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Abstract The Software-Defined Networking (SDN) ar-

chitecture decouples the control plane from the data

plane, but it does not explicitly state where the control

should be located. This article analyses the benefits of
maintaining the control as close as possible to the data

plane, instead of the more traditional centralised con-

trol plane approach. To this purpose, it delves into the
study of ARP-P4, a hybrid software switch defined by

using the P4 language to facilitate its future use and de-

ployment in P4 targets. Its hybrid properties come from
supporting two complementary different ways of estab-

lishing paths: a centralised SDN approach based on P4-

Runtime and a traditional distributed approach based

on the ARP-Path protocol that obtains a similar per-
formance to centralised solutions based on Equal Cost

Multi-Path (ECMP) and Dijkstra. The results show the

Isaias Martinez-Yelmo
Automatics Department. University of Alcala. 28805, Alcala
de Henares, Spain
ORCiD: 0000-0001-9648-8669
Tel.: +34 91 885 68 31
E-mail: isaias.martinezy@uah.es

Joaquin Alvarez-Horcajo
Automatics Department. University of Alcala. 28805, Alcala
de Henares, Spain
ORCiD: 0000-0002-8522-9933

Miguel Briso-Montiano
GMV Inc., 28760, Tres Cantos, Madrid, Spain.

Diego Lopez-Pajares
Automatics Department. University of Alcala. 28805, Alcala
de Henares, Spain
ORCiD: 0000-0002-8959-4321

Elisa Rojas
Automatics Department. University of Alcala. 28805, Alcala
de Henares, Spain
ORCiD: 0000-0002-6385-2628

feasibility of hybrid devices that combine different for-

warding paradigms without losing performance with re-

spect to well-known solutions such as ECMP, and how

their combined use can lead to enhance and scale com-
munication networks.
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1 Introduction

Due to the current trends of softwarisation and virtual-

isation, enhanced networking devices are emerging with

extended programmability and Software-Defined Net-
working (SDN) support. However, although the SDN

paradigm is pivotal towards next generation communic-

ation networks [1], its founder protocol, OpenFlow [2],

is unable to cope with the strict demands of new stake-
holders [3], such as data plane programmability. A novel

approach to overcome this limitation is the ARP-P4

switch [4] since it follows a hybrid approach. The ARP-
P4 switch combines both SDN and traditional stan-

dalone architectures in a single device. The simultan-

eous support of both approaches provides new insights
and features as an alternative to the dummy-switch

approach of the traditional SDN architecture. Indeed,

some authors advocate for still conveying part of the in-

telligence of the network at the SDN data plane to guar-
antee further possibilities. This concept is the so-called

hybrid approach [5], and some authors have already

proved its benefits [6, 7]. This paper studies ARP-P4 [4]
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in deep, a hybrid SDN ARP-Path/P4-Runtime switch

based on the P4 language [8] and the P4-Runtime spe-
cification [9]. These technologies are initiatives that aim

to fulfil the limitations of OpenFlow by allowing the

programmability of device data planes. Thus, they are
suitable solutions for the definition of new featured devices

such as ARP-P4. Furthermore, ARP-P4 data plane cap-

abilities may be extended in the future since it is based
on the P4 language.

The main contributions of the paper are the fol-

lowing ones. (1) A deep study of the autonomous, P4-

Runtime and hybrid capabilities and performance of
ARP-P4- devices. Although the results are promising,

some limitations exist. Some limitations are due to the

current P4 language specification, which is used for the
ARP-P4 behaviour definition, since P4 has been de-

veloped by mainly considering non-autonomous SDN

devices. Other limitations are related with the exist-
ing constraints on how the target platforms support

the different P4 functionalities. Therefore, (2) the prob-

lems of the Behavioral Model v2 (BMv2) target are in-

vestigated and exposed thoroughly. Moreover, this work
demonstrates how P4 can be used to define and deploy

hybrid SDN/traditional networks and devices, which

enhances the possibilities of future communication net-
works. Finally, (3) a functional study on the hybrid

