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Changes in rice production in China under future climate scenarios 

Abstract 

 

The Levinsohn-Petrin consistent semi-parametric estimation method was used to empirically analyze 

input-output panel data on rice yields in 30 Chinese provinces from 1990 to 2019 and to predict the 

level of rice yields at the end of the 21st century. The results show that, in addition to natural disasters 

and objective natural conditions, rice yields depend mainly on pesticide application, that China's 

current rice production and operation model is insufficient to match the rapidly growing level of 

agricultural mechanization, and that promoting large-scale production in rice fields is an effective 

way to address the waste of agricultural machinery resources. From the prediction results, the model 

has stronger prediction ability for the central-eastern and southern production areas of China, and 

very low prediction ability for the northern and western areas. The prediction of rice yield levels in 

China shows that rice yields in China at the end of the 21st century increase by 9.81% under the 

RCP8.5 climate scenario. 

This paper puts forward targeted suggestions for improving rice yields. The government should 

strengthen the promotion and training of agricultural technology and increase the channels for farmers 

to learn rice cultivation techniques; promote large-scale rice production and operation; and improve 

the education level of rice growers. 
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1 Introduction 

Global climate change, mainly characterized by warming, poses a threat to agricultural productivity, 

with global mean surface temperature projected to increase by 1.5°C - 4°C in 2081-2100 relative to 

1850-1900 under various CMIP5 scenarios, with the potential to exceed 4°C under RCP8.5 scenarios 

(Collins, et al., 2013). As a basic industry, agriculture is directly related to human survival, 

development, and social stability. With a projected population of 9.1 billion by 2050, annual cereal 

production needs to increase from the current 2.1 billion tons to about 3 billion tons (FAO, 2018). 

The global population will further increase to 11.2 billion by 2100. In 2020, China has 18% of the 

world's population and about 25% of the world's grain production. China's grain production can be 

divided into cereals, potatoes and legumes by crop species, with cereals dominating, accounting for 

92% of China's grain production, in which rice accounting for 34% of cereals production. It is 

necessary to understand and predict the future rice production in China in the context of the world's 

population explosion, warming climate, concentrated precipitation, and frequent climate extremes. 

Much of the existing research has focused on the effects of climate warming on rice yields. In general, 

higher temperatures are expected to have a negative impact on rice yields (Li, et al., 2015; Zhao, et 

al., 2017). However, a study of rice yield in Korea from 1991 to 2011 found that the effect of average 

temperature on rice yield was positive and negatively correlated with the degree of frost and heavy 

rainfall (Nam, et al., 2013). Extreme weather greatly affects rice production (Huang, et al., 2018; 

Chen, et al., 2020), Numerous studies predict that future flood events in most areas of China will 

occur more frequently, with greater intensity and for longer durations than those currently prevalent 

(Xu, et al., 2014; Chen, et al., 2013), the magnitude of flooding in many basins is projected to increase 

dramatically by more than 50% from 2056-2100 compared to 1961-2005 (Yin, et al., 2020). As one 

of the major natural disasters in China at present, the overall spatial extent of drought in China is 

expected to decrease significantly in the future, with a decrease in the frequency of drought in most 

of the northern regions and a slight increase in the frequency of drought in some parts of southern 

China (Chen, et al., 2013; Li, et al., 2020; Chen, et al., 2021). 

On the other hand, total factor productivity in agriculture as an important indicator of agricultural 

production, many scholars explore the causes of total factor productivity growth in China's agriculture 

based on the Malmquist index method, concluding that technological progress is the main reason for 

total factor productivity growth in agriculture and that labor input does not play a significant role in 

agricultural economic growth (Chen, et al., 2008; Fang & Zhang, 2010; Jin, et al., 2002), however, 

labor inputs, fertilizer application and diesel fuel are factors that directly affect the technical 

efficiency of agricultural output (Huang, et al., 2021). With the advancement of agricultural 



technology, the loss of rice yield caused by climatic conditions can be compensated by agricultural 

technology. The main socio-economic factors influencing the adoption of agricultural technology by 

growers are length of residence, land ownership and education level (Fashola, et al., 2007). 

In addition, Chinese scholars' research on future rice yield forecasting is mostly based on the Cobb-

Douglas form of production function, using the Malmquist-DEA method to measure total factor 

productivity, and then using gray prediction models and stepwise regression models to estimate yield, 

but the LP method is less applied in China. 

A summary of previous studies on grain yield influencing factors reveals that the current literature 

mostly focuses on the analysis of the degree of influence of single factors on grain yield, and there 

are fewer studies that systematically analyze rice yields. China ranks first in the world in total rice 

production, but only 13th in yield ranking (https://www.atlasbig.com/zh). How to grow high-yielding 

rice on limited arable land and thus increase rice production is a question that should be thought about 

today. Based on this, this paper builds on existing research results, combines climatic variables and 

socioeconomic factor variables to describe the variation of rice yield per hectare in China. This paper 

achieves two main objectives: 1. To study the effects of climatic conditions and socioeconomic 

factors on rice yields per hectare from 1990-2019. 2. Changes in rice yields per hectare at the end of 

the 21st century (2080-2099) relative to the baseline period (1990-2019) under RCP8.5 scenarios. 

This paper is structured as follows. Section 2 focuses on the methodology and the model. Section 3 

focuses on the variables involved in the model and the processing of the data, Section 3.1 is the 

processing of the observed data and Section 3.2 is the processing of the data for future climate 

scenarios. Section 4 presents the changes in rice yield production in China over the past 30 years, the 

results of the production function, and the prediction of future rice yields 

2. Methods 

This paper integrates the following two aspects of the study: prognosis of total factor productivity in 

agriculture and future food production under climate change scenarios. We first analyze the drivers 

of productivity improvement by a consistent semiparametric approach using agriculture-related data 

from 1990-2019. For total factor productivity estimation is usually based on macro data starting from 

estimating the production function. We have integrated biophysical and socio-economic databases to 

characterize the nature state variables and management factors (Quiroga & Suárez, 2016). The 

measured TFP is then used to predict future food production in the years 2080-2099. 

