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Universidad de Alcalá
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Abstract

In this paper, we introduce the T–function, T (s), which is a poly-
nomial defined by means of a univariate resultant constructed from
a given parametrization P(t) ∈ K(t)n, n ≥ 2 of an algebraic space
curve C. It is shown that T (s) =

∏n
i=1HPi(s)

mi−1, where HPi(s), i =
1, . . . , n are polynomials (the fibre functions) whose roots are the fibre
of the ordinary singularities Pi ∈ C of multiplicity mi, i = 1, . . . , n of
C. Therefore, a complete classification of the singularities of C, via the
factorization of a resultant, is obtained.

Keywords: Singularities of an algebraic curve; Multiplicity of a point; Resul-
tant; T–function; Fibre function; Rational curve parametrization

1 Introduction

Parametrizations of rational algebraic curves play an important role in many
practical applications in computer aided geometric design (CAGD) where
objects are often given and manipulated parametrically (see e.g. [10], [11],
[12]). In the last years, important advances have been made concerning the
information one may obtain from a given rational parametrization defining
an algebraic variety. For instance, a complete analysis of the asymptotic
behavior of a given curve has been carried out in [3]; efficient algorithms
for computing the implicit equations that define the curve are provided in
[5] and [19] and the study and computation of the fibre of a point via the
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parametrization can be found in [19]. In addition, some aspects concerning
the singularities of the curve and their multiplicities are studied in the vast
literature on CAGD, e.g. [1], [2], [6], [7], [14], [18], [21] and [22]. Simi-
lar problems, for the case of a given rational parametric surface, are being
analyzed. For instance, the computation of the singularities and their mul-
tiplicities from the input parametrization is presented in [17], a univariate
resultant-based implicitization algorithm for surfaces is provided in [16], and
the computation of the fibre of rational surface parametrizations is developed
in [15].

In this paper, we show how to relate the fibre and the singularities
of a given curve defined parametrically, by means of a univariate resul-
tant which is constructed directly from the parametrization. For this pur-
pose, we consider P(t) ∈ Pn(K(t)) a rational projective parametrization
of an algebraic curve C over an algebraically closed field of characteris-
tic zero, K. Associated with P(t), we consider the induced rational map
ψP : K −→ C ⊂ Pn(K); t 7−→ P(t). We denote by deg(ψP) the degree of
the rational map ψP . The birationality of ψP , i.e. the properness of P(t), is
characterized by deg(ψP) = 1 (see [9] and [20]). Intuitively speaking, P(t)
proper means that P(t) traces the curve once, except for at most a finite
number of points. We will see that, in fact, these points are the singularities
of C.

We recall that the degree of a rational map can be seen as the cardinality
of the fibre of a generic element (see [20]). We use this characterization in
our reasoning and thus, we denote by FP(P ) the fibre of a point P ∈ C via
the parametrization P(t); that is FP(P ) = P−1(P ) = {t ∈ K | P(t) = P}.

In order to make the paper more reader–friendly, we first consider the
case of a given plane curve C defined parametrically by P(t) ∈ P2(K(t)) (see
Sections 2 and 3) to, afterwards, generalize the results obtained to rational
space curves in any dimension (see Section 4). We also assume that C has
only ordinary singularities (otherwise, one may apply quadratic transforma-
tions for birationally transforming the curve into a curve with only ordinary
singularities). Non–ordinary singularities have to be treated specially since
a non–ordinary singularity might have other singularities in its “neighbor-
hood”. This specific case will be addressed in a future work and in fact, we
will show that similar results to those presented in this paper can be stated
for curves with non–ordinary singularities.

Under these conditions, the main goal of the paper is to prove that a
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univariate resultant constructed directly from P(t), which we will call the
T–function, T (t), describes totally the singularities of C. It will be proved
that the factorization of T (t) provides the fibre functions of the different
singularities of C as well as their corresponding multiplicities. The fibre
function of a point P ∈ C via P(t) is given by a polynomial HP (t) which
satisfies that t0 ∈ FP(P ) if and only if HP (t0) = 0. In [14], it is proved
that if HP (t) =

∏n
i=1(t − si)ki then, C has n tangents at P of multiplicities

k1, . . . , kn, respectively. In addition, these tangents can be computed using
P(t) and the roots of each corresponding fibre function. Furthermore, it is
shown that multP (C) = deg(HP (t)).

Taking into account these previous results, in this paper we prove that the
T–function can be factorized as T (t) =

∏n
i=1HPi

(s)mi−1, where HPi
(t) is the

fibre function of the ordinary singularity Pi ∈ C and mi is its multiplicity (for
i = 1, . . . , n). Thus, a complete classification of the singularities of a given
rational curve, via the factorization of a univariate resultant, is obtained.

On finishing this work, we just found a paper by Abhyankar (see [1]) that
proves the factorization of the T–function for a given polynomial parametriza-
tion. In addition, Busé et al., in [6], provide a generalization of Abhyankar’s
formula for the case of rational parametrizations (not necessarily polyno-
mial). This approach is based on the concept of singular factors introduced
in [7], and it involves the construction of µ–basis. Our approach is totally
different, since we generalize Abhyankar’s formula by using the methods and
techniques presented in [14]. This allows us to group the factors of the T–
function to easily obtain the fibre functions of the different singularities and
their multiplicity. Furthermore, we show how to deal with singularities that
are reached by algebraic values of the parameter (see Definition 4 of family
of conjugate parametric points).

As we mentioned above, the results obtained can be stated similarly for
the case of rational space curves in any dimension. The methods developed
in this paper generalize some previous results that partially approach the
computation and analysis of singularities for rational parametrized space
curves (see e.g. [5], [14], [18], [21] or [22]), and it provides, as in the case of
plane curves, a complete classification of the singularities of a given rational
space curve, via the factorization of a univariate resultant. More precisely,
we introduce an extension of the T–function which allows us to perfectly
generalize the results of plane curves to the space case. Any factor of the
new T–function (TE(s)) corresponds to a singularity of the space curve.
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Hence, this paper provides some new achievements on the study of singu-
larities of parametric curves. In particular, the results presented allow, not
only to compute the singularities of the curve, but also to collect the fibre
functions of all the singularities in a single polynomial (the T–function) and
they hold for planar curves and for space curves as well. In addition, we show
how to handle a family of conjugate parametric points to deal with algebraic
numbers.

The ideas presented open several important ways that may be used to
obtain significant results concerning rational parametrizations of surfaces.
In a future work, this problem will be developed in more detail and some
important results are expected to be provided.

The structure of the paper is as follows. Sections 2 and 3 are devoted
to the study of plane curves. In particular, in Section 2, we introduce the
terminology that will be used throughout this paper as well as some previous
results. In Section 3, we introduce the T–function and we present the main
result of the paper. It claims that the factorization of the T–function provides
the fibre functions of the different singularities of the curve. The proof of
this result as well as some previous technical lemmas appear in Section 5.
Section 4 is devoted to generalize the results in Section 3 to parametric space
curves in any dimension. Throughout the whole paper, we outline all the
results obtained with illustrative examples.

2 Analysis and computation of the fibre

Let C be a rational (projective) plane curve defined by the projective parametriza-
tion

P(t) = (p1(t) : p2(t) : p(t)) ∈ P2(K(t)),

where gcd(p1, p2, p) = 1, and K is an algebraically closed field of characteristic
zero . We assume that C is not a line (a line does not have multiple points).
Let d1 = deg(p1), d2 = deg(p2), d3 = deg(p), and d = max{d1, d2, d3}. Thus,
we may write p1, p2 and p as

p1(t) = a0 + a1t+ a2t
2 + · · ·+ adt

d

p2(t) = b0 + b1t+ b2t
2 + · · ·+ bdt

d

p(t) = c0 + c1t+ c2t
2 + · · ·+ cdt

d.

Associated with P(t), we consider the induced rational map ψP : K −→
C ⊂ P2(K); t 7−→ P(t). We denote by deg(ψP) the degree of the rational map
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ψP (for further details see e.g. [20] pp.143, or [9] pp.80). As an important
result, we recall that the birationality of ψP , i.e. the properness of P(t),
is characterized by deg(ψP) = 1 (see [9] and [20]). Also, we recall that the
degree of a rational map can be seen as the cardinality of the fibre of a generic
element (see Theorem 7, pp. 76 in [20]). We will use this characterization
in our reasoning. For this purpose, we denote by FP(P ) the fibre of a point
P ∈ C via the parametrization P(t); that is

FP(P ) = P−1(P ) = {t ∈ K | P(t) = P}.