ARP-Path/P4-Runtime SDN capabilities of ARP-P4

devices. The hybridisation enables to ARP-P4 devices
the acquisition of additional capabilities such as the

on-demand configuration of access lists (ACLs) via P4-

Runtime but maintaining the forwarding decisions on

the data plane.
The rest of the paper is organised as follows: sec-

tion 2 describes the related work associated with ARP-

P4. Section 3 explains the design decisions and how
ARP-P4 has been developed and section 4 show the

results from our evaluation of ARP-P4. Finally, section

5 summarises the detected problems and obstacles dur-
ing the development of ARP-P4, and section 6 collects

the conclusions from this work. Related future work re-

search lines are highlighted in section 7.

2 Related Work

Despite SDN is becoming the key technology for next

generation communications networks [1], it still presents
some disadvantages that must be addressed. Thus, there

are proposals that maintain certain control capabilit-

ies in the data plane to leverage the responsibility on

SDN controllers, which decreases the dependability of
the data networks on the control plane [6]. Some previ-

ous related work exists such as [5, 7], but they have a

limited impact since it is a softwarised proof-of-concept.

An alternative solution with a broader impact would be

desirable .

The P4 language [8] is part of the P4 Language

Consortium, which recently joined the Open Network-
ing Foundation (ONF) and Linux Foundation. This P4

language is getting the focus of the networking research

community. It is a high-level language designed to provide
fine-tuned and unambiguous programmability of data

planes. P4 defines all actions since the moment a packet

is matched until it is forwarded, processed or discarded.

P4 is compiled against specific targets that support it.
Additionally, P4 can make use of extern objects that are

architecture (target) specific constructs. These extern

objects are used by P4 programs through well-defined
APIs but their internal behaviour is hard-wired and

dependent on the target; hence, they are not program-

mable using P4. Some of them are standardised by P4
such as the Packet Replication Engine (PRE), which

is an extern that configures multicast groups by copy-

ing packets to the required egress ports. Moreover, P4 is

complemented by P4-Runtime [9]. While P4 defines the
data plane prior to deployment, P4-Runtime commu-

nicates this data plane with SDN controllers to provide

runtime capabilities. Hence, both P4 and P4-Runtime
aim to substitute and improve traditional SDN data

planes and the OpenFlow protocol, respectively. For in-

stance, the Open Network Operating System (ONOS)
platform [10], implemented by the ONF community,

features one of the most advanced SDN controllers sup-

porting P4. Although the P4 definition takes into ac-

count the SDN architecture, it does not imply that
cannot be used to define autonomous capabilities in a

data plane. Indeed, ARP-P4 [4] shows how autonom-

ous capabilities can be defined in a P4 based data plane.
More specifically, ARP-P4 supports the ARP-Path pro-

tocol to establish paths autonomously in a layer 2 do-

main. Unfortunately, it has been only tested in the
BMv2 [11] software target. Thus, performance is not

its main goal. Its functionality is deployed via JSON

files (obtained from the compilation of P4 code) dy-

namically at runtime.

Finally, it is important to remark the capabilities of

ARP-Path in order to properly understand how ARP-
P4 can forward packets autonomously. ARP-Path [12] is

a shortest-path exploration protocol for switches. Con-

trarily to Shortest Path Bridging (SPB) [13] and TRILL
Routing Bridges (RBridges) [14], which compute paths

based on link-state information, ARP-Path leverages

ARP Request frames (broadcast frames) to explore the

network and find the shortest path (sink tree) for a
given source. Moreover, ARP-Path implements a simple

lock mechanism (instead of the traditional Spanning

Tree Protocol) that prevents temporarily relearning and
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flooding a source MAC address just previously asso-

ciated with an ingress port to avoid loops. Thus, it
discards late copies of the same frame that may ar-

rive at other different ingress ports. ARP-Path is an

efficient protocol that not only discovers paths with a
single probe frame, but it also reduces the computa-

tion to calculate them and provides minimum-latency

paths at the time that they are created. This property is
because path creation in ARP-Path considers the cur-

rent status of the network and, hence, paths are able

to avoid bottlenecks or heavily loaded links, which SPB

and RBridges might totally ignore since their paths are
statically calculated based on fixed costs.

