
Universidad de Alcalá
Escuela Politécnica Superior

Grado en Ingeniería Electrónica de Comunicaciones

Trabajo Fin de Grado

Labeling and evaluation of a new dataset for human action
recognition in large vessels

Author: Rodrigo Antonio Vidal Pinto

Advisors: Cristina Losada Gutiérrez and Antonio Carlos Cob
Parro

2022

UNIVERSIDAD DE ALCALÁ
ESCUELA POLITÉCNICA SUPERIOR

Grado en Ingeniería Electrónica de Comunicaciones

Trabajo Fin de Grado

Labeling and evaluation of a new dataset for human action
recognition in large vessels

Author: Rodrigo Antonio Vidal Pinto

Advisors: Cristina Losada Gutiérrez and Antonio Carlos Cob Parro

Tribunal:

President: Luciano Boquete Vázquez

1st Vocal: Sonia Martín López

2nd Vocal: Cristina Losada Gutiérrez

Calification: ..

Date: ...

“Be grateful with everything you have and you will be successful in everything you do.”
Conor McGregor

Acknowledgements

Gracias a mi familia, sobre todo a mis padres, César y Jimena, por el apoyo incondicional que me han
dado siempre.

Gracias a Ángeles Puebla por haberme dado la ilusión y el interés que tengo actualmente por la
ingeniería.

Gracias a Cristina, mi tutora, por su paciencia y las incontables horas que ha dedicado conmigo a
este proyecto.

Gracias a Carlos, mi cotutor, por haberme ayudado y enseñado a dar mis primeros avances en este
trabajo.

Gracias a Marta por haberme dado la oportunidad de participar en este proyecto.

Resumen

El objetivo de este Trabajo de fin de Grado (TFG) es la generación, etiqueta y evaluación de un nuevo
dataset denominado Human Action Recognition on Ships (HARS) para el posterior entrenamiento y
evaluación de un sistema para la evacuación de personas en grandes embarcaciones, en el marco del
proyecto PALAEMON: A holistic passenger ship evacuation and rescue ecosystem (H2020-PALAEMON-
814962). Las secuencias a etiquetar incluyen diferentes personas realizando distintas actividades y han
sido grabadas en un barco disponible en Astilleros de Santander S.A.U. (ASTANDER). Para el etiquetado
se ha partido de una herramienta proporcionada por el grupo de investigacion GEINTRA, que ha sido
modificada para su adaptación a las necesidades de etiquetado del dataset, incluyendo no solo acciones
individuales, sino también grupales. Además, se han definido criterios para realizar el etiquetado de las
personas y acciones. La evaluación del dataset se ha llevado a cabo utilizando la red neuronal YOLOv3 y
realizando una evaluación de los resultados obtenidos en la detección de personas con dicha red a partir de
la información etiquetada. La implementación y ejecucion de YOLOv3 se ha realizado en Google Colab y
los resultados se han comparado con los etiquetados empleando MABLAB. El trabajo desarrollado y los
resultados obtenidos han permitido validar el etiquetado del dataset y el cumplimientod de los objetivos
del TFG.

Abstract

The aim of this Final Degree Thesis (TFG) is the generation, labeling and evaluation of a new dataset
named Human Action Recognition on Ships (HARS) for the later trainning and evaluation of a system
in charge of person evacuation in large cruise ships within the framework of PALAEMON: A holistic
passenger ship evacuation and rescue ecosystem project (H2020-PALAEMON-814962). The different
sequences to be labeled inside the dataset include different persons performing distinct activities and
have been recorded in a ship available at Astilleros de Santander S.A.U. (ASTANDER). The labeling has
been based on a tool provided by the GEINTRA research group and has been modified and adapted to
the labeling needs of the dataset including just not individual actions but also group actions. In addition,
criteria to perform the labeling process of persons an actions has been defined. The evaluation of the
dataset has been carried out using the neural network YOLOv3 and performing an evaluation of the
results obtained in person detection with this network from the labeled information. The implementation
and execution of YOLOv3 has been carried out in Google Colab and the results have been compared with
the labeled ones using MATLAB. The developed work and the obtained results have allowed to validate
the labeling of the dataset and the compliance of the objectives of the TFG.

