBaselineCH11N(k,90:128)); 
        P600No(12,k) = mean(AVGBaselineCH12N(k,90:128)); 
        P600No(13,k) = mean(AVGBaselineCH13N(k,90:128)); 
        P600No(14,k) = mean(AVGBaselineCH14N(k,90:128)); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This section takes an FFT of the averaged dataset in order to determine 
% the alpha and theta values present in the data for CSP processing. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
Fs = 128;            % Sampling frequency                     
T = 1/Fs;             % Sampling period        
L = 141;             % Length of signal 
t = (0:L-1)*T;        % Time vector 
  
freqdatayes = fft(YesBlock,[],2); 
freqdatano = fft(NoBlock,[],2); 
  
alphayes = zeros(14,size(AVGBaselineCH1Y,1)); 
alphano = zeros(14,size(AVGBaselineCH1N,1)); 
thetayes = zeros(14,size(AVGBaselineCH1Y,1)); 
thetano = zeros(14,size(AVGBaselineCH1N,1)); 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% The power spectrum is computed and then averaged for storage in a matrix. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
for k = 1:size(AVGBaselineCH1Y,1); 
    for z = 1:14; 
     
        P2 = abs(freqdatayes(z,:,k)/L); 
        alphayes(z,k) = mean(P2(8:12)); 
        thetayes(z,k) = mean(P2(4:7)); 
    end 
end 
  
for k = 1:size(AVGBaselineCH1N,1); 
    for z = 1:14; 
     
        P3 = abs(freqdatano(z,:,k)/L); 
        alphano(z,k) = mean(P3(8:12)); 
        thetano(z,k) = mean(P3(4:7)); 
    end 
end 
  
% Here all of the variables are saved to be used in the CSP function. 
save ('S1YesBlock', 'YesBlock','N400Yes','P600Yes','alphayes','thetayes'); 
save ('S1NoBlock', 'NoBlock','N400No','P600No','alphano','thetano'); 
 
 
 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Biomedical Engineering Thesis CSP Filtering 
% Written by: Michael Doyel 
% December 5th, 2020 
% Thesis Advisor: Dr. Chiu 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clc 
clear 
close all 
  
% Load data for specific subject analysis 
load S1YesBlock.mat 
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load S1NoBlock.mat 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Theta Training Set (4/5) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
M1 = thetano(:,1:62); 
M2 = thetayes(:,1:58); 
  
%Initialize: 
R1 = M1* M1'; 
R2 = M2 * M2'; 
%Calculate: 
  
R1 = R1/trace(R1); 
R2 = R2/trace(R2); 
Rsum=R1+R2; 
  
[EVecsum,EValsum]=eig(Rsum); 
[EValsum,ind] = sort(diag(EValsum), 'descend'); 
EVecsum=EVecsum(:,ind); 
  
W=sqrt(pinv(diag(EValsum))) * EVecsum; %Transformation Matrix 
  
S1=W*R1*W';  
S2=W*R2*W'; 
  
[B,D]=eig(S1,S2);  
[D,ind]=sort(diag(D)); 
B=B(: ,[ind(1),ind(14)]); %To look at 1 and 2 change ind to ind1:2  
MCSP=B'*W;  
  
Z1 = MCSP*M1; 
Z2 = MCSP*M2; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Theta Evaluation Set (1/5) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
M3 = thetano(:,63:size(thetano,2)); 
M4 = thetayes(:,59:size(thetayes,2)); 
Z3 = MCSP*M3; 
Z4 = MCSP*M4; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Theta Plotting 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% figure(1) 
% hold on 
% grid on 
% scatter(y1(1,:),y1(2,:),'ob','Linewidth',1.5); 
% scatter(y2(1,:),y2(2,:),'xr','Linewidth',1.5); 
% title('Example Data Plotting Mx vs My'); 
% ylabel('Channel 1'); 
% xlabel('Channel 2'); 
% legend('Mx Example Set', 'My Example Set','Location','northeast'); 
% hold off 
%  
% figure(2) 
% hold on 
% grid on 
% scatter(y1(1,:),y1(3,:),'ob','Linewidth',1.5); 
% scatter(y2(1,:),y2(3,:),'xr','Linewidth',1.5); 
% title('Example Data Plotting Mx vs My'); 
% ylabel('Channel 1'); 
% xlabel('Channel 3'); 
% legend('Mx Example Set', 'My Example Set','Location','northeast'); 
% hold off 
%  
% figure(3) 
% hold on 
% grid on 
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% scatter(y1(2,:),y1(3,:),'ob','Linewidth',1.5); 
% scatter(y2(2,:),y2(3,:),'xr','Linewidth',1.5); 
% title('Example Data Plotting Mx vs My'); 
% ylabel('Channel 2'); 
% xlabel('Channel 3'); 
% legend('Mx Example Set', 'My Example Set','Location','northeast'); 
% hold off 
%  
% figure(4) 
% hold on 
% grid on 
% scatter(Z1(1,:),Z1(2,:),'ob','Linewidth',1.5); 
% scatter(Z2(1,:),Z2(2,:),'xr','Linewidth',1.5); 
% title('Example Data Plotting Z1 vs Z2'); 
% ylabel('Z1'); 
% xlabel('Z1'); 
% legend('Mx Example Set', 'My Example Set','Location','northeast'); 
% hold off 
  