3 ARP-P4

This paper aims to study the performance, behaviour

and functionality of ARP-P4. A key aspect is how ARP-

P4 is able to support its ARP-Path/P4-Runtime hybrid
functionality and the autonomous capacity that can ob-

tain without hindering the decoupling principles of the

SDN paradigm.

As it was stated previously in section 2, ARP-P4

is defined by using the P4 language that allows the

programmability of ad-hoc data planes. Moreover, it
is necessary a target with P4 support. The only cur-

rent supported target is BMv2 [11, 15] because it is

the one designed for prototyping. Furthermore, limita-
tions of the P4 language, related to its assumption of

the existence of an external SDN control plane, are a

non-negligible constraint as it is explained in section 5.

3.1 High-level design

ARP-P4 is a hybrid SDN ARP-Path/P4-Runtime device
that can establish and manage paths and forward pack-

ets by matching of rules inserted by an external con-

troller with P4-Runtime support or autonomously by

using the ARP-Path protocol if no P4-Runtime rules
apply for an incoming packet. Thus, an ARP-P4 device

follows the defined steps depicted in Fig. 1. When an

ingress packet arrives, an ARP-P4 device first checks
if any P4-Runtime matching entry exists. If a match

exists, the defined action with the matching entry is

applied to the ingress packet. Later, on the one hand,
if the egress port is set up by the P4-Runtime rule,

the packet processing is finished. On the other hand, if

the egress port is not set up (i.e. an ACcess List (ACL)

rule), ARP-P4 checks if an ARP-Path matching entry is
applicable. Moreover, if a P4-Runtime matching entry

does not exist, an ARP-P4 device checks if an ARP-

Path matching entry is applicable since an egress port
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Figure 1 ARP-P4 processing and forwarding of packets

is necessary. It could occur that ARP-Path may not also
have a matching entry. In that case, unless an optional

recovery mechanism exists, the packet is dropped. The

behaviour is simple, but it is also necessary to take into
account how to define and manage the data structures

to support the matching entries and their rules.

The P4-Runtime matching entries are easily defined
in the P4 language [8] by using P4 tables that allow

the association of a matching entry with a set of rules.

On the one hand, the P4 language has the flexibility

to easily define the required fields of ingress packets
that will be used to define the desired matching entry.

On the other hand, there is a set of existing actions

that allow the definition of the required set of rules to
process packets in a P4 device. However, the definition

of ARP-Path in the P4 language is not simple since

it is not specifically designed to support an autonom-
ous data plane. The requirements to support ARP-Path

by ARP-P4 are as follows. ARP-Path needs a special

table, the Learning Table (LT), where ARP-Path keeps

the different learned MAC Address like a legacy switch
and later this table is later used to forward packets

with the previously learned MAC Address. Thus, it is

necessary to define the LT with the P4 language and
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App 1
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Figure 2 ARP-P4 non-standard extern methods limitation

later implement the ARP-Path logic to manage prop-

erly the LT. Taking into account these needs, one pos-

sible approach according to the P4 specifications would

consist on embedding a P4-Runtime controller on each
ARP-P4 device to supply these needs, but it does not

seem to be a feasible solution for low-cost devices. Thus,

ARP-P4 adopts an alternative solution, the use of non-
standard P4 extern functions to insert, delete and up-

date the LT. These extern functions are defined and

implemented ad-hoc in each target. Thus, the selection
of the BMv2 defines how these functions must be imple-

mented to support the desired functionality. Therefore,

an ARP-Patch match implies to check the extern LT, if

an entry exists, the packet is forwarded to the learned
egress port.

3.2 Hybrid Forwarding Engine

The construction of the ARP-P4 Hybrid Forwarding
Engine is not easy because of the current limitations

in the P4 language specification as well as the fact

the required hybrid SDN ARP-Path/P4-Runtime beha-

viour. Figure 1 resumes the expected hybrid behaviour
of ARP-P4. Therefore, it is necessary to support both

the definition of the P4-Runtime and ARP-Path rules

in an ARP-P4 device.