In general, it holds that P ∈ C if and only if FP(P ) 6= ∅, although an
exception can be found for the limit point of the parametrization.

Definition 1. We define the limit point of the parametrization P(t) as

PL = lim
t→∞
P(t)/td = (ad : bd : cd).

Note that PL ∈ C since P(t)/td = P(t) ∈ C, for t ∈ K, and C is a
closed set. Furthermore, we observe that, given a parametrization P(t),
there always exists an associated limit point, and it is unique.

The limit point is reachable via the parametrization P(t), if there exists
t0 ∈ K such that P(t0) = PL. However, the value t0 ∈ K could not exist,
and then FP(PL) = ∅. Taking into account this statement, if PL is not an
affine point or it is a reachable affine point, we have that P(t) is a normal
parametrization. Otherwise, we say that P(t) is not normal and PL is the
critical point (see Subsection 6.3 in [19]). Further properties of the limit
point are stated and proved in [4].

In Subsection 2.2. in [19], it is stated that the degree of a dominant
rational map between two varieties of the same dimension is the cardinality
of the fiber of a generic element. Therefore, in the case of the mapping
ψP , this implies that almost all points of C (except at most a finite number
of points) are generated via P(t) by the same number of parameter values,
and this number is the degree of ψP . Thus, intuitively speaking, the degree
measures the number of times the parametrization traces the curve when the
parameter takes values in K. Taking into account this intuitive notion, the
degree of the mapping ψP is also called the tracing index of P(t). In order
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to compute the tracing index, the following polynomials are considered,
G1(s, t) := p1(s)p(t)− p(s)p1(t)
G2(s, t) := p2(s)p(t)− p(s)p2(t)
G3(s, t) := p1(s)p2(t)− p2(s)p1(t)

(1)

and G(s, t) = gcd(G1(s, t), G2(s, t), G3(s, t)). In the following theorem, we
compute the tracing index of P(t) using the polynomial G(s, t) (see Subsec-
tion 4.3 in [19]).

Theorem 1. It holds that deg(ψP) = degt(G).

Remark 1. We observe that:

1. The polynomials G1, G2 and G3 satisfy that Gi(s, t) = −Gi(t, s). Clearly,
G(s, t) also has this property.

2. Taking into account the above statement, it holds that degs(Gi) =
degt(Gi) for i = 1, 2, 3, and degs(G) = degt(G).

3. It holds that degt(G1) = max{d1, d3}. Indeed: if d1 6= d3, the statement
trivially holds. If d1 = d3, degt(G1) may decrease if p1(s)cd − p(s)ad =
0. But this would imply that C is a line, which is impossible by the
assumption. Similarly, it holds that degt(G2) = max{d2, d3}, and
degt(G3) = max{d1, d2}.

4. It holds that
G(s, t) = gcd(G1(s, t), G2(s, t)).

Indeed: since p(t)G3(s, t) = p2(t)G1(s, t) − p1(t)G2(s, t), if h(s, t) ∈
K[s, t] divides to G1(s, t) and G2(s, t), then h(s, t) divides to G3(s, t) or
p(t). However, if h(s, t) divides p(t), then h(s, t) = h(t) which would
imply that there exists t0 ∈ K such that G1(s, t0) = G2(s, t0) = p(t0) =
0. Hence, pi(s)/p(s) ∈ K, i = 1, 2, and C would be a line, which is
impossible by the assumption. Similarly, it holds that

G(s, t) = gcd(G1(s, t), G3(s, t)) = gcd(G2(s, t), G3(s, t)).

Throughout this paper, we assume that P(t) is proper, that is deg(ψP) =
1. Otherwise, we can reparametrize the curve using, for instance, the results
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in [13]. Under these conditions, it holds that the degree of C is d (see Theorem
6 in [14]). In addition, G(t, s) = t− s (see Theorem 1) and the cardinality of
the fibre for a generic point of C is 1, although for a particular point it can
be different.

In order to analyze these special points, in the following, we consider a
particular point P = (a, b, c) ∈ C. The fibre of P consists of the values t ∈ K
such that P(t) = P , that is, those which satisfy the fibre equations, defined
as 

φ1(t) := ap(t)− cp1(t) = 0
φ2(t) := bp(t)− cp2(t) = 0
φ3(t) := ap2(t)− bp1(t) = 0.

(2)

Hence, the fibre of P is given by the common roots of these equations,
which motivates the following definition:

Definition 2. Given P ∈ P2(K) and the rational parametrization P(t) ∈
P2(K(t)), we define the fibre function of P at P(t) as

HP (t) := gcd(φ1, φ2, φ3).

Thus, t0 ∈ FP(P ) if and only if HP (t0) = 0.

Remark 2. Depending on whether P is an affine point or an infinity point,
the fibre function can be expressed as follows:

� If P is an affine point, then c 6= 0. Thus, φ3 can be obtained from φ1

and φ2 and, therefore, HP (t) = gcd(φ1(t), φ2(t)).

� If P is an infinity point, then c = 0. Thus, φ1 and φ2 are equiva-
lent to p(t) = 0 (note that a 6= 0 or b 6= 0) and, therefore, HP (t) =
gcd(p(t), φ3(t)).

Note that the functions φ1, φ2 and φ3 depend on P and P(t). However, for
the sake of simplicity, we do not represent this fact in the notation.

In the following, we show how the fibre function of P is related with the
tangents of C at P , and with the multiplicity of P . For this purpose, we first
recall that P is a point of multiplicity ` on C if and only if all the derivatives of
F (where F denotes the implicit polynomial defining C) up to and including
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those of (`− 1)–th order, vanish at P but at least one `−th derivative does
not vanish at P . We denote it by multP (C). The point P is called a simple
point on C if and only if multP (C) = 1. If multP (C) = ` > 1, then we say
that P is a multiple or singular point (or singularity) of multiplicity ` on C
or an `–fold point. Clearly P 6∈ C if and only if multP (C) = 0.

Observe that the multiplicity of C at P is given as the order of the Taylor
expansion of F at P . The tangents to C at P are the irreducible factors
of the first non–vanishing form in the Taylor expansion of F at P , and the
multiplicity of a tangent is the multiplicity of the corresponding factor. If
all the ` tangents at the `-fold point P are different, then this singularity is
called ordinary, and non–ordinary otherwise. Thus, we say that the character
of P is either ordinary or non-ordinary.

In [14], it is shown how to compute the singularities and its corresponding
multiplicities from a given parametrization defining a rational plane curve.
Furthermore, it is provided a method for computing the tangents and for
analyzing the non–ordinary singularities. In particular, the following theorem
and corollary are proved.

Theorem 2. Let C be a rational algebraic curve defined by a proper para-
metrization P(t), with limit point PL. Let P 6= PL be a point of C and let
HP (t) =

∏n
i=1(t − si)

ki be its fibre function (under P(t)). Then, C has n
tangents at P of multiplicities k1, . . . , kn, respectively.

Remark 3. It can not be ensured that two different values of t, namely si0
and si1, provide different tangents. Thus, we could have a same tangent (at
P(si0) = P(si1)) of multiplicity ki0 + ki1.

Corollary 1. Let C be a rational algebraic curve defined by a proper para-
metrization P(t), with limit point PL. Let P 6= PL be a point of C and let
HP (t) be its fibre function (under P(t)). Then, multP (C) = deg(HP (t)).

Example 1. Let C be the rational plane curve defined by the projective
parametrization

P(t) = (−t3 − 5t2 − 7t− 3 : t4 + 7t3 + 17t2 + 17t+ 6 : t4 + 1) ∈ P2(C(t)).
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Let us compute HP (t), where P = (0 : 0 : 1). Since P is an affine point,
we can obtain HP (t) from φ1 and φ2 (see Remark 2). Since φ1(t) = −2t3 −
10t2 − 14t− 6 and φ2(t) = 2t4 + 14t3 + 34t2 + 34t+ 12, we get that

HP (t) = gcd(φ1, φ2) = 2(t+ 3)(t+ 1)2.

