
      

 

 

 

 

BIBLIOTECA 

 

 

This work is licensed under a  

Creative Commons Attribution-NonCommercial-NoDerivatives  

4.0 International License. 

       

 

 
 

 

Document downloaded from the institutional repository of the University of 
Alcala: http://ebuah.uah.es/dspace/ 

 

This is a posprint version of the following published document: 

 

Yuan, Chun-Ming, Pérez-Díaz, S. & Shen, Li-Yong. 2021, “A survey of the 

representations of rational ruled surfaces”, Journal of Systems Science and 

Complexity, vol. 34, pp. 2357-2377. 

 

 

Available at https://doi.org/10.1007/s11424-020-0018-8 

 

 

 

© 2020 The Editorial Office of JSSC & Springer-Verlag GmbH   

 

 

 

(Article begins on next page) 

http://ebuah.uah.es/dspace/
https://doi.org/10.1007/s11424-020-0018-8


J Syst Sci Complex

A Survey of the Representations of Rational Ruled

Surfaces∗
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Abstract The rational ruled surface is a typical modeling surface in computer aided geometric design.

A rational ruled surface may have different representations with respective advantages and disadvan-

tages. In this paper, the authors revisit the representations of ruled surfaces including the parametric

form, algebraic form, homogenous form and Plücker form. Moreover, the transformations between

these representations are proposed such as parametrization for an algebraic form, implicitization for a

parametric form, proper reparametrization of an improper one and standardized reparametrization for

a general parametrization. Based on these transformation algorithms, one can give a complete inter-

change graph for the different representations of a rational ruled surface. For rational surfaces given

in algebraic form or parametric form not in the standard form of ruled surfaces, the characterization

methods are recalled to identify the ruled surfaces from them.

Keywords Birational transformation, characterization, implicitization, parametrization, rational ruled

surface, reparametrization.

1 Introduction

A ruled surface is generated by sweeping a line along the directrix curve. This type of
surfaces is widely used in computer aided geometric design, geometric modeling and computer
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numerical control. There are many papers discussing the ruled surface and their applications
(see [1–20]). Using the μ-bases method, Chen and Wang[7] gave an implicitization algorithm for
rational ruled surface. The univariate resultant has also been used to compute these implicit
equations efficiently[13, 14]. Wang and Goldman[21] presented a new implicitization method for
ruled translational surfaces. For this purpose, they used two linearly independent vectors that
are perpendicular to the generating line of the surface. For a given parametrization of a rational
ruled, people could find a simplified reparametrization that did not contain any non-generic base
point and had a pair of directrices with the lowest possible degree[7]. Busé, et al. and Dohm
studied ruled surface using μ-bases[5, 9]. Li, et al.[12] computed a proper reparametrization of
an improperly parametrized ruled surface. Andradas, et al.[1] presented an algorithm to decide
whether a proper rational parametrization of a ruled surface could be properly reparametrized
over a real field.

Ruled surfaces were studied further for applications. The collision and intersection of the
ruled surfaces were discussed in [8, 15] and self-intersection was studied in [22]. Izumiya and
Takeuchi[10] studied the cylindrical helices and Bertrand curves on ruled surfaces. The offset
of ruled surfaces was discussed in [23]. These surfaces had been used for geometric modeling of
architectural freeform design in [11, 19, 20]. Ruled surfaces were also studied in the context of
approximation with modeling surfaces since they have conveniences in NC flank milling[16, 17].

A rational ruled surface is usually given in the standard parametric form P (s, t) = P1(s) +
tP2(s) ∈ K(s, t)3, where K is an algebraically closed field of characteristic zero. The parametric
form is not unique since one rational parametrization can be transformed to another by a
rational parameter transformation, and the parameter transformation does not change the
algebraic surface defined by the parametrization. The properness of the parametrization is
preserved if and only if the transformation is birational. There are several classic problems
dealing with the parametric form, for instance, finding a standard parametrization for a given
non standard one; finding a proper parametrization for a given improper one or identifying a
ruled surface from a general rational parametrization.

In contrast to the parametric form, the square free algebraic form of a rational ruled surface
is unique. In computer aided geometric design and computer graphics, people prefer the rational
parametric form in modeling design[24]. On the other hand, in computer algebra and algebraic
geometry, people generally use the algebraic form. Since there are different advantages of
parametric and implicit forms, the natural problems are to transform the forms from one to
another.

Finding a parametric form from the implicit form is known as the parametrization problem.
Conversely, finding the implicit equation from the parametric one is called implicitization. There
are lots of papers focusing on the implicitization problem. Some typical methods are proposed
using Gröbner bases[25, 26], characteristic sets[27, 28], resultants[13, 14, 29] and μ-bases[6, 7, 9]. The
parametrization problem is more difficult than the implicitization problem. Only certain special
algebraic curves and surfaces have rational parametric representations. For a general surface
given in algebraic form, no efficient symbolic parametrization algorithm has yet been given.
However, to meet practical demands, people had to design parametrization algorithms for some
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commonly used surfaces, such as quadric algebraic surfaces[30] and cubic algebraic surfaces [31,
32]. Recently, Shen and Pérez-Dı́az determined and parameterized rational ruled surfaces based
on algebraic computations[33].

In this paper, we review the representation of ruled surfaces for both symbolic and numeric
considerations. More importantly, transformations between different representations are pro-
posed. Based on these transformations, we give a complete interchange graph for the different
representations of a rational ruled surface (see Figure 1). The discussions benefit from the
intrinsic property of rational ruled surfaces, i.e., the ruled surfaces are linear in one direction.
Thus in the standard rational parametric form, the parameter t is linear. Then t is always
solvable such that there exists a reparametrization with one coordinate only involving t and
then the ruled surface can be projected as a rational parametric curve. On the other hand, it is
possible that the surface is given in algebraic form or parametric form not in the standard form
of ruled surfaces, in this case people cannot tell that whether this surface is a rational ruled
surface or not according to the representation. We then recall the characterization methods to
identify the ruled surfaces from these general forms. For practical applications, one has to deal
with numerical equations that are given approximately, probably perturbed under engineering
design. In the numeric case, we need to analyze ruled surfaces close to an input (even not nec-
essarily ruled) surface. The recent approaches concerning symbolic-numeric reparametrization
of ruled surfaces are then proposed.