3.2.1 P4-Runtime Forwarding Support

P4-Runtime [9] allows the communication of the con-
trol plane, the controllers in an SDN architecture, with

the data plane, the communication devices. Moreover,

P4-Runtime allows the communication with data plane
devices that are defined by the P4 language [8]. The

SDN ONOS controller [10] supports P4-Runtime and

posseses a development flow that allows the manage-

ment of P4-based devices with P4-Runtime support due
to the contributions of the P4 ONOS Brigade [16]. The

whole integration process is documented, a good sum-

mary can be found in [17]. Indeed, it is only necessary

to use a P4 compiler with P4-Runtime support, i.e. [18],

to obtain the necessary P4INFO definition required by
ONOS to make proper use of the P4 tables and to define

the desired matching rules as well as their associated

action rules. Hence, it remains how to define the ARP-
Path Forwarding.

3.2.2 ARP-Path Forwarding Support

By definition, the P4 language does not include any
way to modify P4-defined tables inside a P4 program.

It must always rely on an external (or local independ-

ent) control plane to do this. This fact is a key aspect
because ARP-P4 must not only define as externs the

functions that implement ARP-Path, it must also define

the LT as an extern data structure. The drawback of

defining the LT as an extern data structure is the un-
awareness of the ARP-Path forwarding state by an ex-

ternal control plane, such as an SDN controller, due to

the fact that the current specification of the P4 lan-
guage is unable to interoperate with non-standard ex-

tern objects via P4-Runtime. This important undesired

limitation is illustrated in Fig. 2 where ARP-Path ex-
terns cannot interact with P4-Runtime. Hence, ARP-

P4 stores the learned MAC addresses in the LT, defined

as a P4 extern data structure, in conjunction with its

input port and a timestamp. This timestamp is set up
with a locking short time if the entry is used to im-

plement the ARP-Path locking mechanism that avoids

loops. Moreover, the timestamp is configured with a
learning longer time if the entry is confirmed to for-

ward packets. Thus, ARP-P4 can forward packets with

no-matching P4-Runtime rules by using the defined LT
and the ARP-Path mechanism illustrated in Fig. 3. In

order to perform this procedure properly, it is necessary

an extern API with at least the following functions:

Flood manages broadcast traffic. ARP traffic is used

to populate the LT with a locking short time. The

rest of broadcast traffic can refresh the entries if
the incoming port is the same one as the stored in

the LT, which corresponds to the first ARP Request

from the source address. This behaviour is depicted
with polygons in red solid lines in Fig.3.

Forward performs the forwarding of unicast packets

according to the entries in the LT. This behaviour
is depicted with polygons in violet dot-dashed lines

in Fig.3.

Reply forwards ARP Replies packets according to the

entries in the LT and changes the timestamp to
the learning longer time. This behaviour is depic-

ted with polygons in blue dashed lines in Fig.3.

Num entries: collects different statistics from the LT.
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Begin

ingress_port
is LT_port?

Is a Broadcast?

SMAC hit on LT?

mcast_grp: Broadcast

Is a ARP Request?

NoYes

Update SMAC timestamp

Is a ARP Reply?

SMAC hit on LT?

Insert SMAC on LT

Yes

Update SMAC timestamp

Yes

No

Insert SMAC on LT

mcast_grp: Broadcastegress_port: Drop

End

Yes

No

Yes No

No

DMAC hit on LT?

egress_port:  miss_port

Update DMAC timestamp

Yes No

egress_port: LT_port

Yes

Figure 3 ARP-Path processing and forwarding of packets

Therefore, once the extern API is defined, this ex-

tern API can be used to define an autonomous P4 based
pipeline that behaves according to the ARP-Path beha-

viour (see Fig. 3). Hence, the desired ARP-P4 Hybrid

Forwarding Engine is finally functional since the man-

datory blocks, P4-Runtime and ARP-Path from Fig. 1,
are supported in spite of the encountered limitations.