2.1 Total Factor Productivity in Agriculture  



There are several common methods for calculating total factor productivity, such as OLS, FE, IV, OP, 

LP, and GMM. When the production process is a single factor input, the productivity measure is 

simple. To more accurately measure the level of variation in input factor productivity, instead of using 

single factor productivity, the concept of total factor productivity is usually used. The traditional OLS 

least squares approach to productivity estimation requires that the inputs in the production function 

are exogenous variables, and that the farmer will optimize productivity by changing factor allocation. 

In this case, this observable productivity affects factor inputs, which can be endogenous and lead to 

biased OLS results. To address this problem many scholars have proposed fixed effects estimation 

and instrumental variables approaches to address it. Fixed effects estimation assumes that the 

observable TFP component of the firm is unchanged over time and that differences exist only between 

provinces, and unbiased estimation is performed by adding individual fixed effects dummy variables 

to address endogeneity. Unlike the fixed effects estimator, IV methods do not rely on strict exogeneity 

of the inputs for consistent estimation (Beveren, 2012). The choice of the instrument cannot be related 

to the random error term, which is extremely difficult since the error term is practically unobservable. 

Also, the IV method cannot handle endogenous exit related problems. 

To address the weak instrumental variable problem, Blundell and Bond (2000) use a systematic GMM 

approach to estimate the production function based on Arellano and Bond (1991) using both lagged 

first differences of input factors as instrumental variables for their level equations. However, adding 

lagged terms loses sample information. 

Like the instrumental variable method and the fixed effects method, the control function method is 

also a commonly used method for total factor productivity estimation. Olley and Pakes (1996) were 

the first to propose a two-step consistent estimation method, which assumes that firms make 

investment decisions based on their current productivity status, using the firm's current investment 

level as a proxy for productivity thus solving the simultaneity bias problem. However, the OP method 

requires companies to have positive investments in the current period (Beveren, 2012). 

2.2 Levinsohn–Petrin Estimation Algorithm 

After comparing the data prediction, we chose the LP method to calculate the results for analysis. The 

Levinsohn-Petrin consistent semiparametric estimation method is based on an improvement of the 

Olley-Pakes method: the LP method develops a new total factor productivity estimation method in 

response to the problem that samples with zero investment in the OP method are discarded in the 

estimation process. Rather than using the amount of investment as a proxy variable, the method uses 

an indicator for intermediate goods inputs instead (Levinsohn & Petrin, 2003). 



In this paper, we use the Cobb-Douglas production function and apply the LP method to obtain total 

factor productivity in agriculture, effectively solving the endogeneity problem of the production 

function and obtaining consistently valid estimates of the input parameters, which are abbreviated in 

their logarithmic form as follows: 

𝑦𝑖𝑡 = 𝛽0 + 𝛽𝑙𝑖𝑙𝑖𝑡 +  𝛽𝑔𝑖𝑔𝑖𝑡 + 𝛽𝑘𝑖
𝑘𝑖𝑡 + 𝛽𝑚𝑖𝑚𝑖𝑡 + ∑ δjcjit

j
+ 𝜔𝑖𝑡 + 𝜂𝑖𝑡                              1 

where 𝑖 denotes province and t denotes year. 𝑦𝑖𝑡is the logarithm of grain yield production in province 

in year 𝑡. L, G, and K are the logarithms of the rural labor force engaged in rice cultivation, gross 

domestic product (GDP), and total year-end machinery power, respectively. M is the logarithm of 

intermediate input agricultural fertilizer use, with climate, agro-climatic zone as the control variable 

(C). 𝜔𝑖𝑡 denotes the observable productivity divided in the error term, which is our required TFP. 𝜂𝑖𝑡 

denotes the error term. 

The Levinsohn-Petrin (2003) semiparametric method approach has three basic presuppositions: 

First: the size of intermediate inputs is influenced by the size of capital and productivity, 

independent of other variables, when the demand function for intermediate inputs can be 

expressed as: 𝑚𝑖𝑡 = 𝑚(𝑘𝑖𝑡 , 𝜔𝑖𝑡) 

Second: the demand for intermediate inputs is a monotonically increasing function of 

productivity, and provinces with relatively high productivity will apply more agricultural 

fertilizer, then the inverse function of the above equation can be taken: 𝜔𝑖𝑡 = 𝜔(𝑚𝑖𝑡 , 𝑘𝑖𝑡) 

Third: the productivity 𝑘𝑖𝑡  obeys a Markovian first-order process, that satisfies 𝜔𝑖𝑡 =

𝐸(𝜔𝑖𝑡|𝜔𝑖𝑡−1) + 𝜉𝑖𝑡 

Under the above three basic assumptions, the above equation (1) is written 

𝑦𝑖𝑡 = 𝛽𝑙𝑖𝑙𝑖𝑡 + 𝛽𝑔𝑖𝑔𝑖𝑡 + ∑ δjcjit
j

+ 𝜙(𝑚𝑖𝑡,𝑘𝑖𝑡,) + 𝜂𝑖𝑡                 2 

Where, 

𝜙(𝑚𝑖𝑡,𝑘𝑖𝑡,) =  𝛽0𝑖 + 𝛽𝑚𝑖𝑚𝑖𝑡 + 𝛽𝑘𝑖
𝑘𝑖𝑡 + 𝜔𝑖𝑡(𝑚𝑖𝑡,𝑘𝑖𝑡,)                   3 

The LP estimation scheme consists of two stages. In the first stage, we estimate 𝜙(. ) using OLS with 

polynomial containing 𝑚𝑖𝑡and 𝑘𝑖𝑡.  