Contents

Contents xiii

List of Figures xvii

List of Tables xxi

List of Acronyms xxiv

1 Introduction 1

1.1 Introduction . 1

1.2 Objectives . 1

1.3 Memory Structure . 2

2 Theoretical foundations 5

2.1 Introducción . 5

2.2 Datasets for people detection . 5

2.2.1 ImageNet . 5

2.2.2 Open Image . 7

2.2.3 COCO . 8

2.2.4 Summary . 9

2.3 Datasets for action recognition . 10

2.3.1 UCF-101 . 10

2.3.2 NTU RGB+D . 11

2.3.3 Kinetics (Kinetics Human Action Video Dataset) 12

2.3.4 Summary . 12

2.4 Group action datasets . 13

2.4.1 Collective activity dataset . 13

2.4.2 Atomic Group actions . 13

2.4.3 UMN . 14

2.4.4 BEHAVE . 14

2.5 Artificial Neural Networks . 15

xiv CONTENTS

2.5.1 Activation functions . 16

2.5.2 ANN structure . 20

2.6 Convolutional Neural Networks . 21

2.7 People and object detection with YOLO . 22

2.7.1 YOLO features . 23

2.7.2 Network Design . 24

2.7.3 Limitations . 25

2.8 YOLOv3 . 25

2.9 Conclusions . 27

3 Development 29

3.1 Introduction . 29

3.2 HARS dataset . 30

3.2.1 Recording setup . 30

3.2.2 HARS dataset characteristics . 33

3.3 Dataset labeling . 35

3.3.1 Labeling tool . 35

3.3.2 Labeling criteria . 38

3.3.2.1 Person Labeling criteria . 39

3.3.2.2 Individual actions labeling criteria . 41

3.3.2.3 Group actions criteria . 46

3.3.2.4 Important considerations about the labeling process 47

3.4 Labeling result . 48

3.5 Dataset evaluation . 48

3.5.1 YOLOv3 implementation in Google Colab . 48

3.5.2 Data processing for evaluation . 52

3.5.2.1 Preparing Ground Truth file for evaluation 53

3.5.2.2 Preparing YOLO coordinates file for evaluation 54

4 Results 57

4.1 Introduction . 57

4.2 Experimental setup . 57

4.2.1 Metrics used for evaluation . 57

4.2.1.1 Classification metrics . 57

4.2.1.2 Intersection over Union (IoU) . 58

4.2.1.3 AUC and ROC curves . 58

4.2.2 Preparing the data for evaluation . 60

4.2.2.1 IoU matrix . 60

CONTENTS xv

4.2.2.2 YOLO accuracy matrix . 61

4.3 Experimental results . 62

4.3.1 RGB vs IR . 63

4.3.2 Lighting conditions . 65

4.3.3 Depth and occlusions . 66

5 Conclusions and future issues of research 69

5.1 Conclusions . 69

5.2 Future issues . 69

6 Tools and resources 71

6.1 Hardware requirements . 71

6.2 Software requirements . 71

7 Budget 73

7.1 Hardware resources . 73

7.2 Software resources . 73

7.3 Human resources . 74

7.4 Total cost budget . 74

Bibliography 75

List of Figures

1.1 General flowchart of the different stages developed in this TFG 2

2.1 ImageNet dataset organization according to WordNet sample structure (extracted from [1]) 6

2.2 ImageNet dataset sample including bounding boxes (extracted from [1]) 7

2.3 Open Image dataset sample that includes bounding boxes (extracted from [2]) 8

2.4 COCO segmentation process sample (extracted from [3]) 8

2.5 COCO keypoint detection process sample (extracted from [3]) 8

2.6 COCO panopting segmentation process sample (extracted from [3]) 9

2.7 COCO dense pose process sample (extracted from [3]) . 9

2.8 Sample images from UCF-101 dataset (extracted from [4]) 10

2.9 Distribution of video in actions along the UCF-101 dataset (extracted from [4]) 11

2.10 NTU RGB+D dataset sample images.(extracted from [5]) 11

2.11 Kinetics dataset sample images (extracted from [6]). 12

2.12 Collective activity dataset sample images (extracted from [7]) 13

2.13 Collective activity dataset labeling distribution . 13

2.14 Atomic group actions dataset sample (extracted from [8]) 14

2.15 UMN group action dataset sample images (extracted from [9]) 14

2.16 BEHAVE group action dataset sample (extracted from [9]) 15

2.17 Neuron linear and non-linear parts (extracted from [10]) 16

2.18 Binary step function representation . 17

2.19 Some linear step functions representations . 17

2.20 Some linear step functions representations . 18

2.21 Sigmoid activation function representation . 18

2.22 ReLU activation function representation . 19

2.23 Leaky ReLU activation function representation . 20

2.24 Input-output relation of an ANN (extracted from [11]) 20

2.25 Diagram of the steps followed by a CNN classifier (extracted from [12]) 21

2.26 Convolution Operation (extracted from [12]) . 21

2.27 Pooling Types (extracted from [12]) . 22

xviii LIST OF FIGURES

2.28 Basic diagram that contains the steps followed by YOLO to make a detection and assign
a bounding box (extracted from [13]) . 23

2.29 Graphical representation of the YOLO methodology used to perform detections (extracted
from [13]) . 24

2.30 YOLO Network Design (extracted from [13]) . 24

2.31 Anchor box visual example (extracted from [14]) . 25

2.32 YOLOv3 general Architecture (extracted from [15]) . 27

2.33 Comparison of different detectors using COCO dataset (extracted from [13]) 27

3.1 Flowchart of this TFG . 30

3.2 Relevant information about the camera used for the recording process 31

3.3 Common area scenario shown from RGB (left) and IR (right) camera perspective 31

3.4 Cabins corridor scenario shown from RGB (left) and IR (right) camera perspective 32

3.5 Exit stairs scenario shown from RGB (left) and IR (right) camera perspective 32

3.6 Exterior scenario shown from RGB (left) and IR (right) camera perspective 32

3.7 Lifeboat scenario shown from RGB (left) and IR (right) camera perspective 33

3.8 Stair corridors scenario shown from RGB (left) and IR (right) camera perspective 33

3.9 Exterior scenario shown from RGB (left) and IR (right) camera perspective 34

3.10 Main windows of the annotation interface window before and after modifications made to
adapt the tool to the HARS dataset . 35