Figure 1: Triple point with two tangents

Therefore, P(−1) = P(−3) = P , and applying Theorem 2, we deduce
that C has at P two different tangents, one of multiplicity 1 and the other
one of multiplicity 2. The parametrizations defining these tangents are given
as

τ1(t) = P(−3) + P ′(−3)t and τ2(t) = P(−1) +
P ′′(−1)

2
t2,

respectively (see [14]). Note that these tangents are the lines y = x and
y = −x (see Figure 1). Finally, we conclude that P is a non–ordinary point
of multiplicity 3 (see Corollary 1).

3 Resultants and singularities

In Section 2, we show that, given a rational proper parametrization, P(t),
the multiplicity of a given point, P 6= PL, is the cardinality of the fibre of
P(t) at P (see Corollary 1). That is, the multiplicity of P = P(s0), s0 ∈ K
is given by the cardinality of the set

FP(P(s0)) = {t ∈ K : P(t) = P(s0)}
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(note that we are assuming that P 6= PL). Observe that s0 ∈ FP(P(s0))
and hence, the cardinality of FP(P(s0)) is greater than or equal to 1. Thus,
P(s0) is a singular point if and only if the cardinality of FP(P(s0)) is greater
than 1.

Taking into account the above statement, in this section, we show how
the different factors of a univariate resultant computed from the polynomials
Gi(s, t), i = 1, 2, 3, are exactly the fibre functions of the singularities of C.
Thus, in particular, the singularities of C and its corresponding multiplicities
are determined. The idea for the construction of the resultant is that a point
P(s0) ∈ C, s0 ∈ K, is a singularity if and only if deg(HP(s0)(t)) > 1 (i.e. the
fibre equations of P(s0) have more than one common solution).

For this purpose, we first assume that P(s0) is an affine point. Thus,
Remark 2 implies that the fibre equations are given by{

p1(t)p(s0)− p1(s0)p(t) = 0
p2(t)p(s0)− p2(s0)p(t) = 0.

Note that this is equivalent to G1(s0, t) = G2(s0, t) = 0, where G1(s, t) and
G2(s, t) are the polynomials introduced in (1).

Then, P(s0) is a singular point if and only if G1(s0, t) and G2(s0, t) have
more than one common root or, equivalently, if and only if the polynomials
G1(s0, t)/(t − s0) and G2(s0, t)/(t − s0) have a common root (we note that
s0 is already a root of G1(s0, t) and G2(s0, t)). This implies that

Rest

(
G1(s0, t)

t− s0
,
G2(s0, t)

t− s0

)
= 0.

Hence, given the polynomial

R(s) = Rest

(
G1(s, t)

t− s ,
G2(s, t)

t− s

)
,

if the point P(s0) is singular, then R(s0) = 0. In fact, in [1], it is proved that
this resultant provides the product of the fibre functions of the singularities
of the curve, in the case that P(t) is a polynomial parametrization. A gen-
eralization for the case of a given rational parametrization (not necessarily
polynomial) is presented in [6].

Thus, R(s) can be used to compute the singularities of the curve, but
some problems could appear. First, the values s ∈ K that provide singular
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points are roots of the polynomial R but the reciprocal is not true; i.e. a
root of R may not provide a singular point. In addition, we are assuming
that the singularity is an affine point, but also singularities at infinity have
to be detected.

The T–function, that we introduce below, improves the properties of R(s)
and characterizes the singular points of C (affine and at infinity). In order to
introduce it, we need to consider

δi := degt(Gi), λij := min{δi, δj}, G∗i (s, t) :=
Gi(s, t)

t− s ∈ K[s, t]

and
Rij(s) := Rest(G

∗
i , G

∗
j) ∈ K[s] for i, j = 1, 2, 3, i < j.

Definition 3. We define the T–function of the parametrization P(t) as

T (s) = R12(s)/p(s)
λ12−1.

In the following we show that this function provides essential information
concerning the singularities of the given curve C (see Theorem 3). To start
with, the following proposition claims that the T–function can be defined
similarly from R13(s) or R23(s). In addition, in Corollary 2, we prove that
T (s) is a polynomial.

Proposition 1. It holds that

T (s) =
R12(s)

p(s)λ12−1
=

R13(s)

p1(s)λ13−1
=

R23(s)

p2(s)λ23−1
.

Proof: We distinguish two steps to prove the proposition:

Step 1

First, we show that
R12(s)

p(s)λ12−1
=

R13(s)

p1(s)λ13−1
.

For this purpose, we see the polynomial G1(s, t) ∈ K[s, t] as a polynomial in
the variable t that is, G1(s, t) ∈ (K[s])[t]. Since degt(G1) = degs(G1) = δ1
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(see Remark 1), then G1 has δ1 roots (in the variable t), and one of them is
t = s. Thus, we may write

G1(s, t) = lct(G1)(t− s)(t− α1(s)) · · · (t− αδ1−1(s))

and
G∗1(s, t) = lct(G1)(t− α1(s)) · · · (t− αδ1−1(s)), (3)

where lct(·) denotes the leader coefficient with respect to the variable t of
a polynomial (·). Now, taking into account the properties of the resultants
(see e.g. [8], [19], [23]), we get that

R12(s) := Rest(G
∗
1, G

∗
2) = lct(G

∗
1)
δ2−1

δ1−1∏
i=1

G∗2(s, αi(s)). (4)

Note thatG2(s, t) = p2(s)p(t)−p(s)p2(t), and thusG2(s, αi(s)) = p2(s)p(αi(s))−
p(s)p2(αi(s)). Furthermore, sinceG1(s, αi(s)) = p1(s)p(αi(s))−p(s)p1(αi(s)) =
0, we get that

p(αi(s)) =
p1(αi(s))

p1(s)
p(s).

Therefore,

G2(s, αi(s)) = p2(s)
p1(αi(s))

p1(s)
p(s)− p(s)p2(αi(s)) =

(p1(αi(s))p2(s)− p2(αi(s))p1(s))
p(s)

p1(s)
= G3(s, αi(s))

p(s)

p1(s)

which implies that

G∗2(s, αi(s)) = G∗3(s, αi(s))
p(s)

p1(s)
.

Now we substitute in (4) and we get

R12(s) =

(
lct(G

∗
1)
δ2−1

δ1−1∏
i=1

G∗3(s, αi(s))

)(
p(s)

p1(s)

)δ1−1
,

which can be expressed as

R12(s) = R13(s)lct(G
∗
1)
δ2−δ3

(
p(s)

p1(s)

)δ1−1
.
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Hence, we only have to prove that

lct(G
∗
1)
δ2−δ3

(
p(s)

p1(s)

)δ1−1
=

p(s)λ12−1

p1(s)λ13−1
, (5)

and, for this purpose, we consider different cases depending on d1, d2 and d3
(that is, on the degrees of p1, p2 and p). We remind that δ1 = max{d1, d3},
δ2 = max{d2, d3} and δ3 = max{d1, d2} (see Remark 1).

� Case 1: Let d1 < d3. Then, δ1 = d3 ≤ δ2, and λ12 = δ1. In addition,
it holds that lct(G

∗
1) = lct(G1) = p1(s) since G1(s, t) = p1(s)p(t) −

p(s)p1(t) and d1 < d3. Thus,

lct(G
∗
1)
δ2−δ3

(
p(s)

p1(s)

)δ1−1
=

p(s)δ1−1

p1(s)δ1−δ2+δ3−1
=

p(s)λ12−1

p1(s)δ1−δ2+δ3−1
.

In order to check that (5) holds, we only have to prove that δ1−δ2+δ3 =
λ13. Let us see that this equality holds in the following situations:

a) δ1 < δ3: then, d2 > d1, d3 which implies that δ2 = δ3 = d2 and
λ13 = δ1.

b) δ1 > δ3: then, d3 > d1, d2 which implies that δ1 = δ2 = d3 and
λ13 = δ3.

c) δ1 = δ3: then, d3 = max{d1, d2} which implies that d1 < d2 = d3
and δ1 = δ2 = δ3.

� Case 2: Let d1 > d3. Then, δ1 = d1 ≤ δ3, which implies that λ13 = δ1.
In addition, lct(G

∗
1) = p(s), and then

lct(G
∗
1)
δ2−δ3

(
p(s)

p1(s)

)δ1−1
=
p(s)δ1+δ2−δ3−1

p1(s)δ1−1
=
p(s)δ1+δ2−δ3−1

p1(s)λ13−1
.