P (s, t)Improper

µ-basis

f = 0

Figure 1 Interchange graph for the representations of a rational ruled surface

The paper is organized as follows. First, some typical representations are presented in Sec-
tion 2. In Section 3, we give the proper reparametrization for an improper one, and furthermore,
a simplification for the proper one. In Section 4, we focus on the implicitization of parametric
ruled surface. In Section 5, we identify the ruled surface from a given algebraic surface or a
rational parametric surface and give a standard parametrization. In addition, we adapt the
symbolic algorithms to numerical situations by involving numerical techniques. The numeric
algorithms are designed to find ruled surfaces close to an input (not necessarily ruled) surface.
In Section 6, we briefly conclude the paper.
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2 Representations of Ruled Surfaces

A standard parametrization of a rational ruled surface P is given by a parametrization of
the form

(x, y, z) = P (s, t) = P1(s) + tP2(s) ∈ K(s, t)3, (1)

where K is an algebraically closed field of characteristic zero and the parametrizations Pi(s) =
(pi1(s), pi2(s), pi3(s)) ∈ K(s)3, i = 1, 2 define two rational space curves. P1(s) is the directrix
and P2(s) is the indicatrix of P . We assume that the rational parametrization (1) is nontrivial,
that is, it defines a real surface, not a space curve. A rational ruled surface can also be defined
by an algebraic variety

{(x, y, z)|f(x, y, z) = 0, f(x, y, z) ∈ K[x, y, z]}. (2)

A rational parametrization P (s, t) of a variate P , defines a rational map φP : K
2 → P given

by (s, t) → P (s, t). A rational parametrization is proper (resp. improper) if φP is one-to-one
(resp. many-to-one). For every generic point P (s, t) on P where (s0, t0) ∈ K

2, denote

FP (s0, t0) = {(s, t) ∈ K
2 | P (s, t) = P (s0, t0)},

i.e., FP (s0, t0) is the fibre of P (s0, t0) via φP . The cardinality of this fibre is defined to be the
improper index of P (s, t) and denoted by IX(P ). A parametrization P (s, t) is proper (resp.
improper) if IX(P ) = 1 (resp. IX(P ) > 1).

A proper P (s, t) of the form (1) is well known as the standard form parametrization of P .
Observe that P always admits a proper parametrization of the form

Q(s, t) = (q11(s) + q21(s) t, q12(s) + q22(s) t, t) ∈ K(s, t)3, (3)

where qi,j , i = 1, 2; k = 1, 2 are rational functions. Such a parametrization is obtained by
performing the birational transformation (s, t) →

(
s, t−p13(s)

p23(s)

)
. In the following discussion, we

refer to parametrization Q(s, t) as the standard reduced form parametrization of P .
In some situations, the parametrization of rational ruled surface is written in the homogenous

form as
(x, y, z, w) = P h(s, t) = P h

1 (s) + tP h
2 (s) ∈ K[s, t]4, (4)

where P h
i (s) = (ph

i1(s), p
h
i2(s), p

h
i3(s), p

h
i4(s)) ∈ K[s]4, i = 1, 2. The associated affine form of

representation (4) is ( x
w , y

w , z
w ).

The homogenous form (4) and the affine form (1) are equivalent, i.e., there exists a birational
transformation between these two representations. In fact, we only need to show the equivalence
of representation (3) and representation (4) by the following proposition.

Proposition 2.1 There exists a birational transformation between the representation (3)
and the representation (4) of a ruled surface.

Proof Since the representation (4) defines a ruled surface, ph
14(s) and ph

24(s) cannot be
the zero vector simultaneously. If ph

24(s) = 0 then the birational transformation is (s, t) →
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(
s,

ph
14(s) t−ph

13(s)

ph
23(s)

)
. Otherwise, let (s, t) →

(
s,

1−ph
14(s) t

ph
24(s) t

)
be the birational transformation. With

each birational transformation, the reparametrization is written as (p11(s) + p21(s) t, p12(s) +
p22(s) t, p13(s) + p23(s) t, p14(s)) and its affine form is exactly of the form (4).

2.1 Moving Planes and μ-Bases

A moving plane L(s, t) := (A(s, t), B(s, t), C(s, t), D(s, t)) is a family of planes L(s, t) :=
A(s, t)x+B(s, t)y +C(s, t)z +D(s, t)w = 0 corresponding to the parameters s and t. A moving
plane L(s, t) is said to follow the rational ruled surface P (s, t) if

L(s, t) · P (s, t) = A(s, t)a(s, t) + B(s, t)b(s, t) + C(s, t)c(s, t) + D(s, t)d(s, t) ≡ 0. (5)

The moving planes L(s, t) form a module M(s, t) := {L(s, t)|L(s, t) · P (s, t) = 0} which is a
free module[34, 35]. And a basis of M(s, t) is called a μ-basis of the surface P (s, t).

The papers [6, 9] studied the μ-bases of rational ruled surfaces and gave the moving planes
that involve only the parameter value s, that is, L(s) := (A(s), B(s), C(s), D(s)) for which
L(s) · P (s, t) ≡ 0. These moving planes form a free module M(s) := {L(s)|L(s) · P (s, t) = 0}
with rank two. A basis of M(s) is defined as a μ-basis of the ruled surface in [6, 9]. This μ-basis
is extended in [7] by adding one more moving plane r(s, t) which is linear in t. We review some
properties of μ-bases needed for our further discussions.

Proposition 2.2 For a ruled surface parametrically defined by P (s, t), there is a μ-basis,
p(s), q(s), r(s, t), of P (s, t). Furthermore, let f(x, y, z, w) = 0 be the implicit equation of
P (s, t). Then

1) deg(p) + deg(q) = deg(f).

2) [p, q, r] = kP , where [·] returns the outer product of three vectors and k is a nonzero
constant.

3) f(x, y, z, w) = kRes(p · X, q · X, s), where k is a nonzero constant and X = (x, y, z, w).

2.2 Plücker Coordinates

A ruled surface consists of lines. This property leads the line geometry study of ruled
surfaces[18, 36]. Using Plücker coordinates, each line can be projected to a point in projective
space P

5.

Let pp
i,j =

∣∣∣∣
ph
1,i ph

2,i

ph
1,j ph

2,j

∣∣∣∣ , 1 ≤ i < j ≤ 4, and consider the quadratic equation pp
12p

p
34 − pp

13p
p
24 +

pp
14p

p
23 = 0. Then a representation of P in Plücker coordinates is

P p = (pp
12, p

p
13, p

p
14, p

p
23, p

p
24, p

p
34). (6)

Therefore, a rational ruled surface can be regarded as a rational curve in P
5 with the parametriza-

tion of the form (6).
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2.3 Discussions

We review five representations of the rational ruled surface including standard form, re-
duced standard form, μ-bases, Plücker form and implicit form. The standard form is classical
parametric form used in text books. With a birational transformation, one can get the reduced
form firstly defined in [12] and this form brings convenience in study of ruled surface[33, 37, 38].
The μ-basis is a new representation of ruled surfaces which can play a bridge role between the
parametric form and the implicit form, since one can recover the parametric form by outer
product of the μ-bases and find the implicit form by computing the resultant of μ-bases. The
Plücker form projects a line to a point in the new space and then the ruled surface is projected
to a quadratic curve in the new space. The technique is not so popular but can be used in
some research problem[5, 36]. Finally, the implicit form is another classic form with respect to
the parametric form.