  
figure 
hold on 
grid on 
scatter(Z1(1,:),Z1(2,:),'ob','Linewidth',1.5); 
scatter(Z2(1,:),Z2(2,:),'xr','Linewidth',1.5); 
title('Theta Wave Testing Set CSP Separation'); 
ylabel('Z1'); 
xlabel('Z2'); 
legend('Theta No Training Set', 'Theta Yes Training Set','Location','northeast'); 
hold off 
  
figure 
hold on 
grid on 
scatter(Z1(1,:),Z1(2,:),'ob','Linewidth',1.5); 
scatter(Z2(1,:),Z2(2,:),'xr','Linewidth',1.5); 
scatter(Z3(1,:),Z3(2,:),'om','Linewidth',1.5); 
scatter(Z4(1,:),Z4(2,:),'xg','Linewidth',1.5); 
title('Theta Wave Validation Set CSP Separation'); 
ylabel('Z1 & Z3') 
xlabel('Z2 & Z4') 
legend('Theta No Training Set', 'Theta Yes Training Set', 'Theta No Validation Set', 'Theta Yes 
Validation Set', 'Location','northeast') 
  
  
%figure 
% hold on 
%histogram(M1(10,:)); 
%histogram(M2(10,:)); 
%hold off 
%% Alpha Training Set (4/5) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
M1 = alphano(:,1:62); 
M2 = alphayes(:,1:58); 
  
%Initialize: 
R1 = M1* M1'; 
R2 = M2 * M2'; 
%Calculate: 
  
R1 = R1/trace(R1); 
R2 = R2/trace(R2); 
Rsum=R1+R2; 
  
[EVecsum,EValsum]=eig(Rsum); 
[EValsum,ind] = sort(diag(EValsum), 'descend'); 
EVecsum=EVecsum(:,ind); 
  
W=sqrt(pinv(diag(EValsum))) * EVecsum; %Transformation Matrix 
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S1=W*R1*W';  
S2=W*R2*W'; 
  
[B,D]=eig(S1,S2);  
[D,ind]=sort(diag(D)); 
B=B(: ,[ind(1),ind(14)]); %To look at 1 and 2 change ind to ind1:2  
MCSP=B'*W;  
  
Z1 = MCSP*M1; 
Z2 = MCSP*M2; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Alpha Evaluation Set (1/5) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
M3 = alphano(:,63:size(alphano,2)); 
M4 = alphayes(:,59:size(alphayes,2)); 
Z3 = MCSP*M3; 
Z4 = MCSP*M4; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Alpha Plotting 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure 
hold on 
grid on 
scatter(Z1(1,:),Z1(2,:),'ob','Linewidth',1.5); 
scatter(Z2(1,:),Z2(2,:),'xr','Linewidth',1.5); 
title('Alpha Wave Testing Set CSP Separation'); 
ylabel('Z1'); 
xlabel('Z2'); 
legend('Alpha No Training Set', 'Alpha Yes Training Set','Location','northeast'); 
hold off 
  
figure 
hold on 
grid on 
scatter(Z1(1,:),Z1(2,:),'ob','Linewidth',1.5); 
scatter(Z2(1,:),Z2(2,:),'xr','Linewidth',1.5); 
scatter(Z3(1,:),Z3(2,:),'om','Linewidth',1.5); 
scatter(Z4(1,:),Z4(2,:),'xg','Linewidth',1.5); 
title('Alpha Wave Validation Set CSP Separation'); 
ylabel('Z1 & Z3') 
xlabel('Z2 & Z4') 
legend('Alpha No Training Set', 'Alpha Yes Training Set', 'Alpha No Validation Set', 'Alpha Yes 
Validation Set', 'Location','northeast') 
%% N400 ERP Training Set (4/5) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
M1 = N400No(:,1:62); 
M2 = N400Yes(:,1:58); 
  