3.11 Annotation Interface information . 36

3.12 Use of the Annotation Interface . 37

3.13 Example of the labeled Bounding Boxes. 37

3.14 Generating GT file using the Annotation Interface . 38

3.15 GT File distribution . 38

3.16 GT File distribution including more than one person per frame 38

3.17 Bounding Boxes delimitations defined for partially covered persons in the scenario 39

3.18 Choosing when to start labeling a user . 40

3.19 Choosing when to end the labeling process of a user . 40

3.20 Special case 1 example (A person can be seen in the frame but not identified) 41

3.21 Stationary action example where a person moves but does not perform any displacement . 42

3.22 Stationary action considerations coming from performing other of the actions included in
the dataset . 42

3.23 Walking action being labeled due to a displacement between frames from user 0 43

3.24 Walking action considerations . 43

3.25 Running and Walking differentiation . 44

3.26 Falling Down action . 44

3.27 Beginning and end of stairs action . 45

LIST OF FIGURES xix

3.28 Falling Down in stairs action . 45

3.29 Stampede action sample . 46

3.30 Blockade action sample . 47

3.31 Example of poor characteristics of the IR videos . 47

3.32 General flowchart of this TFG . 49

3.33 Flowchart of the implementation of You Only Look Once (YOLO)v3 in Google Colab . . 49

3.34 Repository Cloning and Installing . 50

3.35 Compile . 50

3.36 Downloading of pretrained YOLOv3 weights with COCO dataset 50

3.37 Flowchart representing how to obtain the different outputs 51

3.38 Importing the videos directly from the computer . 51

3.39 YOLOv3 video output example . 52

3.40 YOLO GT file information format . 52

3.41 Ground Truth coordinates distribution . 53

3.42 Example of the generated array with Ground truth file information 53

3.43 Reading and storing corresponding frame number . 54

3.44 Content of the character array obtained . 54

3.45 Example of array in which non-useful detection coordinates have been removed. 55

3.46 YOLO coordinates assigned to each ’person’ detection . 55

3.47 YoloGTtxt distribution . 56

4.1 IoU mathematical definition . 58

4.2 ROC curve example . 59

4.3 ROC curve visual examples for specific cases. 59

4.4 IoU matrix example . 60

4.5 IoU results matrix plot . 61

4.6 YOLO accuracy matrix . 61

4.7 ROC curves representation for IoU and YOLO accuracy 62

4.8 Histogram representations of IoU and YOLO accuracy . 63

4.9 Difference between YOLO detection bounding boxes depending on the video recording setup 64

4.10 Difference between YOLO IoU and accuracy ROC curves 64

4.11 Difference between YOLO detection bounding boxes depending on the video recording setup 65

4.12 RGB ROC curve display . 65

4.13 IR ROC curve display . 66

4.14 Wrong people detecions made by YOLO due to the mirror 66

4.15 ROC curve corresponding to this scenario . 67

4.16 Corridor cabins scenario showcase . 68

4.17 Corridor cabins ROC curve display . 68

List of Tables

2.1 Main characteristics of the analyzed datasets for person detection 9

2.2 Main characteristics of the analyzed datasets for action recognition 12

2.3 Backbone comparison (extracted from [13]) . 26

2.4 Average precision comparison between one stage detectors for different sized objects (ex-
tracted from [16]) . 26

3.1 Specifications of the modules included in the Intel D435 31

3.2 Video, persons and frames distribution of the HARS dataset 34

3.3 Video, persons and frames distribution of the HARS dataset 48

7.1 Price of the different harware used in the Final Degree Thesis (TFG) 73

7.2 Price of the different software used in the TFG . 73

7.3 Price of human resources needed in the TFG . 74

7.4 Total cost budget of the TFG . 74

List of Acronyms

ANN Artificial Neural Network.
ASTANDER Astilleros de Santander, S.A.U..
AUC Area Under ROC Curve.

CNN Convolutional Neural Network.
COCO Common Objects in Context.

DNN Deep Neural Network.
DSSD Deconvolutional Single Shot Detector.

FN False Negative.
FOV Field of View.
FP False Positive.
FPR False Positive Rate.
FPS Frames per second.

GEINTRA Group of Electronic Engineering applied to Intelligent Systems and Trans-
port.

GPU Graphical Processing Unit.
GUI Graphical User Interface.

HARS Human Action Recognition on Ships.

IoU Intersection over Union.
IR Infrared.

MIMO Multiple Input Multiple Output.
MNN Modular Neural Network.

R-FCN Region-based Fully Convolutional Network.
ReLU Rectified Linear Unit.
RGB Red, green and blue.
RNN Recurrent Neural Network.
ROC Receiver Operating Characteristic.

xxiv List of Acronyms

TFG Final Degree Thesis.
TN True Negative.
TP True Positive.
TPR True Positive Rate.

YOLO You Only Look Once.

Chapter 1

Introduction

1.1 Introduction

During the last decades, continuous advances in processing technologies and communications allows
automating more complex tasks and in a more accurate way. Thus, in the last years, several efforts
have been done to improve computer vision systems for several applications, such as object [17, 18] or
people [19–21] detection, action recognition [22–24], etc. using color or depth data.

Besides, in recent years, the improvements in the processing capabilities and the availability of large
image and video datasets (such as Imagenet [25]) have led to a rise in the number of works that solve
computer vision problems using Deep Neural Network (DNN), outperforming classical approaches. How-
ever, these available datasets are limited to specific types of environments, type of available information,
and considered situations or behaviors.

These limitations can generate problems if there are used to train deep learning algorithms that are
going to be used in a different context. Due to this, in some works it can be necessary to carry out
recording, labeling and evaluation of a new dataset called Human Action Recognition on Ships (HARS)
dataset, designed specifically to train such deep learning algorithms.

In this context, this TFG arises with the main goal of creating, labeling and evaluating a new dataset
for people detection and action recognition in large cruise ships. All of this, within the framework of the
PALAEMON: A holistic passenger ship evacuation and rescue ecosystem project (H2020-PALAEMON-
814962), in which members of the Group of Electronic Engineering applied to Intelligent Systems and
Transport (GEINTRA) research group are participating, and whose main objective is to engage innovative
technologies in a new intelligent, sophisticated ecosystem of mass evacuation of vessels.