Thus, we only have to prove that δ1 + δ2 − δ3 = λ12. For this purpose,
we reason similarly as in Case 1 by considering the following situations:
δ1 < δ2, δ1 > δ2 and δ1 = δ2.

� Case 3: Let d1 = d3 < d2. Then, δ2 = δ3 = d2, and thus lct(G
∗
1)
δ2−δ3 =

1. In addition, δ1 ≤ δ2 = δ3, which implies that λ12 = λ13 = δ1.

� Case 4: Let d2 < d1 = d3. In this case, we have that δ1 = δ2 = δ3 and
then, (5) trivially holds.
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� Case 5: Let d1 = d2 = d3. This case is similar to Case 4.

Step 2

Let us prove that
R12(s)

p(s)λ12−1
=

R23(s)

p2(s)λ23−1
.

For this purpose, we observe that, up to constants in K \ {0}, it holds that
R12(s) = R21(s). Thus, we may write

R12(s) = R21(s) = lct(G
∗
2)
δ1−1

δ2−1∏
i=1

G∗1(s, βi(s))

where
G∗2(s, t) = lct(G2)(t− β1(s)) · · · (t− βδ2−1(s)).

Now, we observe that these equalities are equivalent to (4) and (3), respec-
tively. Thus, reasoning similarly as above, we obtain that

R12(s) = R23(s)lct(G
∗
2)
δ1−δ3

(
p(s)

p2(s)

)δ2−1
and that

lct(G
∗
2)
δ1−δ3

(
p(s)

p2(s)

)δ2−1
=

p(s)λ12−1

p2(s)λ23−1
.

�

Corollary 2. It holds that T (s) ∈ K[s].

Proof: Let us assume that T (s) is not a polynomial. Then, we simplify the
rational function and we write

R12(s)

p(s)λ12−1
=
M12(s)

p̄(s)
,

where M12(s) ∈ K[s], p(s) ∈ K[s] \ K and gcd(M12, p̄) = 1. Note that p
divides pλ12−1.
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Similarly, from Proposition 1, we have that
R13(s)

p1(s)λ13−1
=
M13(s)

p̄1(s)
where p1 divides pλ13−11 , and gcd(M13, p̄1) = 1

R23(s)

p2(s)λ23−1
=
M23(s)

p̄2(s)
where p2 divides pλ23−12 , and gcd(M23, p̄2) = 1.

Furthermore, we have that (see Proposition 1)

M12(s)

p̄(s)
=
M13(s)

p̄1(s)
=
M23(s)

p̄2(s)

which implies that

M12(s)p̄1(s) = M13p̄(s) and M23(s)p̄1(s) = M13p̄2(s).

Taking into account that gcd(M12, p̄) = gcd(M13, p̄1) = gcd(M23, p̄2) = 1,
and the above equalities, we get that p1 = p2 = p. Then, we deduce that p
divides p, p1 and p2, which is impossible since gcd(p1, p2, p) = 1. �

In the following theorem, we show how the ordinary singularities of C
can be determined from the T–function. In fact, T (s) describes totally the
singularities of the curve, since its factorization provides the fibre functions
of each singularity as well as its corresponding multiplicity. From the fibre
function, HP (t), of a point P , one obtains the multiplicity of P , its fibre, and
the tangent lines at P (see Section 2).

An alternative approach for computing this factorization, based on the
construction of µ–basis, can be found in [6].

In Theorem 3, we assume that C has only ordinary singularities. Other-
wise, for applying this theorem, we should apply quadratic transformations
(blow-ups) for birationally transforming C into a curve with only ordinary
singularities (see Chapter 2 in [19]). For such a curve the following theorem
holds.

Theorem 3. (Main theorem) Let C be a rational algebraic curve defined
by a parametrization P(t), with limit point PL. Let P1, . . . , Pn be the singular
points of C, with multiplicities m1, . . . ,mn respectively. Let us assume that
they are ordinary singularities and that Pi 6= PL for i = 1, . . . , n. Then, it
holds that

T (s) =
n∏
i=1

HPi
(s)mi−1.
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This theorem will be proved in Section 5 and a generalization for the case
of space curves of any dimension will be presented in Section 4. Moreover,
in [4], we prove that the theorem holds also if PL is a singularity. Finally, an
analogous result which admits the existence of non–ordinary singularities in
the curve will be developed in a future work.

Corollary 3. Let C be a rational plane curve of degree d such that all its
singularities are ordinary. Let P(t) be a parametrization of C such that PL
is regular. It holds that deg(T ) = (d− 1)(d− 2).

Proof: From Theorem 3 and Corollary 1, we have that deg(T ) =
∑n

i=1mi(mi−
1), where P1, . . . , Pn are the singular points, andm1, . . . ,mn its corresponding
multiplicities. Since C is a rational curve, its genus is 0 and thus

∑n
i=1mi(mi−

1) = (d− 1)(d− 2) (see Chapter 3 in [19]). �

Example 2. Let C be the rational plane curve defined by the projective
parametrization

P(t) = (t5−5t4+5t3+5t2−6t : t5+5t4+5t3−5t2−6t : t4−13t2+36) ∈ P2(C(t)).

We compute the T–function and we get that, up to constants in C,

T (s) = (t− 2)(t− 3)(t+ 3)(t+ 2)t2(t2 + 6)(t− 1)2(t+ 1)2.

Thus, from Theorem 3, we deduce that the fibre function of each singularity
of C appears in the polynomial T . Let us analyze the different factors of T :

� The factors with power 2 correspond to triple points. Indeed: these
factors are t, (t−1) and (t+1), and we have that P1 = P(0) = P(1) =
P(−1) = (0 : 0 : 1). Then, P1 is a triple point whose fibre function is

HP1(t) = (t− 1)(t+ 1)t.

� The factors with power 1 correspond to different double points. In order
to determine the associated factors, we should compute the correspond-
ing fibre functions. For the factors (t − 2) and (t − 3), we have that
P2 = P(2) = P(3) = (0 : 1 : 0) and thus

HP2(t) = (t− 2)(t− 3).

This implies that P2 is a double point at infinity.
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� Similarly, if we consider the factors (t + 2) and (t + 3), we get that
P3 = P(−2) = P(−3) = (1 : 0 : 0), and its fibre function is

HP3(t) = (t+ 2)(t+ 3),

which implies that P3 is a double point at infinity.

� Finally, the factor (t2+6) provides the point P4 = P(−I
√

6) = P(+I
√

6) =
(−7/5 : 7/5 : 1). Hence, P4 is an affine double point and its fibre func-
tion is

HP4(t) = (t2 + 6).

Figure 2: Curve C (left) and a neighborhood of the triple point P1 (right)

Note that,

T (s) = HP1(s)
m1−1HP2(s)

m2−1HP3(s)
m3−1HP4(s)

m4−1.

Furthermore, we observe that Corollary 3 is verified. Indeed, we have that
d = 5 and degt(T ) = 12 = (d− 1)(d− 2).

In Figure 2, we plot the curve C, and a neighborhood of the triple point
P1. Observe that P4 is an isolated point.

In Example 2, we have been able to determine the singularities of C and
its corresponding multiplicities, by computing the factors of the polynomial
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T (s). However, in general, one needs to introduce algebraic numbers during
the computations. In the following, we present a method that allows us
to determine the factors of the polynomial T (s) (and thus, the singularities
of a curve) without directly using algebraic numbers. For this purpose, we
introduce the notion of family of conjugate parametric points (see [14]), which
generalizes the concept of family of conjugate points (see e.g. Chapter 2 in
[19]). The idea is to collect points whose coordinates depend algebraically
on all the conjugate roots of the same irreducible polynomial m(t). The
computations on such a family of points can be carried out by using the
polynomial m(t).

Definition 4. Let

G = {(p1(α) : p2(α) : p(α))|m(α) = 0} ⊂ P2(K).

The set G is called a family of conjugate parametric points over K if the
following conditions are satisfied:

1. p1, p2, p,m ∈ K[t] and gcd(p1, p2, p) = 1.

2. m is irreducible.

3. deg(p1), deg(p2), deg(p) < deg(m).