%Initialize: 
R1 = M1* M1'; 
R2 = M2 * M2'; 
%Calculate: 
  
R1 = R1/trace(R1); 
R2 = R2/trace(R2); 
Rsum=R1+R2; 
  
[EVecsum,EValsum]=eig(Rsum); 
[EValsum,ind] = sort(diag(EValsum), 'descend'); 
EVecsum=EVecsum(:,ind); 
  
W=sqrt(pinv(diag(EValsum))) * EVecsum; %Transformation Matrix 
  
S1=W*R1*W';  
S2=W*R2*W'; 
  
[B,D]=eig(S1,S2);  
[D,ind]=sort(diag(D)); 
B=B(: ,[ind(1),ind(14)]); %To look at 1 and 2 change ind to ind1:2  
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MCSP=B'*W;  
  
Z1 = MCSP*M1; 
Z2 = MCSP*M2; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% N400 ERP Evaluation Set (1/5) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
M3 = N400No(:,63:size(N400No,2)); 
M4 = N400Yes(:,59:size(N400Yes,2)); 
Z3 = MCSP*M3; 
Z4 = MCSP*M4; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% N400 ERP Plotting 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure 
hold on 
grid on 
scatter(Z1(1,:),Z1(2,:),'ob','Linewidth',1.5); 
scatter(Z2(1,:),Z2(2,:),'xr','Linewidth',1.5); 
title('N400 ERP Testing Set CSP Separation'); 
ylabel('Z1'); 
xlabel('Z2'); 
legend('N400 No Training Set', 'N400 Yes Training Set','Location','northeast'); 
hold off 
  
figure 
hold on 
grid on 
scatter(Z1(1,:),Z1(2,:),'ob','Linewidth',1.5); 
scatter(Z2(1,:),Z2(2,:),'xr','Linewidth',1.5); 
scatter(Z3(1,:),Z3(2,:),'om','Linewidth',1.5); 
scatter(Z4(1,:),Z4(2,:),'xg','Linewidth',1.5); 
title('N400 Wave Validation Set CSP Separation'); 
ylabel('Z1 & Z3') 
xlabel('Z2 & Z4') 
legend('N400 No Training Set', 'N400 Yes Training Set', 'N400 No Validation Set', 'N400 Yes 
Validation Set', 'Location','northeast') 
%% P600 ERP Training Set (4/5) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
M1 = P600No(:,1:62); 
M2 = P600Yes(:,1:58); 
  
%Initialize: 
R1 = M1* M1'; 
R2 = M2 * M2'; 
%Calculate: 
  
R1 = R1/trace(R1); 
R2 = R2/trace(R2); 
Rsum=R1+R2; 
  
[EVecsum,EValsum]=eig(Rsum); 
[EValsum,ind] = sort(diag(EValsum), 'descend'); 
EVecsum=EVecsum(:,ind); 
  
W=sqrt(pinv(diag(EValsum))) * EVecsum; %Transformation Matrix 
  
S1=W*R1*W';  
S2=W*R2*W'; 
  
[B,D]=eig(S1,S2);  
[D,ind]=sort(diag(D)); 
B=B(: ,[ind(1),ind(14)]); %To look at 1 and 2 change ind to ind1:2  
MCSP=B'*W;  
  
Z1 = MCSP*M1; 
Z2 = MCSP*M2; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%% P600 ERP Evaluation Set (1/5) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
M3 = P600No(:,63:size(P600No,2)); 
M4 = P600Yes(:,59:size(P600Yes,2)); 
Z3 = MCSP*M3; 
Z4 = MCSP*M4; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% P600 ERP Plotting 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure 
hold on 
grid on 
scatter(Z1(1,:),Z1(2,:),'ob','Linewidth',1.5); 
scatter(Z2(1,:),Z2(2,:),'xr','Linewidth',1.5); 
title('P600 ERP Testing Set CSP Separation'); 
ylabel('Z1'); 
xlabel('Z2'); 
legend('P600 No Training Set', 'P600 Yes Training Set','Location','northeast'); 
hold off 
  