1.2 Objectives

As it can be stated in section 1.1, this TFG arises with two main objectives: the creation and labeling of
a new video sequences dataset oriented to people detection and action recognition in large cruise ships,
and the evaluation of that dataset using a state-of-the-art deep learning method for people detection or
action recognition. This global objective can be divided in several specific goals detailed below.

1. Search and study of theoretical and practical aspects related to computer vision and such as arti-
ficial neural networks, deep neural networks, datasets used for human and action recognition and
alternatives used to speed-up the labeling process.

2 Chapter 1. Introduction

2. Modification of the available labeling tool to include group actions in labeling and adapt it to the
necessities of the HARS dataset.

3. Labeling the person locations, individual and group actions of the new dataset acquired inside a
ferry in Astilleros de Santander, S.A.U. (ASTANDER).

4. Evaluation of the labeled dataset by training and testing a people or action detection approach
from the state-of-art, comparing the obtained results with the manual labels.

Figure 1.1 shows a general block diagram of the proposed system.

Figure 1.1: General flowchart of the different stages developed in this TFG

Although the main objective of this TFG is the labeling of actions and persons in this new dataset in
order to reach the evaluation stage it is needed to obtain two different files containing the Ground Truth
coordinates and the YOLO [26] coordinates, to obtain those files the videos that form the dataset are
fed into our labeling tool for manual labeling and into YOLOv3 to obtain its coordinates information,
once done that, the processing of those files and the evaluation methods used lead to results and through
in-depth analysis of those the conclusions of this TFG are obtained.

1.3 Memory Structure

This work is structured in 5 chapters, which are set below with a brief explanation of them:

1. Chapter 1, Introduction in this chapter the context of the need of having labeled datasets for
specific contexts is provided as well as the objectives of the TFG and the structure of it.

2. Chapter 2, Theoretical foundations contains a study of the most used datasets in the state of
art for people detection and individual and group action recognition, this is followed by a summary
of the theoretical concepts needed to understand YOLO, the solution selected for the evaluation of
the dataset, and an in depth explanation of the characteristics and architecture of it.

3. Chapter 3, Development, describes the work performed in this TFG, begins with a study of the
characteristics of the HARS dataset. Continuing, the tool used for the labeling process is presented
as well as the criteria used and the modifications made to it in order to adapt it to the characteristics
of interest of the TFG. Following this explanation an implementation of YOLO in Google Colab

1.3 Memory Structure 3

is made to obtain the results needed. Ending this chapter the data processing of the results of
the labeling process and the YOLO implementation are processed and adapted for the evaluation
process later presented in Results chapter.

4. Chapter 4, Results, contains an explanation of the metrics used for the evaluation of the HARS
dataset, then the data obtained and adapted from the Development chapter is processed again and
the results obtained through this process are displayed, then the global results and the relation
between those results and the characteristics of HARS dataset set up to see how the different
physical aspects of it affect YOLO performance is also presented.

5. Chapter 5, Conclusions, includes the conclusions obtained from the results seen in the Results
chapter as well as the future lines in which how this study can be followed up.

6. Chapter 6, Tools and resources, contains listed the needed hardware and software requirements
to carry out the project.

7. Chapter 7, Budget, in which the costs needed for the development of this project are summarized.

Chapter 2

Theoretical foundations

2.1 Introducción

As the main objective of this thesis is the labeling and evaluation of the HARS dataset including person
position, as well as individual and group actions, in this chapter there are presented different topics that
helps the understanding of the methods being used later in this TFG.

At first, there has been carried out an analysis of different available datasets, which are widely used
for people detection and for action recognition. There has been analyzed their main characteristics,
highlighting the most remarkable aspects of any of them.

Another aspect evaluated in this TFG is if the HARS dataset allows working with a neural network
such as YOLO and obtain reasonable results.

In order to understand this, an explanation of how Artificial Neural Network (ANN) and Convolutional
Neural Network (CNN) works, is presented followed by an in-depth study of YOLO, the chosen alternative,
which later explains the particularities of YOLOv3.

2.2 Datasets for people detection

The objective of people a detector systems is to determine if in an image exists people, if so, it should also
provide its position in the image. This function is generally performed in two steps, extraction of image
characteristics and classification [20, 27], although more recent works, based on DNNs perform people
detection in one step [28,29].

In order to train or validate those classificators for people detection, datasets are used. There are some
datasets that only includes people, such as [30,31], however, most of the recent large-scale datasets, that
allow training DNNs, include a wide variety of objects, apart from people. Below, there are described
three widely used large-scale datasets.

2.2.1 ImageNet

In this section there are explained the main characteristics of the ImageNet dataset [32].

ImageNet is an image dataset that is organized accordingly to the WordNet hierarchy. Word-
Net [33] [34] is a large lexical database of English vocabulary that includes nouns, verbs, adjectives,

6 Chapter 2. Theoretical foundations

and adverbs which are grouped in sets of sysnsets (cognitive synonyms) that each express a distinct con-
cept, WordNet contains around 80000 noun synsets and ImageNet aim is to provide on average 500-1000
images to illustrate each sysnset.

Figure 2.1 represents the organization of the Imagenet dataset acording to WordNet sample structure.

Figure 2.1: ImageNet dataset organization according to WordNet sample structure (extracted from [1])

Some characteristics of ImageNet dataset are the following:

• The density of ImageNet is unmatched by other similar datasets due to the synsets of images
being interlinked by several types of relations, for example ImageNet contains images of 157 dog
categories, this leads up to denser classification trees.