In the second stage, the coefficient 𝛽𝑘 of 𝑘𝑖𝑡 and the coefficient 𝛽𝑚 of 𝑚𝑖𝑡 are estimated, which leads 

to the estimate of 𝜔𝑖𝑡 (Wang & Zhao, 2010). 

3 Data 

3.1 Data for 1990-2019 

The data sources required to measure the total factor productivity of agriculture in each province in 

this paper are shown in Table 1: details of the variables we use, the units and sources of the data, and 

the main descriptive statistics are presented. We used the China Rural Statistical Yearbook, compiled 

by the Rural Social and Economic Survey Department of the China Statistics Bureau, which provided 

us with information on basic rural conditions and agricultural production conditions in each province 

(rural population, grain production, grain sown area, total machinery power, fertilizer application). 

The statistical methods used are census-based (China conducted its first national agricultural census 

in 1996, which is implemented every 10 years), with sampling survey as the mainstay. Chinese 

agricultural statistics provide the area affected by agricultural natural disasters in each province. 

Table 1. Description and descriptive statistics of the variables used in the analysis (1990-2019). 

Type Variables Definition Unit Source (*)  Mean  Std. Dev. 

 YieldRice Yield of Rice per 

hectare 

Tons/Hectare CRSY 6.586 1.266 

 Population Rural labor 

engaged in rice 

cultivation 

per CRSY  7856247.1 9450877.8 

Fertilizer Fertilizer used  Tons NBS 459879.63 544752.17 

Mechanical Total 

mechanical 

power 

Kilowatts  CRSY 5905578.9 8139380.7 

GDP Gross domestic 

product 

100 million 

Yuan 

NBS 10349.706 14797.246 

 Per def Total seasonal 

precipitation 

(Dec, Jan, Feb) 

mm (Hersbach

, et al., 

2019) 

101.228 85.594 



 Per mam Total seasonal 

precipitation 

(Mar, Apr, May) 

mm (Hersbach

, et al., 

2019)  

291.35 199.408 

 Per jja Total seasonal 

precipitation 

(Jun, Jul, Aug) 

mm (Hersbach

, et al., 

2019) 

573.813 227.407 

 Per son Total seasonal 

precipitation 

(Sep, Oct, Nov) 

mm (Hersbach

, et al., 

2019)  

230.858 102.446 

 T def Average 

seasonal 

temperature 

(Dec, Jan, Feb) 

℃ (Hersbach

, et al., 

2019)  

-6.075 6.9 

 T mam Average 

seasonal 

temperature 

(Mar, Apr, May) 

℃ (Hersbach

, et al., 

2019)  

8.737 4.489 

 T jja Average 

seasonal 

temperature 

(Jun, Jul, Aug) 

℃ (Hersbach

, et al., 

2019)  

20.382 3.919 

 T son Average 

seasonal 

temperature 

(Sep, Oct, Nov) 

℃ (Hersbach

, et al., 

2019)  

8.274 5.081 

 Flood Dummy variable 

for Flood 

1 or 0 as a 

function of the 

area 

Emdat .473 .5 



 Drought Dummy variable 

for Drought 

1 or 0 as a 

function of the 

area 

Emdat .127 .333 

 Frost Dummy variable 

for frost 

1 or 0 as a 

function of the 

area  

ASPRC .774 .418 

 Heat wave Dummy variable 

for Heat wave 

1 or 0 as a 

function of the 

area 

GHD .791 .407 

 Djclim1 Dummy variable 

for humid areas 

1 or 0 as a 

function of the 

area 

Own 

elaboratio

n from 

Map of 

wet and 

dry areas 

in China 

.6 .49 

Djclim2 Dummy variable 

for semi-humid 

areas 

1 or 0 as a 

function of the 

area 

Own 

elaboratio

n from 

Map of 

wet and 

dry areas 

in China 

.233 .423 

Djclim3 Dummy variable 

for semi-arid 

areas and arid 

areas 

1 or 0 as a 

function of the 

area 

Own 

elaboratio

n from 

Map of 

wet and 

dry areas 

in China 

.133 .340 

N=900 



CRSY: China Rural Statistical yearbook, NBS: National Bureau of Statistics; EM-DAT: 

www.emdat.be (D. Guha-Sapir); ASPRC: Agricultural Statistics of the People's Republic of China 

Greenhouse Data (GHD): http://data.sheshiyuanyi.com/ 

 

The relevant indicators are described as follows (Statistics, 2019)： 

1. In general, value added is used as output data for total factor productivity calculation, 

however, the value added of primary industry covers agriculture, forestry, livestock and 

fishery. Several scholars believe that the change in unit yield is an important factor affecting 

the change in total grain production in China (Dai, 2001; Hao, 2009), so in order to obtain 

accurate total factor productivity in agriculture, we chose the current year's rice unit yield as 

the output data. 

𝑌𝑖𝑒𝑙𝑑𝑅𝑖𝑐𝑒 =
𝑌𝑖𝑒𝑙𝑑 𝑜𝑓 𝑅𝑖𝑐𝑒 (10 𝑘𝑖𝑙𝑜𝑇𝑜𝑛)

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑟𝑖𝑐𝑒 𝑝𝑙𝑎𝑛𝑡𝑒𝑑 (𝑘𝑖𝑙𝑜 ℎ𝑒𝑐𝑡𝑎𝑟𝑒)
 

2. The rural labor force engaged in rice cultivation: agricultural production data are not available 

for the population engaged in agriculture, and this paper uses the percentage of rice 

cultivation area to the total cultivation area multiplied by the total rural labor force to 

calculate in order to minimize the scope of the rural labor force engaged in rice cultivation. 

3. Agricultural fertilizers include nitrogen, phosphorus, potash and compound fertilizers. The 

amount of fertilizer used is calculated according to the discounted amount, that is, the amount 

of nitrogen fertilizer, phosphorus fertilizer and potassium fertilizer respectively according to 

the composition of nitrogen, phosphorus pentoxide and potassium oxide containing 100 

percent of the discounted amount. Compound fertilizers are discounted according to the main 

components they contain. To estimate the amount of fertilizer applied to rice, we multiplied 

the percentage of the total planted area with rice by the total agricultural fertilizer application 

rate. 