3.3 BMv2 based target

Once the ARP-P4 behaviour is defined by using the P4

language, the following step is to introduce that beha-

viour in a target that allows to implement the P4 source
code. The BMv2 software switch [19] has this function-

ality and also an API that supports the definition of

extern data structures and private APIs. Moreover, this
target also possesses a multicast group in the PRE to

forward efficiently broadcast traffic, which is an import-

ant feature since ARP-Path establishes paths by ex-

ploring the shortest paths based on a controlled flood-
ing mechanism. Unfortunately, the standard BMv2 tar-

get performs flooding sequentially among all configured

ports except for the ingress port as expected (i.e. it al-
ways starts at the same port and go through the rest

in the same order) by default. This behaviour is unfair

since this predefined order can benefit the discovery of
certain paths with respect to others. Thus, this sequen-

tial flooding has been replaced by a randomised one

where each flooding action selects a random order of

the egress ports to forward the packets. This random-
isation mitigates the aforementioned effect. Hence, once

the extern LT and its associated extern API are defined,

an operational software ARP-P4 device is obtained.

4 Evaluation

In the evaluation of ARP-P4, we compare the obtained
performance from both its ARP-Path autonomous be-

haviour and P4-Runtime behaviour with the perform-

ance of a legacy ARP-Path switch [7]. The P4-Runtime
behaviour is configured by the use of an Equal-Cost

Multi-Path (ECMP) routing scheme managed by an

ONOS instance. Moreover, an additional test is con-
ducted to demonstrate how both forwarding schemes

can work together according to the proposed design.

4.1 Testbed

Our hardware infrastructure consists of 5 computers
powered by Intel(R) Core(TM) i7 processors with 24

GB of RAM, all of which are interconnected via a GbE

Netgear GS116 switch for emulation. To validate our
ARP-P4 implementation, we use the Mininet [20] emu-

lation platform, which allows the evaluation of ARP-

P4 using a real Linux TCP/IP environment. The same

emulation platform and network conditions are used
with ARP-Path switches [7] to assure the same eval-

uation conditions.

4.2 Experimental Setup

ARP-Path establishes paths in Layer 2 domains since
it does not make use of information from IP or upper

layers, it uses exclusively Layer 2 information (MAC ad-

dresses). Therefore, high demanding Layer 2 scenarios
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Figure 4 Spine-Leaf 4-4-20 evaluation topology

Figure 5 Flow size CDFs

are excellent candidates two evaluate ARP-P4 or ARP-

Path such as data center scenario. Spine-Leaf topolo-
gies [21–23] are typically deployed for high-performance

scenarios such as the aforementioned data center net-

works. Thus, this kind of topology is selected to perform
the experiments since it is representative and widely

used. Hence, a 4-4-20 Spine-Leaf topology, which con-

tains 2 rows of 4 switches (4 spines and 4 leaves) with

20 servers per leaf switch for a total of 80 servers, is
used for the evaluation of ARP-P4. Figure 4 shows a

scheme of the topology setup.

Traffic flows are randomly distributed between any
pair of servers attached to two different leaf switches

with no further restrictions. In addition, we consider

two different flow size distributions, Data Mining and
Web Search, derived from experimental traces taken

from actual data center networks [24, 25]. Fig. 5 shows

the CDF of both distributions and also illustrates how

flows are classified according to their size in elephants,
rabbits and mice. Flows with less than 10 KB and more

than 10 MB of data are considered mouse and elephant

flows, respectively, as explained in [24]. The remaining
flows are identified as rabbit flows. Figure 6 depicts the

percentage of flows of each type (left), as well as the per-

centage of transmitted bytes by each of them (right).
Lastly, we calculate the average flow inter-arrival time

(IAT) to achieve an average offered network load of

10%, 20%, and 40% with respect to the full capacity

of links, according to either the Web search or Data
mining flow size distributions.

Each experiment runs for 1800 seconds and it is re-

peated 10 times to later compute 95% confidence inter-

Figure 6 Total flows and total bytes per flow type

Table 1 Experimental Setup

Parameter Value

Network topology Spine-Leaf (4 - 4)[21]
Servers per leaf switch 20
Flow distribution Random inter-leaf
Flow size CDFs Web search[25], Data mining [24]
Network offered load 10, 20 & 40%
Link speed (Mpbs) 10Mbps
Run length (s) 1800 s
Warm up time (s) 800 s
Number of runs 10
Confidence intervals 95%

vals. Additionally, we consider a warm-up time of 800

seconds to mitigate any transitory effect on the results.
Table 1 summarises the full setup of the conducted ex-

periments.