3 Simplification of the Parametrization

The rational parametrization of a surface is not unique, thus a natural question arises
on how to simplify the parametrization, by which we mean to find rational functions with
degrees as small as possible. This problem is usually divided into two sub problems as proper
reparametrization and degree reduction of the proper parametrization. Both of these problems
are still open for general surfaces, but for the ruled surfaces, we have settled these problems.

3.1 Proper Reparametrization

Although the representation (1) is referred as the standard representation for ruled surfaces,
a given parametrization of the form (1) may be improper. For a given parametrization of the
form (1), one can determine whether a surface is proper using a u-resultant[39] or a Gröbner
basis[27]. If a rational parametrization is improper, we should find a proper reparametriza-
tion. However, the problem of finding a proper reparametrization for an improper rational
parametrization of a general algebraic surface is open[40, 41].

Fortunately, we can give an effective solution to the proper reparametrization problem for
rational ruled surfaces. For a parametrization of the form (1), we compute its reduced form (3)
with a birational transformation. The reduced form has the same properness as the origin one
and is proper with respect to the variable t. Then, by considering the improper parameter
only, the rational parametrization can be treated as a rational parametrization of an algebraic
curve with the proper parameter in the coefficients. The proper reparametrization for curves
is well solved based on Lüroth’s theorem[42] and various proper reparametrization algorithms
have been developed, such as the Gröbner basis method, the characteristic set method, and the
greatest common division method[27, 32, 40, 41]. Finally, we find a proper reparametrization for
this curve with known methods and show that this reparametrization also provides a proper
reparametrization for the ruled surface.

Before reviewing the following theorem from [12], we introduce two functions: numer(·)
returns the numerator of an input rational function and Res(·) returns the resultant of two
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polynomials.

Theorem 3.1 Consider a ruled surface defined in the form of (3). Let

H1(s, s ) = numer((q11(s) + q21(s)t) − ((q11( s ) + q21( s )t)),

H2(s, s ) = numer((q12(s) + q22(s)t) − ((q12( s ) + q22( s )t)),

H(s, s ) = gcd(H1, H2).

If H = c(s − s ) for c ∈ K[t], then (3) is proper; otherwise, write H as a polynomial in s :

H = cd s d + · · · + c1 s + c0, cd �= 0,

where ci ∈ K[t][s], i = 0, 1, · · · , d. Then there exists k �= l such that ck

cl
/∈ K(t), and a set of new

parameters for the surface are

s =
ck(s, t)
cl(s, t)

, t = t.

Furthermore, let L1( s , x) = Res(G1(s, x), cl s −ck, s) and L2( s , y) = Res(G2(s, y), cl s −ck, s);
G1(s, x) = numer(x − q11(s) − q21(s)t) and G2(s, y) = numer(y − q12(s) − q22(s)t). Then

L1 = (Q12( s , t)x − Q11( s , t))deg(H( s ,s)),

L2 = (Q22( s , t)y − Q21( s , t))deg(H( s ,s)),

where Qij ∈ K[ s , t]. A proper reparametrization of (3) using the new parameters s , t is
(Q11( s , t )

Q12( s , t )
, Q21( s , t )

Q22( s , t )
, t ).

Example 3.2 The parametrization P (s, t) = (1+3s−s2 +(s+1)t, 3s−s2 +st, t), can be
treated as a rational parametrization of an algebraic curve with parameter s with coefficients
in the field K(t). Using Theorem 3.1, we have

H1(s, s ) = (1 + 3 s − s 2 + ( s + 1)t) − (1 + 3s − s2 + (s + 1)t),

H2(s, s ) = (3 s − s 2 + s t) − (3s − s2 + st),

H(s, s ) = s 2 + (−t − 3) s − s2 + st + 3s.

P (s, t) is an improper parametrization since deg(H) = 2. Then, rewrite H = c2s
2 + c1s + c0

where c2 = 1, c1 = (−t − 3), c0 = −s2 + st + 3s. Then we obtain the new parameters s =
c0/c2 = 3s − s2 + ts, t = t and a proper reparametrization is

Q( s , t ) = ( s + 1 + t , s , t ).

The paper [5] tried to simplify the proper reparametrization, the authors consider the proper
reparametrization of the curve in P

5 projected by the ruled surface using Plücker coordinates.
However, an improper ruled surface may have a proper parametrization of the Plücker coor-
dinates. Considering the improper ruled surface in Example 3.2, one finds that the projected
curve is

(s2 − 2 s,−s2 + 3 s + 1,−1 − s,−s2 + 3 s,−s,−1),

which is proper since there exist linear coordinates. So this example is a counterexample for
Proposition 2.2 of [5]. In fact, the statement of Proposition 2.2 is true only for the improper ruled
surfaces having a separated improper parameter transformation for s and proper parameter for t.
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3.2 Simplifying a Proper Parametrization

The proper rational parametrization of a ruled surface is not unique since any parametriza-
tion represents the same surface up to a birational parameter transformation. Hence, people
would like to reparametrize a rational surface to simplify the parametrization as needed. For
instance, it is a cumbersome task to make the parametrization contain no base points, even for
a ruled surface.

An affine base point of a rational surface parameterized by P (s, t) is a parameter pair (s0, t0)
so that the numerator and denominator of each component of P (s, t) at (s0, t0) are zero. For
the homogenous form P h(s, t), all components are zeros at the parameter pair (s0, t0). The
μ-basis technique in [6] provides a simple and elegant way to reparameterize a rational ruled
surface such that it does not contain any non-generic base points. Furthermore, the directrices
of the reparameterized surface have the lowest possible degree. Thus there are both geometric
and computational advantages to be gained from such a reparametrization. Here we refine the
parametrization using the μ-basis method in [6]. A more efficient algorithm to compute μ-basis
can be found in [35]. The main result of [6] (also in [5]) is recalled in the following theorem.

Theorem 3.3 Let (p, q) be a μ-basis for the rational ruled surface P and (p̃, q̃) is a μ-
basis for the ruled surface p(s)+tq(s). Then p̃(s)+tq̃(s) is a base point free reparameterization
of P, and the directrices of p̃(s) + tq̃(s) have the lowest possible degree.

Example 3.4 Let (x, y, z, w) = P h(s, t) be a ruled surface given in homogenous form

P h(s, t) =
(
1 − s2 − 2 st, 2 s + t(1 − s2), (1 + s2)t, 1 + s2

)
.