• Accuracy: ImageNet images are quality-controlled and human-annotated, the precision achieved in
the whole dataset on average is 99.7%, although achieving high precision in all the depths of the
datasets is challenging due to the lower in the hierarchy the sysnset is the harder to classifiy.

• Diversity: one of ImageNet goals is to provide different appearances, positions, viewpoints, poses
and background clutter to objects included in the images.

ImageNet dataset consists of 14197122 images of 256x256 pixels organized in 27 high-level categories
such as “animals”, “appliance”, etc. that divide into 21841 subcategories representing this sysnsets. Of
all the dataset images, only 1034908 of them have been annotated with bounding boxes including the
classified object coordinates. This means that the annotations of ImageNet fall into two categories:

• Image-level annotation that indicates if there is or is not a specific object class contained in the
image.

• Object-level annotation of a bounding box and class label surrounding an object included in the
image.

Figure 2.2 displays a sample of the ImageNet images that are annotated with bounding boxes, includ-
ing the coordinates.

2.2 Datasets for people detection 7

Figure 2.2: ImageNet dataset sample including bounding boxes (extracted from [1])

2.2.2 Open Image

In this section there are explained some of the most important characteristics of the Open Image
dataset [35]. Open Image dataset contains around 9 million images divided into a set of classes de-
rived from JFT [36], an internal dataset at Google. For Open Image, 19764 classes from JFT are selected
wich serve as image-level classes in the Open Images Dataset:

• Coarse-grained object classes (e.g. animal)

• Fine-grained object classes (e.g. Pembroke welsh corgi)

• Scene classes (e.g. sunset)

• Events (e.g. birthday)

• Materials and attributes (e.g. leather and red)

Out of the 19764 classes acquired from JFT, 600 object classes were chosen to need extra annotation
information, bounding boxes, this means that around two million of the images in the Open Image dataset
contain bounding boxes, this gives as a result a total of 15.4 million bounding boxes. Compared to the
next larger datasets such as COCO and ImageNet, Open Image dataset provides 15 times more bounding
boxes which demonstrates the complexity of the contained images as well as the quality of the performed
annotation.

Figure 2.3 shows an example of the labeling process provided by OpenImage dataset, in which it can
be seen that multiple bounding boxes belonging to multiple classes are included in the same image.

8 Chapter 2. Theoretical foundations

Figure 2.3: Open Image dataset sample that includes bounding boxes (extracted from [2])

2.2.3 COCO

Common Objects in Context (COCO) dataset [37] consists of 328 thousand images, so its image quantity
size its small compared to ImageNet and Open Image, but it also contains additional features in the
annotations:

1. Object segmentation information instead of just bonding boxes, performs a mask with 80
object categories. An example can be shown in figure 2.4.

Figure 2.4: COCO segmentation process sample (extracted from [3])

2. Textual captions per image describing the images for example “a plane flying through a cloudy
blue sky”.

3. Keypoint detection task detecting people and localizing their keypoints (such as left eye, nose,
right ankle). It is noteworthy that COCO dataset contains more than 20000 images and 250000
person instances labeled with its corresponding keypoints. Two examples of people images, including
labeled keypoints are shown in figure 2.5.

Figure 2.5: COCO keypoint detection process sample (extracted from [3])

2.2 Datasets for people detection 9

4. Panoptic segmentation consisting of background scene and object segmentation performing a
segmentation on the entire image rather than just the dominant objects, action performed with the
help of 80 thing categories (such as person, dog, bicycle) and 91 stuff categories (such as grass, sky
road). Figure 2.6 displays a visual representation of this segmentation.

Figure 2.6: COCO panopting segmentation process sample (extracted from [3])

5. Dense Pose that simultaneously detects people and localize their dense keypoints (each labeled
person annotation includes an instance id and a mapping between all the pixels that belong to that
person body). Figure 2.7 displays this mapping.

Figure 2.7: COCO dense pose process sample (extracted from [3])

2.2.4 Summary

Below, table 2.1 summarizes the main characteristics of the three datasets for person detection described
previously in this section.

Dataset Number of images Number of classes Data type
ImageNet 14.1M 21841 RGB

Open Image 9.2M 19754 RGB
COCO 328k 80 RGB

Table 2.1: Main characteristics of the analyzed datasets for person detection

10 Chapter 2. Theoretical foundations

2.3 Datasets for action recognition

In computer vision works that include person and action recognition, its usual to evaluate those techniques
employing datasets of images or videos to compare the performance of different approaches. There exist
multiple datasets widely used by the scientific community for action recognition. The most significant
ones are described in this section: UCF-101, NTU-RGB+D and Kinetics.

2.3.1 UCF-101

The UCF-101 dataset [38] consists of 101 action pre-defined classes, including a total of 13320 videos of
25 fps and a mean length of 7.21 seconds, forming a total of 1600 minutes of video data. These actions
can be divided in five types:

1. Human object interaction, such as applying eye makeup, cutting in kitchen, shaving beard,
knitting among others.

2. Body-Motion Only, some examples are blowing candles, pushups, trampoline jumping, swing,
among others.

3. Human-Human Interaction, as military parade, haircut, head massage, band marching among
others.

4. Playing Musical Instruments, some examples are playing flute, playing guitar, playing violin,
playing piano among others.

5. Sports, some examples are surfing, horse riding, diving, bowling among others.

Figure 2.8 shows some sample images from UCF-101 dataset.