4. Total farm machinery power, to estimate the amount of fertilizer applied to rice, we 

multiplied the total farm machinery power by the percentage of the area planted with rice to 

the total planted area. 

5. Precipitation data and temperature data using the ERA5 monthly historical dataset provided 

by the Climate Data Store (CDS) (Hersbach, et al., 2019). 

6. High temperature heat wave data provided by the Institute of Facility Agriculture under the 

Ministry of Agriculture's Planning and Design Institute, based on daily maximum 



temperatures based on the definition of a high temperature heat wave, where the daily 

maximum temperature reaches or exceeds 35°C for at least four consecutive days (China 

Meteorological Administration, 2011; You, et al., 2017), Confirm whether province 𝑖 has 

experienced a high temperature heat wave in year 𝑡. The occurrence is 1 and the occurrence 

is 0. 

7. Climate extremes: frosts, droughts and floods, Using information from Chinese agricultural 

statistics and Emdat records for the calendar year. Province 𝑖  is marked as 1 if it has 

experienced the above extreme climate in year 𝑡; conversely, it is 0. 

8. For the division of dry and wet regions. Since the variable arid region has only 30 

observations, which is not enough for LP estimation, we combined arid and semi-arid regions 

for estimation (Figure 1). And the arid region Xinjiang was recorded as 0 

There are 34 provincial administrative regions in China, and only mainland China is considered 

in this paper, excluding Hong Kong, Macau and Taiwan. In the same matter, the official data 

source shows that the rice sown area in Qinghai Province in calendar year is 0, so the provincial 

unit data here is 30. Since Chongqing, Wanxian, Fuling and Qianjiang areas, which were formerly 

under Sichuan province, were merged to establish Chongqing municipality in 1997, there are 

missing data for Chongqing province from 1990 to 1996, so this paper estimates the missing data 

based on the average proportion of Chongqing and Sichuan province data from 1997 to 2019. 



Figure 1: Wet and dry zones in China 

 

Source: Own elaboration from Map of wet and dry areas in China 

3.2 Data for 2080-2099: Climate Change Scenarios 

We will also analyze the response of rice yields to climate change. Assuming that China's HDI and 

agricultural fertilizer use remain unchanged from the 2019 data, the change in rice yield production 

from 2080-2099 is analyzed by simulating the corresponding climate scenarios. These climate 

scenarios are based on the climate models in CMIP5 adopted by the Intergovernmental Panel on 

Climate Change (IPCC) in its Fifth Assessment Report (AR5) in 2013.  

Table 2: Pathway RCPs 

 

In this paper, only 1 representative concentration pathways are used (Table 2): RCP8.5. (2014) 

RCP8.5 is a climate scenario without policy intervention, often considered as a worst-case scenario, 



with increasing greenhouse gas emissions and concentrations. By 2100, atmospheric CO2 will 

increase to a value of 936 ppm, CH4 to 3751 ppb, and N2O to a value of 435 ppb. 

Since 1995, the Coupled Model Intercomparison Project (CMIP), initiated by the WCRP Working 

Group on Coupled Modeling (WGCM), has been implemented six times, with countries actively 

developing Earth System Model. There are 35 models participating in CMIP5, six of which are from 

China (Zhou, et al., 2020). Although the CMIP5 climate model has a much-improved simulation 

capability in terms of temperature compared to the CMIP3 climate model, the simulated values in 

terms of extreme temperatures are lower than the observed values. Considering the future warming 

trend, we chose the CanESM2 model1, which has a relatively small error for the simulation of the 

average maximum temperature (Shen & Jiang, 2014), temperature simulation data for 2080-2099 

were provided by Pan and Zhang (2020). For the precipitation simulation data, we used the 

BCC_CSM1.1 model and downloaded the corresponding dataset at CDS Descriptive statistics of 

future climate are presented in Table 3. Due to the low resolution of this model, Shanghai, Beijing, 

Tianjin & Hainan cannot be identified. After comparing the observed data from 1990-2019, we 

decided to replace the corresponding missing values with simulated values from Shandong, Anhui, 

Sichuan, and Guizhou. 

On the other hand, frequent climate extremes are predicted for the end of the 21st century, mainly in 

terms of extreme heat times and extreme heavy rainfall, with a significant reduction in low-

temperature frost damage due to climate warming. Zhao et al (2019) summarized the literature on 

CMIP5 climate model predictions of future climate extremes in China for the period 2080-2099, 

(Chen, 2013) The forecast results show that, in addition to the frequency of hairy rain significantly 

reduced, the frequency and intensity of heavy rain, heavy rain and moderate rain are significantly 

increased, this situation, resulting in an increase in high-risk areas of flooding, the main high-risk 

areas for East China, eastern Sichuan, Beijing-Tianjin-Hebei and southeast coastal areas (Xu, et al., 

2014). In terms of drought, Zhang and Sun (2012)concluded that the average annual precipitation and 

evapotranspiration in China will increase in the future, but there is still a surplus of precipitation 

minus evapotranspiration, and the average frequency of drought in the future is expected to be 24.6% 

less than that in 1980-2000 (Chen, et al., 2013). In this paper, we assume that future drought events 

account for 30% of the RCP8.5 scenario, taking into account the variability of the baseline period.  

 

1 CanESM2 model: the second generation of Canadian Earth System Model. 



Table 3: Description and descriptive statistics of the variables used in the analysis (2080-2099). 

Variable Source RCP8.5 

   Mean  Std. Dev. 