We denote such a family by G = {P(s)}m(s) = {(p1(s) : p2(s) : p(s))}m(s).

Condition 2 in Definition 4 can be stated considering that m is only
square-free (see Definition 12 in [14]). However, in order to prove Theorem
4, one needs m to be an irreducible polynomial (see Theorem 16 in [14]).
Hence, using the above definition, in [14] it is proved the following theorem.

Theorem 4. The singularities of the curve C can be decomposed as a finite
union of families of conjugate parametric points over K such that all points
in the same family have the same multiplicity and character.

If some singularities of the given curve are in a family G = {P(s)}m(s) =
{(p1(s) : p2(s) : p(s))}m(s), then the polynomial m(s) will be an irreducible
factor of the T–function. In this case, Theorem 5 allows us to determine the
singularities provided by G and their corresponding multiplicities.
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Theorem 5. Let m(s) be an irreducible polynomial such that m(s)k−1, k ∈
N, k ≥ 1, divides T (s). Then, the roots of m(s) determine the fibre of
some singularities of multiplicity k that are defined by a family of conju-
gate parametric points. The number of singularities in such a family is
n = deg(m(s))/k.

Proof: From Theorem 3, we get that the points in G = {P(s)}m(s) are
singularities of multiplicity k. In addition, if G = {P1, . . . , Pn}, we have that

m(s) =
n∏
i=1

HPi
(s),

where HP1 , . . . , HPn are the fibre functions of the points P1, . . . , Pn, respec-
tively. From Corollary 1, we get that deg(HPi

) = multPi
(C), i = 1, . . . , n,

and since, in this case, multPi
(C) = k, we conclude that deg(m(s)) = nk. �

Example 3. Let C be the rational curve defined by P(t) = (p1(t) : p2(t) :
p(t)) ∈ P2(C(t)), where

p1(t) = t5 − 13t4 + 63t3 − 143t2 + 152t− 60
p2(t) = t5 − 21t4 + 157t3 − 507t2 + 706t− 336
p(t) = t5 + 7t4 − 2t3 + t− 1.

The T–function is given by

T (s) = 28161216(968585964− 2319881360s+ 2070988203s2− 904722886s3 +
208513387s4 − 24407436s5 + 1145528s6)(s− 1)2(s− 2)2(s− 3)2.

From the polynomial T (s), we deduce that the singularities of C are:

� The triple point P1 = P(1) = P(2) = P(3) = (0 : 0 : 1). The fibre
function of P1 is HP1(s) = (s−1)(s−2)(s−3), and these factors appear
with power 2 in the polynomial T (s).

� Three double points associated to the irreducible factor
m(s) = 968585964 − 2319881360s + 2070988203s2 − 904722886s3 +
208513387s4 − 24407436s5 + 1145528s6.
Since m(s) appears with power 1 in the polynomial T (s), we conclude
that it is associated to double points. In addition, using Theorem 5,
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Figure 3: The curve C that has a triple point and three double points

we get that this factor provides three different points (each point has
a fibre function of degree 2 and the three fibre functions have power 1;
multiplying these fibre functions we obtain the polynomial m).

In Figure 3, we plot the given curve C, and we can see the singularities
obtained (note that each singularity is real and affine).

4 The general case for rational space curves

In this section, we show that Theorem 3 can be applied for the case that
the given curve C is a rational space curve. In this case, we construct an
equivalent polynomial to the T–function introduced for plane curves (see
Definition 3), and we prove that this polynomial, which will be denoted as
TE(s), describes totally the singularities of C, since each factor of TE(s) is a
power of the fibre function of one singularity of the given curve. This power
is, in fact, the multiplicity of the singularity minus 1. We recall that from
the fibre function of a point P , one may determine the multiplicity of P as
well as its fibre FP(P ) and the tangent lines of C at P (see Section 2). The
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method presented generalizes the results obtained in [18], since a complete
classification of the singularities of a given space curve, via the factorization
of a univariate resultant, is obtained.

In the following, we consider

P(t) = (p1(t) : . . . : pn(t) : p(t)) ∈ Pn(K(t)), gcd(p1, . . . , pn, p) = 1,

a proper parametrization of a given rational space curve C. In addition,
we define the associated rational parametrization over K(Z), where Z =
(Z1, . . . , Zn−2) and Z1, . . . , Zn−2 are new variables, given by

P̂(t) = (p̂1(t) : p̂2(t) : p̂(t)) =

= (p1(t) : p2(t) + Z1p3(t) + · · ·+ Zn−2pn(t) : p(t)) ∈ P2((K(Z))(t)).

This notation is used for the sake of simplicity, but we note that P̂(t) depends

on Z. Observe that P̂(t) is a proper parametrization of a rational plane curve

Ĉ defined over the algebraic closure of K(Z).

We can establish a correspondence between the points of C and the points
of Ĉ. More precisely, for each point P = (a1 : a2 : a3 : · · · : an : an+1) ∈ C
we have another point P̂ = (a1 : a2 + Z1a3 + · · · + Zn−2an : an+1) ∈ Ĉ.
Moreover, this correspondence is bijective for the points satisfying that a1 6= 0
or an+1 6= 0. For these points, it holds that FP(P ) = FP̂(P̂ ), which implies
that HP (s) = HP̂ (s). Note that the polynomial HP represents the fibre
function of a point P in the space curve C computed from P(t); i.e. the roots
of HP are the fibre of P ∈ C (this notion was introduced in Definition 2 for
a given plane curve but it can be easily generalized for space curves).

Observe that the above correspondence may also be established between
the places of C and Ĉ centered at P̂ and P , respectively. That is, for each
place ϕ(t) = (ϕ1(t) : ϕ2(t) : ϕ3(t) : . . . : ϕn(t) : ϕn+1(t)) of C centered at P we

have the place ϕ̂(t) = (ϕ1(t) : ϕ2(t)+Z1ϕ3(t)+· · ·+Zn−2ϕn(t) : ϕn+1(t)) of Ĉ
centered at P̂ . Hence, the number of tangents of C at P is the same that the
number of tangents of Ĉ at P̂ and, as a consequence, multP (C) = multP̂ (Ĉ).

The correspondence above introduced is not bijective if a1 = an+1 = 0.
In this case, we have that P̂ = (0 : 1 : 0) ∈ Ĉ and the corresponding points
in C are all the points of the form (0 : a2 : a3 : · · · : an : 0). Thus, if we have
exactly ` points P1, . . . , P` ∈ C with Pi = (0 : a2,i : a3,i : · · · : an,i : 0), i =
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1, . . . , `, then FP̂(P̂ ) = ∪`i=1FP(Pi). Hence, HP̂ (s) =
∏`

i=1HPi
(s) (note that

FP(Pi) ∩ FP(Pj) = ∅ if i 6= j) and multP̂ (Ĉ) =
∑`

i=1 multPi
(C).

Thus, in order to study the singularities of C through those of Ĉ, an
additional difficulty arises when C contains two or more points of the form
(0 : a2 : a3 : · · · : an : 0). Let us call them bad points. In the following, we
may assume w.l.o.g. that we are not in this case, i.e. C does not have two
or more bad points. Otherwise, we apply a change of coordinates, and we
consider the new parametrization P∗(t) = (p∗1(t) : p2(t) : . . . : pn(t) : p(t))
of the transformed curve C∗, where p∗1 =

∑n
i=1 λipi, λi ∈ K. By appro-

priately choosing λ1, . . . , λn ∈ K, we have that gcd(p∗1, p) = 1 (note that
gcd(p1, . . . , pn, p) = 1) and thus, C∗ does not have bad points.

Finally, we also note that additional points, which can not be written in
the form (a1 : a2 +Z1a3 + · · ·+Zn−2an : an+1), ai ∈ K, i = 1, . . . , n+ 1, may

appear in the curve Ĉ. Such points are obtained as P̂(t) for t ∈ K(Z) \ K
and they do not have a correspondence with any point of C.

Under these conditions, let Ĝ1, Ĝ2 and Ĝ3 be the equivalent polynomials
to G1, G2 and G3 (defined in (1)), constructed from the parametrization P̂(t).