Figure 2.8: Sample images from UCF-101 dataset (extracted from [4])

It is worth highlighting that the labeling information only includes the performed action, not the
location of the person performing that action.

The number of clips per action class and the distribution of the clips according to duration is illustrated
in the figure 2.9.

2.3 Datasets for action recognition 11

Figure 2.9: Distribution of video in actions along the UCF-101 dataset (extracted from [4])

2.3.2 NTU RGB+D

In this section, there are explained the main characteristics of the NTU RGB+D dataset [5].

This dataset contains 60 different action classes, performed by 40 subjects, with a total of 56880
video samples in highly variant camera settings using multiple Kinetic cameras at the same time. The
characteristic of this dataset is that it uses the physical structure of the human body to improve the
performance of the learning framework, since it includes Red, green and blue (RGB), Depth and skeleton
data for each action.

The labeling information of this dataset includes both: the action performed and the location of the
person performing it. Figure 2.10 shows in the first row the different camera views used to collect the
data, and second row displays the different types of data that the cameras provide.

Figure 2.10: NTU RGB+D dataset sample images.(extracted from [5])

12 Chapter 2. Theoretical foundations

2.3.3 Kinetics (Kinetics Human Action Video Dataset)

The Kinetics dataset [39] contains a total of 400 human action classes with at least 400-1150 videos
of each action with a mean duration of 10 seconds taken from different youtube videos. The labeling
information only includes the action performed, not the location of the person performing the action.
The actions are distributed in different action classes such as:

1. Person Actions, some examples are drawing, drinking, laughing among others.

2. Person-Person Actions, some examples are hugging, kissing, shaking hands among others.

3. Person-Object actions, some examples are opening presents, mowing lawn, washing dishes among
others.

The whole dataset is composed by a total of 306245 videos, that are divided into three splits inside
each one of the 400 actions, 250-1000 for training, 50 for validation and 100 for testing per class. Some
Visual examples of the dataset are shown in figure 2.11.

Figure 2.11: Kinetics dataset sample images (extracted from [6]).

2.3.4 Summary

Below, table 2.2 summarizes the main characteristics of the three datasets for action recognition described
previously in this section.

Dataset Number of actions Number of sequences Data type
UCF-101 101 13320 RGB

NTU RGB+D 60 56880 RGB+D
Kinetics 400 306245 RGB

Table 2.2: Main characteristics of the analyzed datasets for action recognition

2.4 Group action datasets 13

2.4 Group action datasets

Group actions are one of the most important actions to label in the PALAEMON project as one of its
main goals is to detect when a stampede or a blockade is happening. Due to that, below, the are described
some widely used datasets containing group actions labeling.

2.4.1 Collective activity dataset

The Collective activity dataset [40] [41] contains 5 different group actions: crossing, walking, waiting,
talking and queuing included in a total of 44 short videos. Figure 2.12 shows a sample of each one of the
group actions contained in the dataset.

Figure 2.12: Collective activity dataset sample images (extracted from [7])
.

This dataset annotation includes the frame number, the coordinates of the person bounding box and
its class and pose IDs as shown in figure 2.13. The Class ID is a number between 1 and 5 that gives
information about the action performed and the Pose ID is a number between 1 and 8 related to the way
the person being labeled is looking at (such as right, front right, front, back, back-right etc). However,
this dataset does not include any of the actions of interest for the PALAEMON project.

Figure 2.13: Collective activity dataset labeling distribution

2.4.2 Atomic Group actions

Atomic group actions dataset [42] [43] is a set of 200 videos focused on the group-group actions of
formation, dispersal, and movement, and group-person actions of person joining and person leaving a
group. It is equally divided in sets of 40 videos in each of these 5 actions included. All the dataset videos
are cropped to 640 × 480 pixels, and have a frame rate of 30 fps of a mean length of 5 seconds, being the

14 Chapter 2. Theoretical foundations

shortest at 1 second and the longest at 15. The annotation of this dataset includes individual and group
position with bounding boxes and their trajectory. Figure 2.14 shows some samples of the Atomic group
actions dataset, this samples include the trayectory performed by the persons included (not included in
the dataset).

Figure 2.14: Atomic group actions dataset sample (extracted from [8])

2.4.3 UMN

The UMN dataset [9] is collected from the University of Minnesota. This dataset contains videos located
in 11 different scenarios in which a stampede event is taking place. The scenarios include feature indoor
and outdoor locations and the average number of persons shown per video are around 20 which lead up
to crowded scenarios in which the videos start with normal behaviors and end with abnormal ones.

Figure 2.15 shows three sample images from the UMN dataset.

Figure 2.15: UMN group action dataset sample images (extracted from [9])

2.4.4 BEHAVE

The Behave dataset [9] contains 321 clips of different events including crowded scenarios and group
activities such as, meeting, splitting up, standing, walking together, ignoring each other, fighting, escaping
and running, this actions can be divided into normal and abnormal events.

Figure 2.16 shows some examples of the BEHAVE dataset, it displays normal behaviors in the upper
row and abnormal behaviors in the lower one.

2.5 Artificial Neural Networks 15

Figure 2.16: BEHAVE group action dataset sample (extracted from [9])

2.5 Artificial Neural Networks

An ANN can be defined as a Multiple Input Multiple Output (MIMO) system that operates using a
very large number of parallel and series connected arithmetic units called neurons. These neurons that
form the neural network are usually arranged in layers, and their functionality depends directly on the
organization structure and functionality that is specified by the type of layer they are included in. This
means that an ANN can change its functionality depending on the type of layers included as the operations
the layers perform globally depend on the type of it. As it can be seen ANNs can be implemented in many
different scenarios due to their flexibility. One important thing about them is that their performance,
in the case of image processing, is highly improved when they are dealing with non-linear dependence
between inputs and outputs.