figure 
hold on 
grid on 
scatter(Z1(1,:),Z1(2,:),'ob','Linewidth',1.5); 
scatter(Z2(1,:),Z2(2,:),'xr','Linewidth',1.5); 
scatter(Z3(1,:),Z3(2,:),'om','Linewidth',1.5); 
scatter(Z4(1,:),Z4(2,:),'xg','Linewidth',1.5); 
title('P600 ERP Validation Set CSP Separation'); 
ylabel('Z1 & Z3') 
xlabel('Z2 & Z4') 
legend('P600 No Training Set', 'P600 Yes Training Set', 'P600 No Validation Set', 'P600 Yes 
Validation Set', 'Location','northeast') 
%% Four Feature Training Set (4/5) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
A = (size(alphano,2) - 15); 
G = (size(alphayes,2) - 15); 
Q = [N400No;P600No;thetano;alphano]; 
F = [N400Yes;P600Yes;thetayes;alphayes]; 
%% 
C = 6; 
E = 9; 
H = C+1; 
I = E+1; 
NNN = 8;    %Divisibility number 
MMM = 15-NNN; 
%% 
M1 = Q(:,H:size(Q,2)); %1+number subtracted for indices 
M2 = F(:,I:size(F,2)); 
R1 = M1* M1'; 
R2 = M2 * M2'; 
%Calculate: 
  
R1 = R1/trace(R1); 
R2 = R2/trace(R2); 
Rsum=R1+R2; 
[EVecsum,EValsum]=eig(Rsum); 
[EValsum,ind] = sort(diag(EValsum), 'descend'); 
EVecsum=EVecsum(:,ind); 
  
W=sqrt(pinv(diag(EValsum))) * EVecsum; %Transformation Matrix 
S1=W*R1*W';  
S2=W*R2*W'; 
[B,D]=eig(S1,S2);  
[D,ind]=sort(diag(D)); 
%% 
B=B(: ,[ind(1),ind(56)]); 
% B=B(: ,[ind(1:14),ind(43:56)]); %To look at 1 and 2 change ind to ind1:2  
% B=B(: ,[ind(1:56)]); 
% 
MCSP=B'*W; 
Z1 = MCSP*M1; 
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Z2 = MCSP*M2; 
     
  
M3 = Q(:,1:C); %Number subtracted for indices 
M4 = F(:,1:E); 
  
Z3 = MCSP*M3; 
Z4 = MCSP*M4; 
  
Ztrain = [Z1,Z2]; 
Ztest = [Z3,Z4]; 
TrainingData = []; 
TestingData = []; 
TrainingData = [TrainingData;Ztrain]; 
TestingData = [TestingData;Ztest]; 
  
  
  
%% 
  
sq = size(Q,2); 
sf = size(F,2); 
sq = sq - C; 
sf = sf - E; 
  
  
  
sqp = sq+1; 
sfp = sf+1; 
sq = sq - NNN; 
sf = sf - MMM; 
  
for k = 1:9; 
  
    M1 = [Q(:,1:sq), Q(:,sqp:size(Q,2))]; 
    M2 = [F(:,1:sf), F(:,sfp:size(F,2))]; 
  
  
  
    %Initialize: 
    R1 = M1* M1'; 
    R2 = M2 * M2'; 
    %Calculate: 
  
    R1 = R1/trace(R1); 
    R2 = R2/trace(R2); 
    Rsum=R1+R2; 
  
    [EVecsum,EValsum]=eig(Rsum); 
    [EValsum,ind] = sort(diag(EValsum), 'descend'); 
    EVecsum=EVecsum(:,ind); 
  
    W=sqrt(pinv(diag(EValsum))) * EVecsum; %Transformation Matrix 
  
    S1=W*R1*W';  
    S2=W*R2*W'; 
  
    [B,D]=eig(S1,S2);  
    [D,ind]=sort(diag(D)); 
    B=B(: ,[ind(1),ind(56)]); 
%     B=B(: ,[ind(1:14),ind(43:56)]); %To look at 1 and 2 change ind to ind1:2  
%     B=B(: ,[ind(1:56)]); 
    MCSP=B'*W;  
  
    Z1 = MCSP*M1; 
    Z2 = MCSP*M2; 
  
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %% Four Feature Evaluation Set (1/5) 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 



   

102 
 

    TT = sq +1; 
    YY = sf +1; 
    XX = sqp - 1; 
    ZZ = sfp -1; 
    M3 = Q(:,TT:XX); 
    M4 = F(:,YY:ZZ); 
    % M3 = Q(:,(A+1):size(Q,2)); 
    % M4 = F(:,(G+1):size(F,2)); 
  