In addition, let δ̂i := degt(Ĝi) and λ̂ij := min{δ̂i, δ̂j}, i, j = 1, 2, 3, i < j,

Ĝ∗i (s, t) :=
Ĝi(s, t)

t− s ∈ (K[Z])[s, t], i = 1, 2, 3,

and
R̂ij(s) := Rest(Ĝ

∗
i , Ĝ

∗
j) ∈ (K[Z])[s], i, j = 1, 2, 3, i < j.

Then, the T–function of the parametrization P̂(t) is given by

T̂ (s) = R̂12(s)/p̂(s)
λ̂12−1.

It holds that T̂ (s) ∈ (K[Z])[s] (see Corollary 2), and by Proposition 1 we get
that

T̂ (s) =
R̂12(s)

p̂(s)λ̂12−1
=

R̂13(s)

p̂1(s)λ̂13−1
=

R̂23(s)

p̂2(s)λ̂23−1
.

The following theorem is obtained as a consequence of Theorem 3 (see

Section 3), and it shows how the function T̂ (s) can be used to define an
equivalent polynomial to the T–function introduced for plane curves (see
Definition 3). This polynomial, will be denoted as TE(s).
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Similarly as in the case of plane curves, we assume that the space curve, C,
has only ordinary singularities. The case of space curves with non–ordinary
singularities will be analyzed in a future work and an equivalent theorem to
Theorem 6 will be obtained for this case.

Finally we remind, that if C has two or more bad points, we consider
the transformed curve C∗ introduced above. Note that HP (s) = HP ∗(s),
where P ∈ C is moved to the point P ∗ ∈ C∗ when the change of coordi-
nates is applied. Undoing this change of coordinates, one recovers the initial
singularities P ∈ C.

Theorem 6. Let C be a rational algebraic space curve defined by a parametriza-
tion P(t), with limit point PL. Let P1, . . . , Pn be the singular points of C, with
multiplicities m1, . . . ,mn respectively. Let us assume that they are ordinary
singularities and that Pi 6= PL, for i = 1, . . . , n. Then, it holds that

TE(s) =
n∏
i=1

HPi
(s)mi−1,

where TE(s) = ContentZ

(
T̂ (s)

)
∈ K[s], and ContentZ(T̂ ) represents the

content of the polynomial T̂ w.r.t Z.

Proof: From the above statements, we observe that there exists a bijective
correspondence between the points P̂ = (a1 : a2 + Z1a3 + · · · + Zn−2an :

an+1), ai ∈ K, i = 1, . . . , n + 1, of Ĉ and the points P = (a1 : a2 : a3 : · · · :

an : an+1) of C. Consequently, we have that multP̂ (Ĉ) = multP (C), which

implies that P̂ is a singularity of Ĉ of multiplicity m if and only if P is a
singularity of C of multiplicity m. Hence, using Theorem 3, we deduce that

T̂ (s) =
n∏
i=1

HPi
(s)mi−1L(s, Z).

We observe that the factor L(s, Z) ∈ K[s, Z] \K[s] is a product of the fibre

functions corresponding to the singularities of Ĉ that can not be written
as (a1 : a2 + Z1a3 + · · · + Zn−2an : an+1), ai ∈ K, i = 1, . . . , n + 1 (these
singularities do not have an equivalent singularity in C, and its fibre function
necessarily is a polynomial in K[s, Z] \K[s]). Then, we conclude that

TE(s) = ContentZ

(
T̂ (s)

)
=

n∏
i=1

HPi
(s)mi−1.
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�

Example 4. Let C be the rational space curve defined by the projective
parametrization P(t) = (p1(t) : p2(t) : p3(t) : p(t)) ∈ P3(C(t)), where

p1(t) = t5 − 5t4 + 5t3 + 5t2 − 6t
p2(t) = t5 + 5t4 + 5t3 − 5t2 − 6t
p3(t) = t5 + 7t4 + 17t3 + 17t2 + 6t
p(t) = t4 − 13t2 + 36.

We consider the plane curve

P̂(t) = (p1(t) : p2(t) + Zp3(t) : p(t)) ∈ P2((C(Z))(t))

and compute the corresponding T–function:

T̂ (s) = 298598400(s− 2)(s− 3)(s+ 3)(s+ 2)s(s+ 1)L(s, Z),

where L(s, Z) = (3Z+1)(2Z+1)(25s6 +25Z2s6 +50Zs6 +60Z2s5 +35Zs5−
25s5+125s4+322Z2s4+375Zs4+360Z2s3−65Zs3−125s3−150s2−185Zs2+
229Z2s2+150Zs+300Z2s+150s−360Z+432Z2). Removing L(s, Z) (which
depends on Z), we get

TE(s) = 298598400(s− 2)(s− 3)(s+ 3)(s+ 2)s(s+ 1).

Now, reasoning as in Example 2, we deduce that C has three singularities:

� The infinity point P1 = (0 : 1 : 3 : 0), with fibre function HP1(t) =
(t− 2)(t− 3) (let us remark that P1 is a bad point; however, it does not
represent a problem in this case since there are no more bad points in
C).

� The infinity point P2 = (1 : 0 : 0 : 0), with fibre function HP2(t) =
(t+ 2)(t+ 3).

� The affine point P3 = (0 : 0 : 0 : 1), with fibre function HP3(t) = t(t+1).

Note that P1, P2 and P3 are double points of C (see Figure 4).
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Figure 4: Curve C and the double point P3

5 Proof of the main theorem

This section is devoted to show the main result of this paper, Theorem 3
in Section 3. For this purpose, we first prove some previous results. In
particular, the following lemma is obtained using the main properties of the
resultants (see e.g. [8], [19], [23]).

Lemma 1. Let A(s, t), B(s, t), C(s, t) ∈ K[s, t], and K(s) ∈ K[s]. The fol-
lowing properties hold:

1. Rest(A,K) = Kdegt(A).

2. Rest(A,B · C) = Rest(A,B) · Rest(A,C).

3. If B divides A, it holds that Rest(A/B,C) = Rest(A,C)/Rest(B,C).
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4. Rest(A,B+CA) = lc(A)kRest(A,B), where k = degt(B + CA)− degtB.

Proof: First, we remind that if A(t), B(t) ∈ K[t], it holds that

Rest(A,B) = lc(A)deg(B)
∏

A(αi)=0

B(αi).

Now, let A(s, t) ∈ (K[s])[t]. The leader coefficient of A(s, t) w.r.t the vari-
able t is lct(A) ∈ K[s] and, for each s ∈ K, the polynomial A(s, t) has
degt(A) roots, α1(s), . . . , αdegt(A)(s), in the algebraic closure of K(s), such
that A(s, αi(s)) = 0, for i = 1, . . . , degt(A). Then,

Rest(A,B) = lct(A)degt(B)
∏

A(s,αi(s))=0

B(s, αi(s)). (6)

Now, we prove the four statements of the lemma.

1. The first statement follows using (6) for the case that B(s, t) ∈ K[s].
Then degt(B) = 0 and B(s, αi(s)) = B(s) for each i = 1, . . . , degt(A).

2. In order to prove statement 2, we use (6), and we get that

Rest(A,B · C) = lct(A)degt(B·C)
∏

A(s,αi(s))=0

B(s, αi(s)) · C(s, αi(s)).

Since degt(B · C) = degt(B) + degt(C), we have that

Rest(A,B · C) =lct(A)degt(B)
∏

A(s,αi(s))=0

B(s, αi(s))

lct(A)degt(C)
∏

A(s,αi(s))=0

C(s, αi(s))


= Rest(A,B) · Rest(A,C).

3. Reasoning similarly as in statement 2, we get that

Rest(A/B,C) = lct(A/B)degt(C)
∏

A(s,αi(s))=0, B(s,αi(s)) 6=0

C(s, αi(s)).

Since B divides A, we obtain that

lct(A/B)degt(C)
∏

A(s,αi(s))=0, B(s,αi(s)) 6=0

C(s, αi(s)) =

lct(A)degt(C)

lct(B)degt(C)

∏
A(s,αi(s))=0C(s, αi(s))∏
B(s,αi(s))=0C(s, αi(s))

=
Rest(A,C)

Rest(B,C)
.
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4. We reason similarly as above, and we get that

Rest(A,B + CA) = lct(A)degt(B+CA)·∏
A(s,αi(s))=0

(B(s, αi(s)) + C(s, αi(s))A(s, αi(s))) =

= lc(A)degt(B+CA)−degtB

lc(A)degt(B)
∏

A(s,αi(s))=0

B(s, αi(s))

 =

= lc(A)kRest(A,B), where k = degt(B + CA)− degtB.