A μ-basis of P is p = (s,−1, 1, s), q = (1, s, s,−1) and a μ-basis of p(s) + tq(s) is p̃ =
(s,−1,−1,−s), q̃ = (1, s,−s, 1). According to Theorem 3.3, we get a reparametrization

(s + t,−1 + st,−1 − st,−s + t),

which has no base points and its directrices have the lowest degree.

3.3 Discussions

A basic property of a rational parametrization is whether it is proper or improper. Improper
parametrizations are undesirable because the parametric degree could be unnecessarily high.
A rational parametric ruled surface can be improper even the parameter t is linear. There are
some methods can deal with proper reparametrization of ruled surfaces such as [41], we here
review a simple and efficient method specially designed for the ruled surfaces.

For a proper rational ruled surface P (s, t) with bidegree (m, 1) w.r.t. parameters (s, t),
its implicit degree is fixed and can be computed as 2m − nb where nb is the number of all
base points of P , multiplicities counted. Note that there may be complex base points in the
parametrization since the parametrization is not unique. It is a challenge problem to find the
simplest parametrization for arbitrary rational surfaces. However, Theorem 3.3 gives a novel
way to find the simplest parametrization for a ruled surface.
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4 Implicitization of Rational Ruled Surfaces

As mentioned in the introduction, different methods are used to implicitize a given rational
surface. The methods based on Gröbner bases or characteristic sets are complete in theory but
not suitable for practical computation, since both of these methods have double exponential
time complexity. Here, we prefer complete and more effective methods for ruled surfaces. At
first, we develop an implicitization method using elements of the μ-basis (see Proposition 2.2).
The implicit equation is the resultant of the two μ-basis.

Example 4.1 Continuation to Example 3.4. By Proposition 2.2, the implicit equation of
the ruled surface, up to a nonzero scalar, is Res(p ·X, q ·X, s) = Res(xs− y + z +ws, x + ys +
zs−w, s) = y2−z2 +x2−w2. The implicit equation in affine space is then y2−z2 +x2−1 = 0.

Without computing the μ-basis, we here introduce a simpler implicitization method still
based on the univariate resultant computation. The surface parametrically defined by (3) can
be treated as a collection of the following planar curves with specified parameter t:

(x, y) =
(

q1n(s, t)
q1d(s, t)

,
q2n(s, t)
q2d(s, t)

)
, (7)

where qin(s, t) and qid(s, t) are the numerator and denominator of qi. Assuming gcd(qin, qid) = 1
and max{deg(qin), deg(qid)} ≥ 1, i = 1, 2, then the resultant

Res(q1dx − q1n, q2dy − q2n, s) = l(t)L(x, y, t) (8)

is not identically zero, where l(t) ∈ Q[t] is the content of the resultant with respect to the
parameters x, y. Hence, L(x, y, t) is the primitive part of the resultant.

If degt(L) = 0, the surface (3) is a cylindrical surface over the xy-plane with the irreducible
implicit equation L(x, y) = 0. To determine whether a rational surface is cylindrical over the
coordinate plane is not difficult[13, 43], hence we consider only the non-degenerate case with
degt(L) ≥ 1. We have the following theorem.

Theorem 4.2 Let P (s, t) be a rational projective surface of the form (3) with implicit
equation f(x, y, z) �∈ Q[x, y]. Then up to a constant multiple

f(x, y, z) = L(x, y, t)|t=z. (9)

This theorem is a simplified version of Theorem 2 in [14]. This implicitization method is
more efficient than other existing approaches. Readers are referred to [14] for further details.

Example 4.3 Continuation to Example 3.4. The affine form of the ruled surface is
(x, y, z) = P (s, t) given by

P (s, t) =
(

1 − s2 − 2 st

1 + s2
,
2 s + t(1 − s2)

1 + s2
, t

)
.

By Theorem 4.2, we compute a univariate resultant and get

L(x, y; t) = 4 y2 + 4 t2x2 + 4 t2y2 − 8 t2 − 4 t4 + 4 x2 − 4.
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By removing the content (4 t2 + 4), i.e., the gcd of the coefficients of L(x, y, t), we get the
primitive part −t2 + y2 − 1 + x2. Then the implicit equation of the ruled surface is

−z2 + y2 − 1 + x2 = 0.

The implicitization of a ruled surface is also based on resultants in [13], for the same ruled
surface, they computed the gcd of three resultants.

There are different methods can find the implicit equation of a rational ruled surface. The
method based on the univariate resultant can only succeed on some types of rational surfaces
but it is still the most efficient method for the ruled surface comparing with other methods.

5 Characterization of Rational Ruled Surfaces

The above discussions begin from a parametrization of the standard (reduced) form. How-
ever, a ruled surface can have rational parameterizations other than the standard form. The
surface may even be given or designed by the implicit equation while there are not standard
form for the implicit forms. Therefore it is necessary to determine whether a given general
rational parametrization or an implicit equation defines a ruled surface or not. Moreover, we
would like to find a standard parametric form of a given implicit surface if it defines a ruled
surface, since the parametrization is well used in rendering, curvature computation and the
control of position or tangency. We unify these problems as the characterization of the ruled
surface from a given rational parametrization or an algebraic equation. The complete results
are proposed in [33]. The discussions benefit from the standard representation of the ruled
surface. Using the linearity of t, the surface can be projected to a rational parametric curve
after a certain birational transformation. We will review the main theorems and the algorithms
in this section, both for symbolic and numeric situations.

5.1 From Algebraic Surfaces

For a surface P defined implicitly by a polynomial f(x, y, z) ∈ K[x, y, z], we analyze whether
P is a rational ruled surface. In the affirmative case, we compute a rational proper parametriza-
tion of P in standard reduced form (3).

Suppose P is a ruled surface, then P admits a parametrization of the form (3)

Q(s, t) = (q11(s) + q21(s) t, q12(s) + q22(s) t, t).

In the following approach, we assume that P is not the plane x− c = 0, c ∈ K (or y − c = 0 or
z − c = 0) and P is not a cylinder over any of the coordinate planes of K

3. That is, degx(f) >

0, degy(f) > 0 and degz(f) > 0. If degz(f) = 0 (similarly if degx(f) = 0 or degy(f) = 0), we
may compute a proper parametrization (p(s), q(s)) of the plane curve defined by the polynomial
f(x, y) = 0. Then, P (s, t) = (p(s), q(s), t) ∈ K(s, t)3 is a proper parametrization of P . Except
for the coordinate cylinder surfaces, we can assume that q2k �= 0 for some k = 1, 2 and use the
projected planar curve.

P 12(s, 0) = (q11, q12, 0), P 23

(
s,−q11

q21

)
=

(
0, q12 − q11

q21
q22,−q11

q21

)
,
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P 13

(
s,−q12

q22

)
=

(
q11 − q12

q22
q21, 0,−q12

q22

)
.