Population (Chen, et al., 2020) 1780399 2382990 

Fertilizer 2019  285674.24 353673.31 

Mechanical Own elaboration 15.698 2.448 

GDP IASA 11.928 .908 

Per def BCC 166.206 92.243 

Per mam BCC 426.548 219.604 

Per jja BCC 388.492 181.402 

Per son BCC 163.525 96.467 

T def (Pan & Zhang, 2020) -3.023 5.687 

T mam (Pan & Zhang, 2020) 11.576 4.936 

T jja (Pan & Zhang, 2020) 26.589 3.533 

T son (Pan & Zhang, 2020) 11.687 4.616 

Flood Own elaboration .607 .489 

Drought Own elaboration .3 .459 

Frost Own elaboration .559 .497 

Heat wave Own elaboration .923 .266 

Djclim1 Own elaboration 

from Map of wet and 

dry areas in China 

.6 .49 

Djclim2  .233 .423 



Djclim3  .133 .340 

N=600    

 

Zhou et al (Zhou, et al., 2014)predicted that future weather is characterized by an increase in warm 

extreme weather climate events and a decrease in cold extreme weather climate events, in other words, 

an increase in the number of hot heat waves and warm night days and a decrease in the number of 

frost days. This paper combines the latest IPCC (2021) release of AR6 Climate change. We make the 

following changes to the heat wave and frost variables, assuming 54% of frost events in 2080-2099, 

a 19% decrease from the baseline period; 98% of heat wave events, a 0.24% increase from the baseline 

period; and 62% of flood events. 

For the socioeconomic variables, we use the future GDP data of China under the Shared 

Socioeconomic Pathways SSP2 and SSP5 published by IIASA. We calculate future provincial GDP 

for 2080-2100 using the distribution of provincial GDP as a percentage of GDP in 2019. on the other 

hand, considering that the scale of agriculture grows with socioeconomic development, we assume 

that the growth of total power of farm machinery, a variable representing the scale of agriculture, is 

consistent with GDP. 

4. Results 

4.1 Changes in the past 30 years 

4.1.1 Changes in rice yield production 

Figure 2 shows that China's rice yield per hectare has grown steadily and maintained an increasing 

trend since 1990, but there have been sudden decreases in between. The total grain production has 

been decreasing since 1999 due to the impact of the sudden decrease in grain sown area, and the 

arable land area has decreased by 4.57%, from 129.3 million hectares in 1998 to 12339.22 million 

hectares in 2003. The main reason for the decrease in arable land is ecological retreat, which 

accounted for 77.66% of the decrease in arable land from 28.86% in 1998 to 77.66% in 2003 (Zhou, 

et al., 2005). With the decrease in total grain production, rice yields slipped from 6,7 tons/ha in 1998 

to 6,3 tons/ha in 2003, a decrease of 5.97%. In order to guarantee China's grain production, “the 

Outline of the Eleventh Five-Year Plan for National Economic and Social Development” adopted at 

the Fourth Session of the Tenth National People's Congress in 2006 proposed that 1.8 billion mu (120 

million hectare) of arable land is a legally binding target and a red line that cannot be crossed. Due to 

the limitation of arable land area, the only way to improve rice yield is by increasing the yield of rice 



per unit. After 2004, the improvement of agricultural infrastructure, good policy conditions, and 

higher input of agricultural factors have greatly contributed to the increase of rice yield, and rice 

yields have steadily increased, with slight fluctuations but an overall upward trend, with yields of 7,4 

tons/ha in 2019. 

Figure 2: Changes in yield of rice per hectare 1990-2019 

 

Source: Own elaboration from China Rural Statistical yearbook 

We compare the 2019 rice yield production with that of 1990 (Figure 3), it was found that except for 

Ningxia province, where the yield per unit decreased by 10.6%, all other provinces were positive, In 

particular, rice yields in Inner Mongolia, Xinjiang and Heilongjiang increased by 114%, 77% and 

50%, respectively. The growth in Inner Mongolia and Heilongjiang was mainly due to changes in 

rice cultivation techniques, these two provinces have applied dry seeded rice technology (China Food, 

2020). dry seeded rice can save up to 80% of water compared to traditional rice, and is more suitable 

for mechanized large-area sowing operations in areas where water resources are not abundant (黑龙

江日报 , 2018). And the increase of rice yield in Xinjiang is mainly due to the selection and 

application of excellent varieties. According to Pan et al.'s (2017) analysis of factors influencing rice 

production in Xinjiang from 1996-2015, each variety renewal increased rice yields by 225-450 

kg/hm2. The decline of rice yield in Ningxia is due to the restructuring of agricultural industrialization. 

The proportion of grain crops in Ningxia decreases, as shown by the proportion of grain crop area to 

crop area, which accounted for more than 70% before 2007, decreasing to 58.75% in 2019. At the 

same time, the area planted with rice decreased, and corn replaced rice as the first major food crop in 
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Ningxia Province, which is the independent choice of agricultural workers, because the return from 

planting corn is greater than that of rice (Liu, et al., 2021). 

Figure 3:Changes in rice yields in China in 2019 relative to 1990 (%) 

 

Source: Own elaboration from China Rural Statistical yearbook 

4.1.2 Climate Change 

The national average temperature shows a fluctuating upward trend by season during 1990-2019 

(Figure 4). The average spring temperatures ranged from 7.54°C to 10.10°C, with an average 

temperature of 8.74°C The average summer temperature is 19.27°C～21.07°C, and the average 

temperature is 20.38°C. The summer temperature is a bit too low compared to other countries, which 

is due to the fact that the temperature in the northeastern provinces and Inner Mongolia pulls down 

the average; Autumn temperatures are similar to those of spring, with average temperatures of 

7.03°C ～ 9.17°C and an average of 8.27°C; Average winter temperatures of -7.98°C～4.17°C, with 

an average of -6.07. In terms of fluctuations, winter temperatures fluctuate the most and are unstable, 

but there is an overall warming trend, while summer fluctuates the least and grows steadily. Figure 5 

shows us the temperature distribution of each province from 1990-2019, Beijing, Anhui, Chongqing 

and Fujian had the highest average temperatures. 