These artificial neurons are supposed to mimic the action of a biological neuron that accepts many
different input signals from other neurons and processes them in a pre-defined way. They are composed
of two different parts, “net input” (linear part) and “transfer function” (non-linear part, also called
activation function).

The first part is a linear combination of the input variables which is multiplied by the "weights".
These, "weights" are coefficients that may the neuron vary by itself, with this, the results (outputs) of
an ANN are constantly feed-back as new inputs and these weights are modified in order to acquire the
desired result, normally represented as a threshold, also known as back-propagation, this means that
the "weights" are constantly being reajusted by the neurons in order to achieve the desired result, this
modification of the neuron weigths is only applied during the trainning process of the ANN.

The second part serves as a transfer function, since it transfers the signal through the neuron to
another neuron input and also, as said before, it can introduce non-linearities which helps the Neural
Network to learn better in each epoch (number of iterations training the ANN), eventhough a linear

16 Chapter 2. Theoretical foundations

activation function can be useful in certain cases. During this section of the chapter there is an in depth
study of the most used activation functions nowadays.

Figure 2.17 displays the internal architecture of an artificial neuron explained before. The inputs
corresponds to the input signals received directly from the input or from other neurons. This input
signals are then multiplied by the weights, added and a threshold is applied to them, finally it passes
through its transfer function to the neuron output.

Figure 2.17: Neuron linear and non-linear parts (extracted from [10])

2.5.1 Activation functions

As it can be seen in figure 2.17, the internal structure of an artificial neuron includes a transfer function
or activation function. Below, there are described are displayed the most common ones, including its
characteristics [44] [45]:

• Binary step function: this function thresholds the input values to 1 and 0 depending on if the
value is above or below 0 respectively. This activation function is used in binary classification
scenarios, but it can not perform on multi-class detection problems. Equation 2.1 and figure 2.18
displays the equation and the representation of the binary step activation function respectively.

aij − f(zij) =
{

0 if zij < 0
1 if zij > 0

(2.1)

2.5 Artificial Neural Networks 17

Figure 2.18: Binary step function representation

• Linear activation function: a linear activation function provides the sum of the weighted inputs
of the node. As no previous operations are performed, the linear activation function can give at
its output any numeric value, this makes this activation function unable to predict probabilities.
Equations 2.2 and 2.3 displays some of the equations used in linear activation functions, with their
respective representation shown in the figures 2.19 and 2.20 respectively.

R(z, m) = z ∗ m (2.2)

Figure 2.19: Some linear step functions representations

R′(z, m) = m (2.3)

18 Chapter 2. Theoretical foundations

Figure 2.20: Some linear step functions representations

• Sigmoid activation function: this function maps the entire number line to a small range normally
between 0 and 1 or -1 and 1. This means that the sigmoid function can convert any real value into
one that can be understood as a probability. In machine learning sigmoid functions can be placed
in the last layer of the model to convert its output into a probability score, since this eases the
understanding of the model output. They are also used in two-class classification as they are an
important part of a logistic regression model that, again, turns any real value into a probability.
However, sigmoid activation function is only ideal in the case of a binary classification problem where
the output can be understood as a binomial probability distribution. Taking this into account, the
sigmoid activation function is not appropriate for multi-class classification problems. Equation 2.4
displays the correspnding equation for the sigmoid function represented in figure 2.21.

ϕ(sk) = 1
1 + e−sk

= esk

1 + esk
(2.4)

Figure 2.21: Sigmoid activation function representation

• Softmax activation function: it is a mathematical function that converts a vector of real numbers
into a vector of probabilities in a proportional way. This activation function is used in machine
learning when having a multi-class classification problem, as the outputs of the model are converted

2.5 Artificial Neural Networks 19

from weighted sum values intro probabilities that sum to one, this means that each value in the
output of the softmax function is interpreted as the probability that the input belongs to that class.
Equation 2.5 displays the equation of the Softmax activation function.

σ(z⃗i) = ezi∑K
j=1 ezj

(2.5)

• Rectified Linear Unit (ReLU) activation function: this is the most used activation function
in neural networks as no heavy computation is required due to the function returning 0 if it receives
a negative input and returning the input for any positive input value, which gives an output range
from 0 to infinity. As ReLU does not require heavy computation a model that includes this function
takes less time to train or run. The fact that any negative input value returns 0 results in better
predictive power and less overfitting noise. This means that neuron will be processing meaningful
aspects of the classification problem. However, this leads to certain neurons of the network to not
activate at all and will be stuck on the negative side of the function permanently, what leads to a
problem called dying ReLU because once a neuron gets negative its unlikely for it to recover, this
neurons are not playing any role and are essentially useless which eventually leads up to a large part
of the network doing nothing. This problem is likely to occur when the learning rate is too high.
Equation 2.6 and figure 2.22 displays the equation and the representation of the ReLU activation
function.

y = max(0, x) (2.6)

Figure 2.22: ReLU activation function representation

• Leaky ReLU activation function: this function is an improved version of ReLU activation
function as instead of 0 for any negative input values a small linear component is defined. This
linear component returns a very small value of its input and in conclusion in that region there
will no longer be dead neurons, this means that the dying neuron problem of the ReLU function
is solved using Leaky ReLU instead. Equation 2.7 and figure 2.23 displays the equation and the
representation of the leaky ReLU activation function.

f(x) =
{

0.01x, if x < 0
z, otherwise

(2.7)

20 Chapter 2. Theoretical foundations

Figure 2.23: Leaky ReLU activation function representation

2.5.2 ANN structure

To understand ANN better there are presented the different parts of which a neural network is composed
of, as seen below it is composed of an input layer, hidden layers and the output layer.