    Z3 = MCSP*M3; 
    Z4 = MCSP*M4; 
  
    Ztrain = [Z1,Z2]; 
    Ztest = [Z3,Z4]; 
  
    TrainingData = [TrainingData;Ztrain]; 
    TestingData = [TestingData;Ztest]; 
    sqp = sq+1; 
    sfp = sf+1; 
    sq = sq - NNN; 
    sf = sf - MMM; 
end 
Z3size = size(Z3,2); 
Z4size = size(Z4,2); 
%% 
save('Subject 14 2 Feature Train & Test 
Data','TrainingData','TestingData','Q','F','Z3size','Z4size'); 
%%%%%%%%%%%%%%%%%%%%%%8%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Four Feature Data Plotting 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure 
hold on 
grid on 
scatter(Z1(1,:),Z1(2,:),'ob','Linewidth',1.5); 
scatter(Z2(1,:),Z2(2,:),'xr','Linewidth',1.5); 
title('Subject 1 Four Feature Testing Set CSP Separation'); 
ylabel('Z1'); 
xlabel('Z2'); 
legend('No Training Set', 'Yes Training Set','Location','northeast'); 
hold off 
  
figure 
hold on 
grid on 
%scatter(Z1(1,:),Z1(2,:),'ob','Linewidth',1.5); 
%scatter(Z2(1,:),Z2(2,:),'xr','Linewidth',1.5); 
scatter(Z3(1,:),Z3(2,:),'om','Linewidth',1.5); 
scatter(Z4(1,:),Z4(2,:),'xg','Linewidth',1.5); 
plot([-1000,1000],[1000,-1000],'k--'); 
plot([-1000,1000],[-1000,1000],'k--'); 
title('Subject 1 Four Feature Validation Set CSP Separation'); 
ylabel('Z1 & Z3') 
xlabel('Z2 & Z4') 
legend('No Validation Set', 'Yes Validation Set', 'Location','northeast') 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Biomedical Engineering Thesis Classification 
% Written by: Michael Doyel 
% May 26th, 2021 
% Thesis Advisor: Dr. Chiu 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clc 
clear all 
  
% Load Dataset for Classification 
load 'Subject 1 56 Feature Train & Test Data' 
  
  
%%%%%%%%%%%%%%%%%%%%%%% 
% Training Data 
% Q Length is connected to no 
% F length is connected to yes 
% The training and test data are X by response # (size q size f) matrices 
% where depending on the testing values there are either 20, 280, or 560 
% columns. 
% Increment both the M + at the end of the loop and the M* multiplier 
% depending on the number of features being processed. 
% 
% The fit function can be changed based on the classifiaction model wanted 
% for evalution. 
% 
% TestingData is the matrix that holds Each two channel 10 point validation 
% every two rows ie rows 3 and 4 are the 2nd validation block and so on. 
% 
% TrainingData is the matrix for the data the model should be trained on. 
% Q is the size of the No responses 
% F is the size of the Yes responses 
% 
% 
%%%%%%%%%%%%%%%%%%%%%%% 
%% Model Training 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
m = 1; 
CorrectVec = zeros(10,1); 
CT1 = 0; 
for k = 1:10 
    Ztrain = TrainingData(m:56*k,:); 
    Ztest = TestingData(m:56*k,:); 
  
    Ztrain = permute(Ztrain, [2 1]); 
    Ztest = permute(Ztest, [2 1]); 
  
    C = cell([135 1]); 
     
    for j= 1:size(Ztrain); 
        if j <= size(Q,2); 
            C(j,1) = {'No'}; 
        else 
            C(j,1) = {'Yes'}; 
        end 
    end 
    Mdl = fitcdiscr(Ztrain,C); 
    label = predict(Mdl,Ztest); 
    for y = 1:15; 
        if y <= Z3size; 
            if ~any(strcmp(label(y,:),'Yes')) 
                CT1 = CT1+1; 
            else 
                CT1 = CT1 + 0; 
            end 
        else 
            if ~any(strcmp(label(y,:),'No')) 
                CT1 = CT1 + 1; 
            else 
                CT1 = CT1 + 0; 
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            end 
        end 
    end 
    CorrectVec(k,:) = CT1 
    m=m+56 
    CT1 = 0 
end 
MEANCORRECT = mean(CorrectVec); 
BEST = max(CorrectVec); 
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