4.3 Results

We monitored the the ARP-P4 devices by using the
ONOS platform since it has P4-Runtime support. Hence,

it was necessary for this task the required pipeconf con-

figuration from the ARP-P4 P4INFO definition, see sec-
tion 3.2.2, to interoperate with the ARP-P4 devices.

Two different sets of results have been obtained. The

first set of results measures the performance of ARP-
P4 devices when they establish paths using ARP-Path

or P4-Runtime, where an ECMP policy is used. The

second set of results verifies the hybrid SDN ARP-

Path/P4-Runtime forwarding.

4.3.1 ARP-P4 Performance

On the one hand, Fig. 7 shows different monitored paths

in green, which are obtained autonomously from our

ARP-P4 devices, which demonstrates their ARP-Path

functionality. On the other hand, Fig. 8 shows the per-
formance achieved by ARP-P4. It is measured the per-

formance when ARP-P4 establishes paths using ARP-

Path, ARP-P4 (ARP-Path) results, or P4-Runtime rules,
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(a) First path (b) Second path (c) Third path

Figure 7 Paths Diversity on Spine-Leaf (4-4-20) topology

(a) Throughput on Spine-Leaf topology (b) Flow Completion Time on Spine-Leaf topology

Figure 8 Performance measurements on Spine-Leaf (4-4-20) topology

ARP-P4 (P4-Runtime) results. If P4-Runtime is used,

paths are set up by an ONOS controller by applying an
ECMP policy to a k-shortest path algorithm) for the

different types of flows (elephant, rabbit, and mouse).

Moreover, the results are also compared with other soft-

ware switch that also supports ARP-Path [7], ARP-
Path results.

Figure 8(a) depicts the obtained throughput of ARP-

P4 devices. The results obtained using the Web Search
traffic distribution are shown on the left-hand side of

the figure and those obtained using the Data Mining

distribution on the right-hand side. Throughput de-

creases with the offered load regardless of the protocol
and traffic distribution in use as expected. When the

number of flows increases, each flow can get a smaller

portion of the available resources (link capacity). This

produces that the flows obtain a smaller bandwidth,

therefore their flow complexion time (FCT) increases
(see Fig.8(b)) as well as their time in the network, which

causes a decrease in the performance of the network.

ARP-Path without a global controller and using only

the local information has a very similar performance
than using ECMP with P4-Runtime. This behaviour

can be observed in Fig. 8. The result is quite relevant

since a performance similar to the use of ECMP with
P4-Runtime is possible without the intervention of a

controller in a distributed and simple way. Moreover, it

is important to remember how is possible to establish
rules from an SDN controller with higher priority, to

achieve any other required policies if necessary, due to

its hybrid properties.
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When the network load is low, we observe how the

performance of ARP-P4 when uses ARP-Path is very
similar to the other ARP-Path switch but, when the

load increases, the performance of ARP-P4 decreases.

On the one hand, this fact can be observed in Fig. 8(a)
where the throughput decreases unexpectedly when the

offered load is equal to 40%. On the other hand, the

complementary effect is observed in Fig. 8(b), where the
FCT suddenly increases if the load reaches 40%. This

fall in performance on both measurements is more ac-

centuated with elephant and rabbit flows (regardless of

the flow size distribution), which are the main contrib-
utors to the offered load in the conducted experiments.

Thus, we revised again if the setup of paths by ARP-P4

were correct. No issue was found; thus, we concluded
that some kind of bottleneck or issue might exist in

the ARP-P4 enabled target that degrades the expected

performance. To explain this unexpected low perform-
ance, we analysed the code of BMv2 in deep to look

for some explanation. Finally, we found out that the

packets are not processed in the same order as their ar-

rival order by a BMv2 target. A BMv2 target dequeues
one packet from each ingress port following a Round

Robin (RR) policy. This RR policy provokes a disorder

in the received packets and masks the real delays of the
explored paths, making the ARP-Path exploration pro-

cess in the target not to work properly since the fastest

paths cannot be found due to this issue. This undesir-
able effect is especially noticeable on high loads with

lots of packets in the ingress queues.