Figure 4: Temperature change by season in China 1990-2019 

 

Source: Own elaboration from (Hersbach, et al., 2019) 

Figure 5: Average Temperature by province1990-2019 

 



Source: Own elaboration from (Hersbach, et al., 2019) 

Comparing the change in temperature between 2019 and 1990 (Table 4), the average spring 

temperature is significantly warmer with an increase of 1.15°C, followed by the winter with an 

increase of 0.47°C. From the provincial level (Figure 6), the warming varies from season to season 

and from region to region. The temperature increase is mainly concentrated in central and northern 

China 

Table 4:Climate change in China in 2019 relative to 1990 

 1990  2019 

     Mean   SD    Mean   SD 

 Qtasdef -6.01 6.793  -5.541 6.779 
 Qtasjja 20.056 4.183  20.373 3.936 
 Qtasmam 8.259 4.608  9.415 4.533 
 Qtasson 8.703 5.061  9.065 5.008 

Source: Own elaboration from (Hersbach, et al., 2019) 

Figure 6: Change in temperature 2019 relative to 1990 

 

Source: Own elaboration from (Hersbach, et al., 2019) 

China's precipitation is mainly influenced by the monsoon in summer. During 1990-2010, the national 

average summer precipitation showed a fluctuating decrease and then an upward trend, while the 

other seasons became a decreasing trend during 1990-2019 (Figure 7). The average precipitation 

range in spring is 273mm-331mm, in summer is 568mm-584mm, in autumn is 188mm-269mm, and 

in winter is 104mm-141mm. Figure 8 shows us the distribution of precipitation by province for the 



years 1990-2019. It is basically consistent with Figure 1, in which the precipitation is larger in Beijing, 

Anhui, Chongqing and Fujian. 

Figure 7: Precipitation change by season in China 1990-2019 

 

Source: Own elaboration from (Hersbach, et al., 2019) 

Figure 8: Average Precipitation by province1990-2019 

 



Source: Own elaboration from (Hersbach, et al., 2019) 

Table 5: Precipitation change in China in 2019 relative to 1990 

 1990  2019 

     Mean   SD    Mean   SD 

 Per def 141.362 116.335  104.191 89.546 

 Per mam 331.360 213.660  273.844 180.746 

 Per jja 568.990 177.086  584.405 226.343 

 Per son 269.291 134.564  188.197 73.876 

 
Source: Own elaboration from (Hersbach, et al., 2019) 

 

4.2 Levinsohn-Petrinproduction functions’ estimates  

Based on the Table 7 elasticity coefficients, we ran a regression to assess the predictive power of the 

model. The average rice yield predicted within the sample for the past 30 years is 6.431 t/ha (Table 

6), 2.58% lower than the actual average unit yield, but the predicted SD is larger than the true observed 

value. Considering that China's vast land area and complex and diverse topography create large 

differences in China's climatic resources, different policy priorities among provinces, and varying 

agricultural technologies, the conditions faced cannot be generalized, so we believe that a variation 

of the model's in-sample predictions can be accepted. We further analyze the predictive ability of 

average yields at the province level and find that the prediction ability for central eastern and southern 



China is found to be better, with the best simulation ability for Jiangsu, Henan, Hubei, Sichuan, 

Zhejiang, Hunan and Jiangxi, within 10% difference, especially for Yunnan and Hebei provinces, 

within 2% difference. 

Table 6: Comparison of predicted and observed values within the sample 

Variable  Mean  Std. Dev.  Min  Max 

 yieldRice 6.586 1.266 0.667 10.146 
 yieldRice estimated 6.431 2.704 1.815 22.802 

 

We used the PRODEST command of STATA 15 for LP estimation, and Table 7 illustrates the 

elasticity coefficients of the role of drivers on rice yields. It can be seen that all variables, except labor, 

precipitation and flood and drought in natural disasters, have key effects on the enhancement or 

suppression of rice yields. 

With the progress of time and technology, the application of agricultural fertilizers, agricultural labor 

has been gradually replaced by machinery and is no longer a key factor affecting agricultural 

production. 

The elasticity coefficient of the effect of the amount of agricultural fertilizer input on rice yield is 

0.107, and the role of chemical fertilizer in increasing rice yield is irreplaceable. However, the 

increase in the amount of fertilizer application may cause ecological damage. (Figure 9) Fertilizer 

application started to decline from 2017 and still had a non-negligible effect on rice yields despite the 

reduction in fertilizer use, suggesting that the techniques and methods of fertilizer application can 

better improve rice yields at the same fertilizer dose. Rice growers should adopt different fertilization 

methods according to the production of rice and focus on the development of fertilizer application 

techniques to improve the efficiency of fertilizer application. For example, in Shaanxi Province, the 

best fertilizer application amount suitable for Shaanxi was developed by combining soil nutrients 

(Hao, 2018). 

Surprisingly, the impact of input farm machinery power on rice yields was negative with an elasticity 

coefficient of -0.043 (Table 7), a result that does not make economic sense. In fact, mechanized tillage, 

seedling planting and fertilization are all beneficial to the improvement of rice yields. In previous 

studies by scholars have concluded that the impact of agricultural machinery power on grain yield is 

negative (He, 2009). The main reasons for this conclusion are: On the one hand, due to the large 

differences in China's geographical environment and level of economic development, the average 

area of cultivated land per household in different provinces also varies significantly, and the area of 

rice fields operated by farmers in different provinces varies greatly. The largest province, 



Heilongjiang, has an average household size of 17.72 hectares, while the smallest province, Guizhou, 

has only 0.18 hectares. Provinces with too small arable land per household are unable to form large-

scale operations and have low efficiency in the use of agricultural machinery. In order to promote 

large-scale land management, the Standing Committee of the National People's Congress passed the 