The implicit equations of these three rational planar curves are factors of the polynomials

f12(x, y) = f(x, y, 0), f23(y, z) = f(0, y, z), f13(x, z) = f(x, 0, z).

Denote the three plane algebraic curves by Cij , ij ∈ {12, 13, 23}. We give the following criterion
theorem for implicit ruled surfaces.

Theorem 5.1 A surface P defined by a polynomial f(x, y, z) ∈ K[x, y, z] is a rational
ruled surface if and only if

1) At least two of the plane algebraic curves Cij, say C12 and C23, are rational with proper
parametrizations P 12 = (p1, p2) ∈ K(s)2, P 23 = (p̃1, p̃2) ∈ K(s)2.

2) There exists (R(s), S(s)) ∈ (K(s) \ K)2 such that

P (s, t) =
(

p1(S(s)) − t
p1(S(s))
p̃2(R(s))

, p2(S(s)) + t
p̃1(R(s)) − p2(S(s))

p̃2(R(s))
, t

)

is a rational proper parametrization of P, and (R, S) is proper.

Suppose the statement 1 holds, then a ruled surface must have a rational parametriza-
tion in the statement 2 which is construed by the solutions from the statement 1. The
statement 1 requires computing two planar parametrizations that will be used to determine
a rational planar base curve of the ruled surface and the ruling direction of the ruled sur-
face in the statement 2. The functions S and R are for coordinating the parameterization
of the base curve. To simplify the computation, we prove that the statement 2 is equivalent
to checking the rationality of a plane curve. Let N(x, y) = Contentt(g), where g(x, y, t) =
numer

(
f

(
p1(y) − t p1(y)

p̃2(x) , p2(y) + t p̃1(x)−p2(y)
p̃2(x) , t

))
. The function Contentt(·) returns the con-

tent of a polynomial with respect to the variable t.

Corollary 5.2 Let P be a surface defined by a polynomial f(x, y, z) such that statement 1
in Theorem 5.1 holds. P is a rational ruled surface if and only if there exists a factor of N(x, y)
defining a rational plane curve CN . In this case, (R(s), S(s)) ∈ K(s)2, where S �∈ K, is a
rational proper parametrization of CN .

Remark 5.3 Theorem 5.1 and Corollary 5.2 are simplified versions of Theorem 2 and
Corollary 3 in [33] with the assumptions that the surface admits a parametrization of (3) and
p1 �= 0. For other cases with certain degeneracies, we have similar discussions and results.

Determining if a surface is a ruled surface is reduced to finding a rational parametrization of
the algebraic plane curves successively. There are algorithms to find a rational parameterization
of a plane algebraic curve (see [44–46]).

Theorem 5.1 and Corollary 5.2 were proved constructively and an algorithm for character-
izing ruled surfaces was naturally proposed.

Here we provide an example to illustrate the identification and the parametrization for ruled
surfaces from an implicit equation.
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Example 5.4 Consider an algebraic surface over C defined by f(x, y, z) = −x2yz2 +
2 xy2z2 − 2 xyz3 − 5 y3z2 + 2 y2z3 − x2z2 − 8 xy2z + 4 xyz2 − 23 y2z2 + 4 yz3 + 4 z4 − 4 x2y −
16 xyz + 2 xz2 − 10 yz2 + 4 z3− 4 x2 + 8 xy + 16 yz + 16 z2 + 8 x− 20 y+ 8 z + 12. We first find it
is not a cylinder over any of the coordinate planes since the degrees of x, y and z are positive.
Then we compute

f12 = −4 x2y − 4 x2 + 8 xy + 8 x − 20 y + 12,

f23 = −5 y3z2 + 2 y2z3 − 23 y2z2 + 4 yz3 + 4 z4 − 10 yz2

+4 z3 + 16 yz + 16 z2 − 20 y + 8 z + 12.

These equations define two plane curves C12 and C23, and we find that these curves have rational
parametrizations

P 12 = (p1, p2) =
(

s,−s2 − 2 s− 3
s2 − 2 s + 5

)
,

P 23 = (p̃1, p̃2) =
(

s4 + 4 s3 + 256
2 (8 − s) (s2 + 16)

,
s3 + 2 s2 + 16 s + 32

8(8 − s)

)
.

Checking whether there exists a rational curve CN defined by a factor of the polynomial
N(x, y) = Contentt(g1). We find that

N(x, y) = 2 (x − 8)3 (2 + x − 2 y) .

Since we look for (R, S) ∈ (C(s) \ C)2, we consider the curve CN defined by the irreducible
polynomial 2 + x − 2 y. This curve has a rational parametrization

(R(s), S(s)) =
(

s, 1 +
s

2

)
.

Therefore we conclude that the given surface is ruled and get a parametrization of the reduced
standard form as

P (s, t) =
(

p1(S(s)) − t
p1(S(s))
p̃2(R(s))

, p2(S(s)) + t
p̃1(R(s)) − p2(S(s))

p̃2(R(s))
, t

)

=
(

s3 + 2 s2 + 16 s + 32 + t (8 s− 64)
2 s2 + 32

,
−s2 + 16 + 4 ts

s2 + 16
, t

)
.

An alternative method is to find a μ-basis for a rational ruled surface, starting from its
implicit representation. A parametrization for this ruled surface is then derived from this
μ-basis (see [47]).

Algorithm 5.5 [47] Computing a μ-basis for an algebraic ruled surface
Input: An algebraic surface P defined by f(x, y, z, w) = 0.
Output: A parametrization P (without non-generic base points, with a directrix having lowest
degree) and a mu-basis of f(x, y, z, w) = 0 if P is ruled.

1. Select a nonsingular point of f(x, y, z, w) = 0 and a plane L passing through the point
which is not a tangential plane.
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2. Find a rational parametrization C(s) of the intersection curve of P and L if it exists,
otherwise return “ P is not a ruled surface”.

3. Compute a μ-basis pc, qc, rc of C(s), where pc is a representation of L.

4. Let p(s) = αpc + qc and q(s) = βpc + rc. Solve for α, β from f(p(s)
⋂

q(s)) ≡ 0 and
update p(s), q(s). Otherwise if there is no solution for α, β then return “ P is not a ruled
surface”.

5. Compute a μ-basis p̃ and q̃ of the dual ruled surface p + tq and compute the moving
plane r(s, t) of the ruled surface p̃ + tq̃. Output the parametrization p̃ + tq̃ and its
μ-basis {p, q, r}.

5.2 From Parametric Surfaces

Consider a surface P defined by a parametrization (not necessarily proper) over K,

M(s, t) = (m1(s, t), m2(s, t), m3(s, t)) ∈ K(s, t)3.