4.3.2 Hybrid SDN ARP-Path/P4-Runtime

functionality test

The remaining test related to ARP-P4 is to validate

that both ARP-Path and P4-Runtime forwarding en-
gines work together properly. In order to check this be-

haviour, a Packet Test Framework (PTF) [26] is used,

which is based on Python and the Scapy library [27].

This PTF allows the definition of unity tests in devices
with P4-Runtime support. A set of rules is set up via

P4-Runtime through the PTF. Moreover, a set of in-

gress packets is injected in the ARP-P4 device and
it is checked if we obtain the expected output from

the ARP-P4 device. Specifically, an ACL is defined by

the unity test and consequently, through P4-Runtime,
no forwarding rules are defined, they are only filter-

ing rules. Hence, if the P4-Runtime rules work prop-

erly, packets would be dropped if they do not match

the ACL. In addition, no egress packets should exist if
the ARP-Path autonomous forwarding does not work

since the configured P4-Runtime rules cannot forward

packets. Therefore, the unity test much check that the
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Figure 9 Unity Test

undesired traffic is blocked and how the desired traffic is
forwarded through the egress port as expected accord-

ing ARP-Path (P4-Runtime rules are not setup to for-

ward packets). Hence, we use the PTF as a P4-Runtime
client to verify that the ACL works properly. Figure 9

shows how the PTF first installs the ACL filtering rules

to verify later the ARP-P4 hybrid behaviour by inject-
ing well-known packets and checking if the packets are

forwarded or dropped as expected.

The unity test is defined as follows. An ARP-P4
devices is used to connect an internal network with

IP prefix 10.0.0.0/16, a Demilitarized Zone (DMZ) net-

work with IP prefix 160.88.82.0/24 that supports two

(DNS and HTTP) servers, a external network with IP
prefix 160.20.0.0/16 and a gateway that gives access

to Internet. Furthermore, a SDN controller monitors

and restricts dynamically the employees traffic by us-
ing the ARP-P4 device. Only certain IP prefixes and

domains are allowed, which form a white-list. There-

fore, the polices according the described scenario are de-
sired as follows: (1) All the traffic inside the IP network

10.0.0.0/16 is allowed. (2) TCP/UDP traffic from in-

side to outside is permitted. (2) DNS and HTTP traffic

towards the DMZ network is allowed. (4) The traffic
between the aforementioned IP prefixes is also permit-

ted. (5) TCP SYN packets from inside are forwarded

to the SDN controller to allow or discard the flows ac-
cording the white-list. (6) Any other traffic is blocked.

After installing the policy rules via P4-Runtime, the

unitary test injects the following packets. (1) A TCP
SYN and a UDP datagram from outside to the in-

ternal network. Both packets are discarded by the P4-

Runtime rules. (2) A DNS query and a HTTP access
from the outside to the DMZ network. Both requests

are allowed by the P4-Runtime rules and later forwar-

ded by using ARP-Path. (3) TCP SYN from inside gen-

erates a packet in in the SDN controller. If the destin-
ation address does not match the white-list, the packet

is discarded in the controller, otherwise the packet is

sent back via a packet out since it is allowed. Later,
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the packet is forwarded by using ARP-Path according

the behaviour defined in Fig. 1. (4) TCP SYN packets
from internal networks target the considered external

network. The opposite direction is also considered. All

requests are allowed by the P4-Runtime rules and later
forwarded by using ARP-Path again. (5) ICMP packets

from outside are sent inside. All of them are discarded

by the P4-Runtime rules. Hence, whole unity test be-
haves as expected according the desired policies. Thus,

the expected hybrid ARP-Path/P4-Runtime behaviour

of ARP-P4 is confirmed since the authorised packetes

are properly forwarded.