The following lemma provides a first approach to the proof of the main
result presented in this paper (Theorem 3 in Section 3). In particular, it is
shown that each factor HP (s)m−1, where P is an ordinary singular point of
multiplicity m, divides the T–function.

Lemma 2. Let C be a rational algebraic curve defined by a parametrization
P(t), with limit point PL. Let P 6= PL be an ordinary singular point of
multiplicity m. It holds that

T (s) = HP (s)m−1T ∗(s),

where T ∗(s) ∈ K[s] and gcd(HP (s), T ∗(s)) = 1.

Proof: In order to prove this lemma, we distinguish three different steps. In
Step 1, we prove that the lemma holds if P = (0 : 0 : 1). In Step 2, we show
that the lemma holds for any affine singularity. Finally, in Step 3, we prove
the lemma for P being a singular point at infinity.

Step 1

Let us assume that the given singularity is the point P = (0 : 0 : 1). Note
that HP (t) = gcd(φ1, φ2) = gcd(p1, p2) since, in this case, a = b = 0 (see
(2)). Thus, we may write {

p1(t) = HP (t)p1(t)
p2(t) = HP (t)p2(t),

where p1(t) and p2(t) are polynomials satisfying that gcd(p1, p2) = 1. In
addition, it holds that gcd(HP (t), p(t)) = 1, since gcd(p1, p2, p) = 1. Hence,

27



from (1), we may write G3(s, t) = HP (s)HP (t)(p1(s)p2(t) − p2(s)p1(t)) that
is,

G3(s, t) = HP (s)HP (t)G3(s, t), (7)

where G3(s, t) = p1(s)p2(t)− p2(s)p1(t).
Observe that since P 6= PL, Corollary 1 holds and then deg(HP (t)) =

m ≥ 2. Hence, there exist at least two values s0, s1 ∈ K such that HP (s0) =
HP (s1) = 0 and then, since these roots belong to the fibre of P , we deduce
that ((

p1
p

)
(s0),

(
p2
p

)
(s0)

)
=

((
p1
p

)
(s1),

(
p2
p

)
(s1)

)
= (0, 0).

Since P is an ordinary singularity, we have that there can not exist K1, K2 ∈
K such that

K1

((
p1
p

)′
(s0),

(
p2
p

)′
(s0)

)
= K2

((
p1
p

)′
(s1),

(
p2
p

)′
(s1)

)
. (8)

We also note that, for i = 1, 2 and j = 0, 1, it holds that(
pi
p

)′
(sj) =

p′i(sj)p(sj)− pi(sj)p′(sj)
p(sj)2

=
p′i(sj)

p(sj)
,

(note that pi(sj) = 0). In addition, since pi(t) = HP (t)pi(t), we get that

p′i(sj)

p(sj)
=
H ′P (sj)pi(sj) +HP (sj)p

′
i(sj)

p(sj)
=
H ′P (sj)pi(sj)

p(sj)
,

(note that HP (sj) = 0). By substituting in (8), we obtain that

K1

(
H ′P (s0)p1(s0)

p(s0)
,
H ′P (s0)p2(s0)

p(s0)

)
6= K2

(
H ′P (s1)p1(s1)

p(s1)
,
H ′P (s1)p2(s1)

p(s1)

)
.

Hence, we remark that:

� H ′P (si) 6= 0, i = 0, 1. That is, s0 and s1 are simple roots of HP .

� None of the following equalities may be verified:
p1(s0) = p2(s0) = 0
p1(s1) = p2(s1) = 0
p1(s0) = p1(s1) = 0
p2(s0) = p2(s1) = 0

(9)
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� If p1(s1) 6= 0 and p2(s1) 6= 0, then

p1(s0)

p1(s1)
6= p2(s0)

p2(s1)
. (10)

Taking into account these remarks, we prove that T (s) = HP (s)m−1T ∗(s).
For this purpose, we first write the T–function as

T (s) = R13(s)/p1(s)
λ13−1

(see Proposition 1). From (7), we get that

R13(s) = Rest

(
G∗1(s, t), HP (s)HP (t)G

∗
3(s, t)

)
,

where G
∗
3(s, t) = G3(s, t)/(t − s) (note that G

∗
3(s, t) ∈ K[s, t] since (t − s)

divides G3(s, t)). By applying statement 2 of Lemma 1, we have that

R13(s) =

Rest (G∗1(s, t), HP (s)) Rest (G∗1(s, t), HP (t)) Rest

(
G∗1(s, t), G

∗
3(s, t)

)
. (11)

Let us analyse the first two factors:

� From statement 1 of Lemma 1, we have that

Rest (G∗1(s, t), HP (s)) = HP (s)degt(G
∗
1) = HP (s)δ1−1.

� On the other side,

Rest (G∗1(s, t), HP (t)) = Rest

(
p1(s)p(t)− p(s)p1(t)

t− s ,HP (t)

)
and, by applying statement 3 of Lemma 1, we get that

Rest (p1(s)p(t)− p(s)p1(t), HP (t))

Rest (t− s,HP (t))
.

Note that Rest (t− s,HP (t)) = HP (s) and, since p1(t) = HP (t)p1(t),
the above expression can be written as

Rest (p1(s)p(t)− p(s)HP (t)p1(t), HP (t))

HP (s)
.
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Now, from statements 1 and 4 of Lemma 1, we get that

Rest (G∗1(s, t), HP (t)) =
p1(s)

mRest (p(t), HP (t)) lc(HP (t))k

HP (s)
,

where k ∈ K. Note that, lc(HP (t))k ∈ K \ {0} and Rest (p(t), HP (t)) ∈
K \ {0} (since gcd(p,HP ) = 1). Furthermore, we have that p1(s) =
HP (s)p1(s). Thus, up to constants in K \ {0}, we deduce that

Rest (G∗1(s, t), HP (t)) = HP (s)m−1p1(s)
m.

Substituting in (11), we obtain that

R13(s) = HP (s)δ1−1HP (s)m−1p1(s)
mRest

(
G∗1(s, t), G

∗
3(s, t)

)
,

and thus

T (s) =
R13(s)

p1(s)λ13−1
=

R13(s)

HP (s)λ13−1p1(s)
λ13−1

= HP (s)m−1T ∗(s),

where

T ∗(s) =
Rest

(
G∗1(s, t), G

∗
3(s, t)

)
HP (s)δ1−λ13

p1(s)
λ13−1−m

.

Note that λ13 = δ1 since δ1 ≤ δ3. Otherwise, if δ1 > δ3, we would have that
max{d1, d3} > max{d1, d2} and then, d3 > d1, d2. However, this would imply
that P = PL (see Definition 1), which contradicts the assumption. Therefore,

T ∗(s) =
Rest

(
G∗1(s, t), G

∗
3(s, t)

)
p1(s)

δ1−1−m
. (12)

Now, we prove that T ∗(s) ∈ K[s]. We can assume that δ1− 1−m ≥ 0, since
δ1 = max{d1, d3} ≥ d1 and d1 = deg(p1) = deg(HP · p1) = m + deg(p1).
Hence, δ1 ≥ m+ 1 except for the case that deg(p1) = 0, but in this situation
we would have that

T ∗(s) = Rest

(
G∗1(s, t), G

∗
3(s, t)

)
∈ K[s].

So, let δ1− 1−m ≥ 0. Now, we reason similarly as in the proof of Corollary
2. Indeed: let us assume that T ∗(s) is not a polynomial. Then, by taking
the simplified rational function, we may write

T ∗(s) =
M13(s)

p̂1(s)
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where M13(s) ∈ K[s], p̂1(s) ∈ K[s] \K and gcd(M13(s), p̂1(s)) = 1. Note that
p̂1(s) divides p1(s)

δ1−1−m.

We observe that (12) is obtained from T (s) = R13(s)/p1(s)
λ13−1. However,

taking into account Proposition 1, we could have considered the expression

T (s) = R23(s)/p2(s)
λ23−1

concluding that T (s) = HP (s)m−1T ∗(s), where

T ∗(s) =
Rest

(
G∗2(s, t), G

∗
3(s, t)

)
p2(s)

δ2−1−m
. (13)

Reasoning similarly as above, we get that there would existM23(s) ∈ K[s], p̂2(s) ∈
K[s] \K with gcd(M23(s), p̂2(s)) = 1, such that

T ∗(s) =
M23(s)

p̂2(s)
.