We shall identify whether P is a ruled surface not given in the standard form (1) (or (3), (4)),
and in the affirmative case we compute a proper reduced reparametrization of the form (3).

A direct approach to this problem is to implicitize the parametrization and apply the results
of the previous subsection. But the implicitization of a general parametrization is not easy
and we would like to approach the problem without implicitizing. Precisely, we will find a
linear parameter transformation to reparameterized the given parametrization. Note that any
reparametrization of a rational parametrization is again a parametrization of the same variety.

Similar to the implicit case, we first assume that P is neither a plane nor a cylinder surface.
Note that this assumption of not being a plane is still general, since one can easily deduce
whether a parametrically given surface is a plane. For the cylinder case, we can apply the
result presented in [13] (Theorem 5) which gives a criterion characterizing the cylinder surface
from a given rational parametrization.

We now give the following theorem for the parametric case. For this purpose, we need to
compute a rational proper parametrization of C12 and C23 (or C13 if needed, similar to the
statement 1 of Theorem 5.1). The computation is mainly based on the computing resultants
successively.

Theorem 5.6 A surface P defined by the parametrization M(s, t) = (m1(s, t), m2(s, t),
m3(s, t)) ∈ K(s, t)3 is a rational ruled surface if and only if

1) At least two of the three plane algebraic curves Cij, say C12 and C23, are rational with
proper parametrizations P 12 = (p1, p2) ∈ K(s)2, P 23 = (p̃1, p̃2) ∈ K(s)2 respectively.

2) There exists (U, V ) ∈ K(s, t)\K such that p1(V )−m3
p1(V )
p̃2(U)−m1 = p2(V )+m3

p̃1(U)−p2(V )
p̃2(U) −

m2 = 0. In this case,

P(s, t) =
(

p1(S(t1)) − t2
p1(S(t1))
p̃2(R(t1))

, p2(S(t1)) + t2
p̃1(R(t1)) − p2(S(t1))

p̃2(R(t1))
, t2

)
,
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is a rational proper parametrization of P, where (R, S) ∈ (K(t1)\K)2 is a rational proper
parametrization of the curve CN defined parametrically by (U, V ).

Remark 5.7 Theorem 5.6 is a simplified version of Theorem 5[33] with the assumptions
that the surface admits a reparametrization of (3) and p1 �= 0. For other cases with certain
degeneracies, we have similar discussions and results.

In Theorem 5.6, one important task is to solve for (U, V ) from the equation system p1(x)−
m3p1(x)/p̃2(y)−m1 = p2(x) + m3(p̃1(y) − p2(x))/p̃2(y)−m2 = 0. The solution is zero dimen-
sional if M(s, t) defines a ruled surface and then the computation of (U, V ) is efficient.

Similar to Theorem 5.1, the proof of Theorem 5.6 is also constructive and so an algorithm
for the parametric surface was proposed.

We illustrate the computation with the following example.

Example 5.8 Consider the surface P defined by the parametrization

M(s, t) = (m1(s, t), m2(s, t), m3(s, t))

=

(
(t+1)s3+

(
3t2+5t+10

)
s2+

(
3t3+7t2+28t−48

)
s+t4+3t3+18t2+48t+32

2 (1 + t) (s2 + 2ts + t2 + 16)
,

−s2t + 2 st2 + t3 − 3 s2 − 2 ts + t2 − 16 t− 16
(1 + t) (s2 + 2 ts + t2 + 16)

,
s

1 + t

)
∈ R(s, t)3.

We first find it is not a cylinder over any of the coordinate planes using the cylinder criterion.
Then we compute

f12 = −4 x2y − 4 x2 + 8 xy + 8 x − 20 y + 12,

f23 = −5y3z2 + 2y2z3 − 23y2z2 + 4yz3 + 4z4 − 10yz2 + 4z3 + 16yz + 16z2 − 20y + 8z + 12.

These two equations define two plane curves C12 and C23, and we find that they have have
rational parametrizations

P 12 = (p1, p2) =
(

s,−s2 − 2 s − 3
s2 − 2 s + 5

)
,

P 23 = (p̃1, p̃2) =
(

s4 + 4 s3 + 256
2 (8 − s) (s2 + 16)

,
s3 + 2 s2 + 16 s + 32

8(8 − s)

)
.

Checking whether there exists a rational curve defined by (U, V ) we solve from the equation
system

p1(V ) − m3
p1(V )
p̃2(U)

− m1 = 0, p2(V ) + m3
p̃1(U) − p2(V )

p̃2(U)
− m2 = 0,

and we obtain
U(s, t) = s + t, V (s, t) =

s + t + 2
2

.

Then (U, V ) defines a plane curve CN with implicit equation x− 2y + 2 = 0 and this curve has
a rational parametrization

(R(s), T (s)) =
(

s, 1 +
s

2

)
.
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Therefore, we conclude that the given surface is ruled and get a parametrization of the reduced
standard form as

P (s, t) =
(

p1(S(s)) − t
p1(S(s))
p̃2(R(s))

, p2(S(s)) + t
p̃1(R(s)) − p2(S(s))

p̃2(R(s))
, t

)

=
(

s3 + 2 s2 + 16 s + 32 + t (8 s− 64)
2 s2 + 32

,
−s2 + 16 + 4 ts

s2 + 16
, t

)
.

5.3 Symbolic-Numeric Approach for Parametrizing Ruled Surfaces

In practical applications, one has to deal with numerical functions that are given approx-
imately, probably because they are derived from exact data which has been perturbed under
some previous measuring process or manipulation. For these numerical objects, one can adapt
the symbolic algorithms presented by certain numerical techniques. Recently, numerical algo-
rithms have been designed to determine ruled surfaces close to an input (not necessarily ruled)
surface, and the distance between the input and the output surface is computed. For further
detail, we refer the reader to [38].

The problem of numerical reparametrization for (ruled) surfaces can be looked at from two
different points of view: The implicit and parametric. More precisely:

[Numerical Implicit Ruled Surface Problem] Given a polynomial f(x, y, z) ∈ C[x, y, z] (with
perturbed floating point coefficients) defining an algebraic surface V , find a rational parametriza-
tion P (s, t) ∈ C(s, t)3 of an algebraic ruled surface W such that V and W are close enough.

[Numerical Parametric Ruled Surface Problem] Given a rational parametrization M(s, t) ∈
C(s, t)3 (with perturbed floating point coefficients) of an algebraic surface V , find a rational
parametrization P (s, t) ∈ C(s, t)3 of an algebraic ruled surface W such that V and W are close
enough.

5.3.1 Numerical Implicit Ruled Surface Problem

Given a surface V defined implicitly by a polynomial f(x, y, z) ∈ C[x, y, z] with perturbed
floating point coefficients, we present an algorithm that returns a rational parametrization
P (s, t) = (p1(r1(s))+ tq1(r2(s)), p2(r1(s))+ tq2(r2(s)), t) that defines a ruled surface W . In this
case, we say that V is an approximate rational ruled surface. In Theorem 5.10, we show how
to compute the distance between the input surface V and the output surface W .