5 Current ARP-P4 limitations

On the one hand, after studying thoroughly the beha-
viour of ARP-P4 as well as its definition in BMv2 tar-

get, we can see the limitations of its design. Although

ARP-P4 behaves as expected, it is undesirable that

the designed P4 based device with autonomous control
plane capabilities cannot access, manage and modify

standard P4 matching tables according to the inspec-

tion of ingress packets. Currently, it is only possible to
operate with P4 matching tables through P4-Runtime.

This is an important constraint since no simple policy

can be established to forward packets autonomously,
which make no possible the definition of a simple learn-

ing or an ARP-Path switch. We believe that the P4 lan-

guage should be extended not only with the objective to

fulfil the requirements of a date plane for an SDN archi-
tecture based on a remote control plane, but P4 should

also be able to allow also the description of a local con-

trol plane if desired. Therefore, the definition of prim-
itives on P4 that allow the management of standard

P4 matching tables via P4-Runtime from internal P4

actions or extern objects would be the key to provide
to the P4 language of more functionalities and higher

flexibility. Furthermore, it is important to highlight that

autonomous behaviours do not imply isolation with re-

spect to SDN control planes, i.e. ARP-P4 is envisioned
to support both control planes.

On the other hand, the performance issues that the

BMv2 based targets currently suffer are motivated by
how ingress packets are processed because their order

of arrival is not maintained for their later processing.

This fact has an important impact on ARP-P4 per-
formance since the queuing time of packets is modi-

fied and the ARP-Path protocol is based on the packet

delays suffered by packets to discover the path with

less congestion. Moreover, this issue could also affect to
any Quality of Service (QoS) policy established either

autonomously or via a P4-Runtime capable SDN con-

troller. Perhaps other targets will not suffer this issue.

6 Conclusions

The ARP-P4 switch is a hybrid SDN ARP-Path/P4-

Runtime switch that implements both ARP-Path and
P4-Runtime based behaviours by using the P4 language.

ARP-P4 devices can autonomously forward packets in a

level 2 domain if no P4-Runtime matching entries exist.

Currently, it has only be implemented in a BMv2 tar-
get using a P4 program that leverage non-standard ex-

tern functions, without a local controller, to allow light-

weight and low-cost devices. The hybrid SDN ARP-
path/P4-Runtime behaviour has been successfully veri-

fied with an unity test using a PTF. Hence, SDN con-

trollers can reduce their load if they delegate basic for-
warding tasks to ARP-P4 devices. Moreover, the per-

formance of ARP-P4 has been demonstrated effective

on both ARP-Path and ECMP P4-Runtime based for-

warding when a controller establishes the ECMP paths.
Unfortunately, the ARP-Path performance of ARP-P4

is below the expectations, mainly due to the fact that

BMv2-based targets do not maintain the arrival time
of the packets, which causes ARP-P4 devices to misbe-

have, particularly if they forward packets using ARP-

Path. Therefore, the problem does not come from the
ARP-P4 design, but from the BMv2 implementation.

To conclude, we can say that ARP-P4 is a successful at-

tempt to push P4 towards its own limitations by defin-

ing a data plane with autonomous behaviour based on
ARP-Path; although, P4-Runtime and the ARP-Path

extern objects and functions cannot yet directly inter-

act due to the current limitations of the P4 language.

7 Future Work

Different research lines can arise from the analysis of the

design and evaluation of ARP-P4. The current limita-

tions of the P4 language are trully a challenge to over-
come. On the one hand, it would be interesting to make

available non-standard externs to P4-Runtime. On the

other hand, it would be also desirable to allow extern
functions to modify P4 tables and sync any modifica-

tions with P4-Runtime to allow a fully transparent and

synced state among P4 devices with their associated
SDN controllers, particularly if they present autonom-

ous behaviour like ARP-P4. Finally, it would be also

potentially useful to define some unity tests to evalu-

ate the behaviour of different targets supporting P4 as
well as performance tests to identify bottlenecks or un-

desired inefficiencies in a P4 based pipeline, so the tar-

get development and evolution would be strengthened.
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