In addition, p̂2(s) would divide p2(s)
δ2−1−m. Thus, we have that

M13(s)

p̂1(s)
=
M23(s)

p̂2(s)

where gcd(M13(s), p̂1(s)) = gcd(M23(s), p̂2(s)) = 1, which implies that p̂1(s) =
p̂2(s). Hence gcd(p1, p2) 6= 1, which contradicts the definition of these func-
tions.

Thus, we have proved that T ∗ is a polynomial. Finally, we show that
gcd(HP (s), T ∗(s)) = 1. Indeed: if gcd(HP (s), T ∗(s)) 6= 1, there exists s0 ∈ K
such that HP (s0) = 0 and T ∗(s0) = 0, which implies that

Rest

(
G∗1(s, t), G

∗
3(s, t)

)
(s0) = 0.

Then, by the properties of the resultants, one of the following statements
hold:

1. There exists s1 ∈ K such that G∗1(s0, s1) = G
∗
3(s0, s1) = 0. This would

imply that G∗3(s0, s1) = 0, and, then, s0 and s1 are elements of the
fibre of P . Note that s0 6= s1 since HP only has simple roots (P is an
ordinary point). On the other side,

G3(s0, s1) = p1(s0)p2(s1)− p2(s0)p1(s1) = 0
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and thus,
p1(s0)

p1(s1)
=
p2(s0)

p2(s1)

(note that pi(s1) 6= 0, i = 1, 2, since the equalities in (9) can not be
verified). This implies that P is a non–ordinary singular point (see
(10)), which contradicts the assumptions.

2. It holds that gcd(lct(G
∗
1), lct(G

∗
3))(s0) = 0. Then, in particular,

lct(G
∗
1)(s0) = lct(G1)(s0) = p1(s0)cd − p(s0)ad = 0⇒ ad = 0.

Now we reason similarly with the equality T (s) = R23(s)/p2(s)
λ23−1 and

we get (13). From this expression, and reasoning similarly as above,
we obtain that gcd(lct(G

∗
2), lct(G

∗
3))(s0) = 0, which implies that bd = 0.

However, if ad = bd = 0 we deduce that P = PL, which contradicts the
assumptions.

Therefore, we conclude that gcd(HP (s), T ∗(s)) = 1.

Step 2

Let P = (a : b : 1) be a singularity of multiplicity m. In this case, we
consider the translation of the curve C defined by the parametrization

P̃(t) = (p1(t)− ap(t) : p2(t)− bp(t) : p(t)).

We have that the point P = (a : b : 1) moves to the point P̃ = (0 : 0 : 1),
and then HP (t) = HP̃ (t) (note that the polynomial HP (t) is computed from

P(t), and the polynomial HP̃ (t) is computed from P̃(t)).

On the other side, if we compute the polynomial equivalent to G1(s, t)

with the new parametrization P̃(t), we get that

G̃1(s, t) = p̃1(s)p̃(t)− p̃(s)p̃1(t) =

= (p1(s)− ap(s))p(t)− p(s)(p1(t)− ap(t)) = p1(s)p(t)− p(s)p1(t) = G1(s, t).

Similarly, one obtains that G̃2(s, t) = G2(s, t). Thus,

R̃12(s) = Rest

(
G̃1(s, t)

t− s ,
G̃2(s, t)

t− s

)
= Rest

(
G1(s, t)

t− s ,
G2(s, t)

t− s

)
= R12(s),
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and then

T̃ (s) = R̃12(s)/p̃(s)
λ12−1 = R12(s)/p(s)

λ12−1 = T (s).

Thus, it holds that T (s) = HP (s)m−1T ∗(s) and gcd(HP , T
∗) = 1, since from

Step 1, these equalities hold for HP̃ (s) and T̃ (s).

Step 3

Let us prove that the lemma holds for a singularity at infinity. For this
purpose, we assume that P = (1 : 0 : 0). Note that we can reason similarly
as in Step 1 taking into account that for this case, HP (t) = gcd(p(t), φ3(t)) =
gcd(p(t), p2(t)) (see Remark 2). Hence,

G2(s, t) = HP (s)HP (t)(p2(s)p(t)− p(s)p2(t)).

and

R12(s) = Rest (G∗1, G
∗
2) = Rest

(
G∗1(s, t), HP (s)HP (t)G

∗
2(s, t)

)
where

G
∗
2(s, t) =

p2(s)p(t)− p(s)p2(t)
t− s .

Thus, using the expression T (s) = R12(s)/p(s)
λ12−1, we deduce that the

lemma also holds if the singularity is the point (1 : 0 : 0). A similar reasoning
with the expression T (s) = R23(s)/p2(s)

λ23−1 shows that the lemma holds for
the point (1 : 0 : 0).

Finally, let us assume that P = (a : b : 0). Then, we reason similarly as
in Step 2 and we apply a translation such that the point P is moved to the
point P̃ = (1 : 0 : 0). This translation can be defined parametrically by

P̃(t) = (p1(t) : p2(t)− (b/a)p1(t) : p(t)).

We assume that a 6= 0; otherwise, it should be b 6= 0 and we would use a
translation that would move P to (0 : 1 : 0).

Under these conditions, we have that HP (t) = HP̃ (t). In addition, if we
compute the equivalent polynomials to G1(s, t) and G3(s, t) with the new

parametrization P̃(t), we get that G̃1(s, t) = G1(s, t) and G̃3(s, t) = G3(s, t).
Thus, from Proposition 1,

T̃ (s) = R̃13(s)/p̃1(s)
λ13−1 = R13(s)/p1(s)

λ13−1 = T (s).

33



Therefore

T (s) = HP (s)m−1T ∗(s) and gcd(HP , T
∗) = 1,

since both equalities hold for HP̃ (s) and T̃ (s). �

Proof of the Main Formula (Theorem 3 in Section 3)
Taking into account Lemma 2, we have that for each singular point Pi, it holds
that T (s) = HPi

(s)mi−1T ∗i (s), where T ∗i (s) ∈ K[s] and gcd(HPi
, T ∗i ) = 1. In

addition, gcd(HPi
, HPj

) = 1 for i 6= j (otherwise, there would exist s1 ∈ K
such that P(s1) = Pi = Pj). Then, we get that

T (s) =
n∏
i=1

HPi
(s)mi−1V (s),

where V (s) ∈ K[s] and gcd(HPi
, V ) = 1 for i = 1, . . . , n.

Note that if V (s0) = 0, then T (s0) = 0 and thus, R12(s0) = R13(s0) =
R23(s0) = 0. From R13(s0) = Rest(G

∗
1(s, t), G

∗
3(s, t))(s0) = 0 and using

the properties of the resultant, we deduce that one of the following two
statements hold:

1. There exists s1 ∈ K such that G∗1(s0, s1) = G∗3(s0, s1) = 0. Thus,
HP (s1) = 0, where P = P(s0), which is impossible since gcd(V,HP ) =
1.

2. It holds that gcd(lct(G
∗
1), lct(G

∗
3))(s0) = 0. However, this is also a

contraction since we would have that

lct(G
∗
1)(s0) = lct(G1)(s0) = p1(s0)cd − p(s0)ad = 0⇒ p1(s0)

p(s0)
=
ad
cd

and

lct(G
∗
3)(s0) = lct(G3)(s0) = p1(s0)bd − p2(s0)ad = 0⇒ p1(s0)

p2(s0)
=
ad
bd
.

From both equalities, we deduce that

p2(s0)

p(s0)
=
bd
cd
,
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and then P(s0) = PL. This would imply that PL can be reached by
the parametrization P(t) but this implies that it is a singularity (see
Proposition 3.4 in [4]), which contradicts the assumption of the theo-
rem.

Thus, we have that V ∈ K and, hence, we conclude that, up to constants
in K \ {0},

T (s) =
n∏
i=1

HPi
(s)mi−1.
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[14] Pérez-Dı́az, S. (2007). Computation of the Singularities of Parametric
Plane Curves. Journal of Symbolic Computation. Vol. 42/8. pp. 835–857.
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