Algorithm 5.9 (see [38]) Computation of a rational ruled surface from an ap-
proximate implicit surface

Input: An algebraic surface V defined by f(x, y, z) = 0.
Output: A ruled surface W parametrized by P (s, t) = (p1(r1(s)) + tq1(r2(s)), p2(r1(s)) +

tq2(r2(s)), t) or the message “V is not an approximate rational ruled surface”.

1. Compute the polynomials f(x, y, 0) and f(0, x, y, 1), and check whether there exist two
approximate rational plane curves C1 and C2 defined by an approximate factor of these
two polynomials. In the affirmative case, go to Step 2. Otherwise, Return “V is not an
approximate rational ruled surface”.
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2. Compute P1 = (p1, p2) ∈ C(s)2 and P2 = (q1, q2) ∈ C(s)2 approximate proper rational
parametrizations of C1 and C2.

3. Let g(x, y, t) = numer(f(p1(x) + tq1(y), p2(x) + tq2(y), t)). Check whether there exists
an approximate rational plane curve D defined by an approximate factor h(x, y) of this
polynomial. In the affirmative case, go to Step 4. Otherwise, Return “V is not an
approximate rational ruled surface”.

4. Compute an approximate proper rational parametrization R(s) := (r1(s), r2(s)) ∈ (C(s)\
C)2 of D).

5. Return “W is a ruled surface parametrized by

P (s, t) = (p1(r1(s)) + tq1(r2(s)), p2(r1(s)) + tq2(r2(s)), t)”.

Let V and W be the input and output surfaces, respectively, of Algorithm 5.9. In addition,
let f(x, y, z) and g(x, y, z) be the defining polynomials of V and W , respectively, and let P (s, t) ∈
C(s, t)3 be the parametrization of W output by the algorithm. Next, we study the distance
between these surfaces. For this purpose, we consider T (s, t) =

∂P
∂s × ∂P

∂t

‖ ∂P
∂s × ∂P

∂t ‖2
, and N(a, b, c) =

∇f(a,b,c)
‖∇f(a,b,c)‖2

, and we get the following theorem.

Theorem 5.10 (see [38]) Let (s0, t0) ∈ C2, and (a0, b0, c0) ∈ V.
1) If ∇f(P (s0, t0)) and T (s0, t0) are not orthogonal, then

d(P (s0, t0),V) ≤ n

∣∣∣∣
f(P (s0, t0))

∇f(P (s0, t0)) · T (s0, t0)

∣∣∣∣ .

2) If ∇g(a0, b0, c0) and N(a0, b0, c0) are not orthogonal, then

d((a0, b0, c0),W) ≤ n

∣∣∣∣
g(a0, b0, c0)

∇g(a0, b0, c0) · N(a0, b0, c0)

∣∣∣∣ .

Example 5.11 Let V be the surface over C implicitly defined by the polynomial

f(x, y, z) = −y − 5z + 8zy − 6z2 − 2.xy − 5.9999xz + 31z2y − 42.xz2 + 10z2y2

+22z3y + 8zy2 − 36z3x + 1.001x2 + 12x2z + 36.0001x2z2 + 2y2

−18zyx− 36z2yx + 3z3 + 4z4 − 0.001y3 + 0.001.

We apply Algorithm 5.9 to check whether V is an approximate rational ruled surface and,
in the affirmative case, we compute a parametrization of a ruled surface W . Afterwards, we
measure the distance between V and W .
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The algorithm returns the ruled surface W defined by the proper rational parametrization
P (s, t) = (p1(r1(s)) + tq1(r2(s)), p2(r1(s)) + tq2(r2(s)), t) where

p1(r1(s)) + tq1(r2(s))

= −0.1966388521

·(2.055378432 · 107ts2 − 2.055377510 · 104ts3 + 1.028717526 ·
10ts4 + 4.117141228 · 107ts + 2.059706394 · 107t

+2.492580063 · 106s2 + 4.983272946 · 106s

+2.491444722 · 106 + 7.465434870 · 102s3 − 5.279803414s4)

/((2.002 · 106 − 2 · 103s + s2)(1.439788009s2 + 2.879792s + 1.440004)),

p2(r1(s)) + tq2(r2(s))

= −3.441179912

·(2.383354895 · 106ts2 − 2.383353821 · 103ts3 + 1.19286984ts4

+4.774102602 · 106ts + 2.388363165 · 106t

−0.3954871614s4 + 6.032184769 · 102s3

−2.298544147 · 105s2 − 4.61554819 · 105s − 2.310967918 · 105)

/((2.002 · 106 − 2000s + s2)(1.439788009s2 + 2.879792s + 1.440004)).

One may check that these surfaces are very close. Actually, d(P (s0, t0),V) ≤ 0.042 and
d((a0, b0, c0),W) ≤ 0.00021.

5.3.2 Numerical Parametric Ruled Surface Problem

Given a surface V defined by a parametrization M(s, t) = (m1(s, t), m2(s, t), m3(s, t)) ∈
C(s, t)3 with perturbed floating point coefficients, we present an algorithm that outputs a
rational parametrization P (s, t) = (p1(r1(s))+tq1(r2(s)), p2(r1(s))+tq2(r2(s)), t) parametrizing
a ruled surface W . In this case, we say that the surface V is an approximate rational ruled
surface. In Theorem 5.13, we show how to compute the distance between the input surface V
and the output surface W .

Algorithm 5.12 (see [38]) Computation of a rational ruled surface from an ap-
proximate parametric surface

Input: A surface V defined by the parametrization M(s, t) = (m1(s, t), m2(s, t), m3(s, t)) ∈
C(s, t)3.

Output: A ruled surface W parametrized by P (s, t) = (p1(r1(s)) + tq1(r2(s)), p2(r1(s)) +
tq2(r2(s)), t) or the message “V is not an approximate rational ruled surface”.

1. Compute the polynomials f(x, y, 0) and f(0, x, y, 1). Check whether there exist two ap-
proximate rational plane curves C1 and C2 defined by an approximate factor of these two
polynomials. In the affirmative case, let f1(x, y) and f2(x, y) be these polynomials and
go to Step 2. Otherwise, Return “V is not an approximate rational ruled surface”.
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2. Compute P1 = (p1, p2) ∈ C(s)2 and P2 = (q1, q2) ∈ C(s)2 approximate proper rational
parametrizations of the curves C1 and C2.