Law of the People's Republic of China on Land Contracting in 2002 to clarify the legality of the 

transfer of farmers' contractual land management rights in the form of legislation. That is, farmers 

who have the right to contract land management transfer the right to use land to other farmers or 

economic organizations in accordance with the law and the principle of voluntary compensation. The 

large average arable land area per household in Heilongjiang and Zhejiang provinces is the result of 

land transfer. On the other hand, agricultural mechanization is becoming more and more popular, and 

it can be seen through Figure 9 that agricultural machinery power is growing rapidly since 1990 until 

it leveled off in 2012. However, planters do not have a clear understanding of the operation points 

and precautions of mechanized rice transplanting and nursery technology, so that the advantages of 

rice mechanization cannot be brought into play (He, 2021). And from the statistical caliber, the total 

power of agricultural machinery includes a series of agricultural machinery power of agriculture, 

forestry, animal husbandry, fishery and agricultural products processing, etc., and only a part of it is 

really used in rice production, so the data is not highly representative. 

On the other hand, the estimates of climatic factors are not in line with our expectations. Rice is grown 

in China from early April to mid-October. Before the study, we predicted that warmer temperatures 

during the growing season would negatively affect rice yields, but the results showed that warmer 

temperatures in summer would enhance rice yield production. Such as the study of temperature 

changes and rice yields in southern China by Scholars (Zeng, 2021), which showed that a 1°C increase 

in average temperature decreased rice yields by 2.61%-3.57%. It has also been shown that an increase 

in temperature is positively correlated with rice yield (Nam, et al., 2013). By understanding the 

temperature conditions for rice growth, I believe that the summer temperature conditions in China 

today are positively correlated with rice yields until they increase to a temperature threshold. 

Rice as a crop that likes high temperature and high humidity, although the precipitation factor did not 

have a significant effect on rice yield in this study estimation, it was significant at the 0.1% level in 

both humid and semi-humid areas. In fact, rice generally requires between 700-1200 mm of water for 

the full growing season, and these two areas are more suitable for rice growth. However, due to the 

limitation of the research instrument, this paper uses the provincial capital location to divide the dry 

and wet areas, and does not link the spatial resolution data with the rice yield information, which is 

one of the shortcomings of this paper. 



And the arid/semi-arid region is located in the western part of China, which has been a key area for 

development by the government. In 2000, the State Council established the Western Development 

Office. In 2006, the State Council adopted the "Western Development" Eleventh Five-Year Plan, 

Since the implementation of the Western Development Plan, efforts have been made to solve the two 

"short board" problems of transportation and water conservancy in the western region. The elasticity 

coefficient of precipitation is too low to have a negligible effect on yields, indicating that farmland 

water facilities have been improved in most of China. On the other hand the region has applied the 

dry rice cultivation earlier (Section 3.1.1). It also focused on improving rice varieties and selecting 

and breeding rice varieties suitable for local climatic conditions. 

Figure 9: inputs Fertilizer and Mechanical for rice 1990-2019 

 

Source: Own elaboration from China Rural Statistical yearbook 

Among the four natural disasters, flood, drought, frost and heat wave, heat wave had the strongest 

suppression on rice yield with an elasticity coefficient of -0.073, which was significant at the 0.1% 

level. While floods surprisingly have a positive effect on rice yields, the production impact of natural 

disasters on agricultural yields is unquestionable, with a flood-affected area of 7,190 thousand 

hectares and a flooded area of 3,040 thousand hectares in 2020 (NBS). Although rice is a water-loving 

crop, when the inundation depth is greater than the critical value, rice respiration will be affected, 

causing rice yield reduction or even crop failure (Wang, 2008). The reason for this unconventional 

result, the flood elasticity coefficient of 0.013, is that the paper does not classify the intensity and 

frequency of flood hazards. 
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Table 7: Levinsohn-Petrin estimates for the factors’ elasticities of the statistical function of TFP response for yield of rice 
per hectare 

 Coef SE 

Poplation 0.012 (0.057) 

GDP 0.066*** (0.005) 

Mechanical -0.043*** (0.004) 

Fertilizer 0.107*** (0.005) 

Per def 0.002 (0.005) 

Per jja 0.000 (0.001) 

Per mam -0.002 (0.005) 

Per son 0.002 (0.005) 

T def 0.034*** (0.004) 

T jja 0.037*** (0.007) 

T mam -0.021*** (0.005) 

T son -0.010 (0.005) 

Flood 0.005 (0.005) 

Drought -0.008 (0.005) 

Frost -0.013** (0.004) 

Heat wave -0.073*** (0.005) 

Djclim1 -0.152*** (0.005) 

Djclim2 -0.102*** (0.003) 

Djclim3 -0.002 (0.006) 

Obs 900  



Note: standard errors (SEs) in LP model are bootstrapped using 50 replications. *** Significant at the 0.1% 

level, ** Significant at the 1% level, * Significant at the 5% level. Coef denotes the coefficient. 

 

4.3 The forecast of the yield of rice 

Based on the assumptions made in the previous section 3.2 for each influencing factor and the Cobb-

Douglas production function model finalized in section 2.2 above, rice yields were projected for 2080-

2099 under the RCP4.5 and RCP8.5 climate scenarios. We projected rice yields for 2080-2099 under 

the RCP4.5 and RCP8.5 climate scenarios (Table 8). Based on the results of this projection, it can be 

seen that under certain natural conditions and the current rice cultivation area, rice yields at the end 

of the 21st century increase by 9.81% over the estimated baseline period under the RCP8.5 climate 

scenario. 

Table 8: The forecast of the yield of rice 2080-2099 

Variable  Mean  Std. Dev.  Min  Max 

 YieldRiceRCP8.5 7.062 3.581 1.602 43.264 

Source: Own elaboration 

At the provincial level, the current rice production areas in China are mainly located in Hunan, Hubei, 

Jiangxi, Anhui, and Jiangsu in the central south, Sichuan in the southwest, Guangdong and Guangxi 

in the south, and the northeast. As the weather and climate change, the distribution of rice production 

areas in China will be adjusted again by the end of the 21st century. The increase in rice yield was 

mainly concentrated in the central east and south of China, especially in Fujian Province (Figure 10). 

Under the RCP8.5 scenario, rice yields increased by about 153%, and there is still significant potential 

for improving yields of major grain crops in China. 



Figure 10: Change in yield of rice for 2080-2099 

 

Source: Own elaboration from China Rural Statistical yearbook 

Here we study the impact on rice yields under future climate scenarios, we do not explicitly analyses 

the impact of adaptation measures on rice, such as crop rotation, varietal improvement, fertilization 

practices, etc. Growers can make important decisions on their own to adapt to harsh climate change 

and increase rice yields to increase profitability. This cannot be predicted, but humans tend to make 

decisions based on expected returns. And this paper does not take into account farmers' earnings, as 

the sources of their earnings cannot be differentiated by food type. 

Also to accommodate the complex and diverse climatic conditions in China, rice growing areas have 

been divided according to climatic resources and this analysis faces the challenge of spatially resolved 

data. The analysis of rice growing areas faces the challenge of spatially resolved data, which is one 

of the research limitations of this paper. 

5. Discussion and conclusions 

Scholars in various countries have been concerned with research in this area of agricultural production, 

and the factors affecting grain yield have been key to the field. Previous authors have provided a rich 

literature on the factors affecting grain yield, grain yield prediction, and other issues. Based on 

previous studies, this paper selects rice yield, an important grain crop in China, combined with the 

objective fact that the current arable land in China is stable, and borrows the Cobb Douglas production 

function theory to study the impact of climate change on rice yield. The LP estimation method was 



used to derive the elasticity coefficients of each factor and to predict rice yields at the end of the 21st 

century under the RCP8.5 climate scenario, leading to the following main conclusions: 

1. The eventual outcomes of this paper are acquired through model development and plan. From 

the outcomes, it is essentially reliable with the current truth of rice development, and the 

outcomes can logically and successfully clarify the inward laws of rice development 

advancement and future improvement patterns, and furthermore the forecast of future normal 

rice yield in China is inside the scope of logical development. 

2. Based on the basic principles of the Cobb Douglas production function, the influencing 

factors affecting rice yields in China between 1990 and 2019 were analyzed, and the results 

showed that the current rice yields in China are mainly dependent on the use of agricultural 

fertilizers. With the improvement of the modern level of agriculturalization, the dependence 

of rice yield on the quantity of labor is getting smaller and smaller, and the quality of 

agricultural labor is putting forward higher requirements, but at present, there is a lack of 

Chinese agricultural science and technology talents, and most of them are single-type talents 

with mainly theoretical knowledge (Jiang, 2016). However, the fragmentation of land use 

cannot match the current level of agricultural mechanization, and the low efficiency of 

agricultural machinery utilization causes waste of resources. 

3. Assumptions were made on various factors affecting rice yields, and then rice yield levels in 

China at the end of the 21st century were projected based on the established rice yield 

production function model, with an average rice yield increase of 9.81% in 2080-2099 

compared to 1990-2019 under the RCP8.5 climate scenario. 

Based on the above research on the level of rice yield in China and the influencing factors, this 

paper proposes the following countermeasures on how to further improve rice yield production: 

1. Strengthen agricultural technology promotion and training 

China has entered the modernization of agriculture, which refers to the mechanization of 

agriculture, scientific production technology, industrialization of agriculture and 

informatization of agriculture. At present, the utilization rate of agricultural machinery is too 

low due to the terrain, scale and other reasons, resulting in a waste of resources. The results 

of agricultural science and technology, which can effectively improve the efficiency of rice 

production, have not been applied to the grassroots in a rational way. Increasing agricultural 

technology promotion and training and encouraging support for institutions engaged in 

agricultural technology-related businesses to actively participate in the establishment of an 



agricultural technology promotion system will help farmers learn modern agricultural 

technology and clarify technical points. 

2. Encourage rice scale and industrialized operation. 

There is a general problem in China that rural land is operated on a family basis and the scale 

of operation is too small to give full play to the advantages of modern agriculture, and it is 

difficult to fully realize the role of the level of agricultural mechanization in promoting rice 

yields. Although the government has implemented the policy of separation of rights and land 

transfer, it has only solved the problem of farmers who have moved to the city to work and 

abandoned their farming. Most families still choose to farm on their own, and the 

disadvantages of small-scale decentralized operation, such as high input and low output, low 

level of specialization and low scale efficiency, are increasingly prominent. In this case, 

realizing the scale of rice production and industrialization can effectively improve the rice 

output rate. However, at present, farmers have a low level of education, no autonomy, and 

still use traditional labor methods of farming. Realizing the scale of rice production requires 

government promotion, the leadership of village cadres, and the spontaneity of farmers. The 

government can set up experimental villages for large-scale rice production and use the 

Internet to publicize them, thus causing villages to spontaneously imitate them. However, 

this requires the leadership and decision-making power of village cadres, who should not just 

imitate and ignore the objective conditions of the villages. 

3. Increase the educational level of the workforce 

Human capital is a key element in production. Since China entered the modernization of 

agriculture, the quantity of labor force has played a minimal role in improving rice yields, 

while the quality of education determines the level of acceptance of new technologies and 

varieties of rice cultivation by rice growers. But on the one hand, people with higher 

education are reluctant to engage in agriculture-related fields when choosing a university 

major, and on the other hand, highly qualified rural laborers mostly choose to go out to work. 

Therefore, changing the conceptual thinking of labor force and allowing them to voluntarily 

stay in their hometowns to build new rural areas is an uncrossable step in developing modern 

agriculture. 
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