3. Check whether there exists an approximate rational plane curve D defined by an approxi-
mate factor of the polynomial R(x, y, s) = Rest(e1, e2), where ei(x, y, s, t) = numer(pi(x)+
m3qi(y) − mi(s, t)), i = 1, 2. In the affirmative case, compute, R(s) := (r1(s), r2(s)) ∈
(C(s) \ C)2, an approximate proper rational parametrization of D, and Return “W is a
ruled surface parametrized by P (s, t) = (p1(r1(s))+ tq1(r2(s)), p2(r1(s))+ tq2(r2(s)), t)”.

Otherwise, Return “V is not an approximate rational ruled surface”.

Theorem 5.13 (see [38]) Let (s0, t0) ∈ C2.
1) If ∇f(P (s0, t0)) and TP (s0, t0) are not orthogonal, then

d(P (s0, t0),V) ≤ n

∣∣∣∣
f(P (s0, t0))

∇f(P (s0, t0)) · TP (s0, t0)

∣∣∣∣ .

2) If ∇g(M(s0, t0)) and TM (s0, t0) are not orthogonal, then

d(M(s0, t0),W) ≤ n

∣∣∣∣
g(M(s0, t0))

∇g(M(s0, t0)) · TM (s0, t0)

∣∣∣∣ .

Example 5.14 Let V be the surface defined by M(s, t) = (m1(s, t), m2(s, t), m3(s, t)) ∈
C(s, t)3, where

m1(s, t) =
0.9999s2 + 1.9999ts + t2 − 2t − 2.0003s

(s + t + 2)s
,

m2(s, t) =
s2 + 2ts + t2 − 4.9999t− 0.00001s

(s + t + 2)s
, m3(s, t) =

1.0001t− 0.0001s

s
.

Let us apply Algorithm 5.12 to check whether V is an approximate rational ruled surface
and, in the affirmative case, compute a parametrization of a ruled surface W . Afterwards, we
will measure the distance between V and W . By the algorithm, we get the new rational ruled
surface, W , defined parametrically by P (s, t) = (p1(r1(s))+ tq1(r2(s)), p2(r1(s))+ tq2(r2(s)), t),
where

p1(r1(s)) + tq1(r2(s)) = 0.000124971881t+ 0.9997750481ts+ s,

p2(r1(s)) + tq2(r2(s)) = −0.7496813123t+ 1.749581340ts + 0.4999850244+ 0.5001149706s.

One may check that these surfaces are very close. In fact, from Theorem 5.13, we get d(P (s0, t0),
V) ≤ 1.915937999 · 10−13, and d(M(s0, t0),W) ≤ 3.186985570 · 10−10.

5.4 Discussions

In many applications such as geometric modeling and computer aided design, people can get
benefits if the surface is known as the ruled surfaces or can be approximated by ruled surfaces.
However, it is difficult to characterize the type of the surface from a given parametric or implicit
equation. Only quadratic surfaces are discussed as a classical results. The result reviewed above
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is the first work to characterize the ruled surfaces either from a given parametric or implicit
equation[33]. The theorems are given with constructive proofs using algebraic computations.
Then the algorithms can be proposed according to the proofs. Start with an implicit equation,
a simpler method is given to characterize the ruled surface by finding the μ-bases with the
geometric considerations (see Algorithm 5.5). Moreover, if one focuses on the ruled surfaces
which are developable, there is a simpler and more efficient characterization method proposed
by [43].

The numerical computations is ineluctable in practical applications. But the most results
of the researches for representations are considered and designed with exact mathematical
assumption. The recent result proposes a first approach to identify the ruled surface from a
numerical consideration[38]. As well as the algorithms, the error estimations are given explicitly.
This approach is expected to be helpful in computer aided design for engineering.

6 Conclusion

This paper takes a look inside the representations of a ruled surface other than the tradi-
tional standard parametric form. The different forms have respective advantages: The para-
metric representation is popular in CAD since it is easy to render, the implicit representation
brings benefits for collision detection, the homogenous form is suitable for syzygy computation
(μ-basis) and the Plücker form leads to simple cases of line geometry. Thus it is a natural
problem to analyze the relationships between these representations, and furthermore the ways
to transform one expression form to another. Hence, for the convenience of readers, we reviewed
the methods focused on these problems and summarized the main results. Some examples are
also provided to illustrate the computations.

For practical applications, we should further extend these methods to the numerical com-
putations. An attendant and important problem is to give an error analysis for the numerical
algorithms. The latest results of the authors provide numerical transform algorithms with error
estimations.
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[4] Pérez-Dı́az S and Blasco A, On the computation of singularities of parametrized ruled surfaces,

Advances in Applied Mathematics, 2019, 110: 270–298.



20 YUAN CHUN-MING, et al.
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[13] Pérez-Dı́az S and Sendra J R, A univariate resultant-based implicitization algorithm for surfaces,

Journal of Symbolic Computation, 2008, 43(2): 118–139.

[14] Shen L Y and Yuan C, Implicitization using univariate resultants, Journal of Systems Science

and Complexity, 2010, 23(4): 804–814.

[15] Shen L Y, Cheng J, and Jia X, Homeomorphic approximation of the intersection curve of two

rational surfaces, Computer Aided Geometric Design, 2012, 29(8): 613–625.

[16] Senatore J, Monies F, Landon Y, et al., Optimising positioning of the axis of a milling cutter on an

offset surface by geometric error minimisation, International Journal of Advanced Manufacturing

Technology, 2008, 37(9–10): 861–871.

[17] Sprott K and Ravani B, Cylindrical milling of ruled surfaces, The International Journal of Ad-

vanced Manufacturing Technology, 2008, 38(7–8): 649–656.

[18] Martin P, Pottman H, and Bahram R, On the computational geometry of ruled surfaces,

Computer-Aided Design, 1999, 31(1): 17–32.

[19] Simon F, and Pottman H, Ruled surfaces for rationalization and design in architecture, LIFE

in: Formation on Responsive Information and Variations in Architecture, Proceeding of ACA-

DIA’2010, 2010, 103–109.

[20] Simon F, Yukie N, Florin I, et al., Ruled free forms, Advances in Architectural Geometry 2012,

Springer-Verlag, Berlin, 2013, 57–66.

[21] Wang H and Goldman R, Implicitizing ruled translational surfaces, Computer Aided Geometric

Design, 2018, 59: 98–106.

[22] Jia X, Chen F L, and Deng J S, Computing self-intersection curves of rational ruled surfaces,

Computer Aided Geometric Design, 2009, 26(3): 287–299.

[23] Pottman H, Wei L, and Bahram R, Rational ruled surfaces and their offsets, Graphical Models

and Image Processing, 1996, 58(6): 544–552.

[24] Farin G, Hoschek J, and Kim M S, Handbook of Computer Aided Geometric Design, Elsevier,

Amsterdam, 2002.
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