The only “fixed” sizes when using ANNs for image classification and object recognition problems are
the sizes of the input and output layer, the size of the input layer often corresponds to the size of the
image you are using as input (i.e. 320 × 240 neurons in the case of using an 320 × 240 pixels image),
and the output layer has the same number of neurons as the number of classes of interest in classifying
the image with. This means that if there is presented a binary classification problem in which there is
interest in classifying an image between two different classes (i.e person and not a person) the output
layer only needs two neurons.

The main difference between the neural networks are the hidden layers as, by changing the type of
them, you can obtain different neural networks such as CNN in which the hidden layers perform the
convolution operation, Recurrent Neural Network (RNN) which uses time series data, Modular Neural
Network (MNN) whose neural networks composed of are linked by an intermediate, between others.
Figure 2.24 displays a visual representation of the input-output relation of an ANN.

Figure 2.24: Input-output relation of an ANN (extracted from [11])

2.6 Convolutional Neural Networks 21

DNNs are ANNs with a large number of layers of neurons in the hidden layer section of its structure.
This is, between the input and output layers of the DNN, this DNNs are mainly feedforward, this means
that the data flows from input to output without going back, CNNs are one form of implementation of
this process described. Currently CNNs are the most used method for processing visual data. As this
TFG arises a visual data problem a more in depth explanation of CNNs is presented below.

2.6 Convolutional Neural Networks

Once the theoretical basis of neural networks have been presented, as mentioned in the previous section,
an in depth explanation of CNNs takes place.

A CNN [12] is a neural network that contain layers that perform the convolution operation, for
processing visual data problems it typically contains several types of layers which include convolutional
layers, pooling layers, and activation layers in order to maximize its performance with this type of input
data as this architecture allows a better image characteristic extraction and image preprocessing as it
allows to reduce its size before feeding the information to the fully connected layers.

Figure 2.25 shows a general diagram of a CNN classifier including the different layers mentioned before
as it can be seen that an image is used as input of the CNN.

Figure 2.25: Diagram of the steps followed by a CNN classifier (extracted from [12])

The convolutional layer is the core of all this process and does most of the computational heavy
lifting, it is in charge of performing a convolution operation which is explained up next. If figure 2.26, is
represented as a 10 × 10 matrix of values and a 3 × 3 matrix is taken and slide it all around the image
at each position making it multiply every element of the image by the values of our 3 × 3 matrix this
results in a single number that represents all the values in the window. This process allows characteristic
extraction of the input image through a reduced sized version of it, product of this convolution operation.
Figure 2.26 displays a graphical representation of the sliding window convolution operation.

Figure 2.26: Convolution Operation (extracted from [12])

22 Chapter 2. Theoretical foundations

This 3 × 3 matrix that moves at each point of the image is called kernel and it has random values in
it, that is because its initial values are not important at all due to the model changing those values as
the trainning process unfolds, similar to the backpropagation concept explained in previous sections, as
explained before, once the training process has been finished the kernel weights are fixed.

It is important to highlighting that pooling layers can be precedeed by one or more convolutional
layers or not be pooling layers included in the CNN. In the presented example, after the convolutional
layer there is a pooling layer which is in charge of combining the outputs of the convolutional layer. This
pooling operation reduces the dimension of the information that has to be handled.

There are two main different types of pooling, max value pooling which uses the maximum value
of each array and average pooling which uses the average value. Figure 2.27 shows a visual example
of the two different pooling methods mentioned before and the outputs obtained from the two different
processes.

Figure 2.27: Pooling Types (extracted from [12])

Finally, in this example, an activation layer is used, which is very important because in the majority
of the scenarios applying CNNs to visual data problems there is a need to introduce non-linear properties
into the network, as helps the model to understand the complexity of the problem given and provide
accurate results. It is similar to the different the transfer functions of the artificial neurons explained
along this chapter, as different functions adapt better to certain visual data problems.

This activation layer calculates the weighted sum and decides whether to discard a particular neuron
or not depending on if it is needed in order for the network to perform accordingly or not, there are
several types of non-linear activation functions like: Sigmoid, ReLU, Leaky ReLU, etc, as seen before.

2.7 People and object detection with YOLO

There are numerous approaches in the literature for people and object detection based on CNNs, such as
RetinaNet [46] wich is compose of a backbone and two task-specific subnetworks that are in charge of con-
volutional object classification and convolutional bounding box regression respectively, Deconvolutional
Single Shot Detector (DSSD) [47] which consists on feature extraction and detection, deconvolutional
layers are used in the detection process in order to increase the resolution of the feature maps product
of the feature extractor or Region-based Fully Convolutional Network (R-FCN) [48] which is a fully-
cconvolutional region-based detector that applies a subnetwork per region hundreds of times this means
that all the computation is shared on the entire image.

2.7 People and object detection with YOLO 23

In this TFG, there is used YOLO [26] [49] [16] [14] for people detection, due to its good balance
between speed and accuracy, what makes it widely used in different applications. This sections describes
the main YOLO characteristics that justify choosing this network.

2.7.1 YOLO features

Figure 2.28 displays a visual representation about the process YOLO follows to make a detection and
assign a bounding box to it. The system resizes the input image to 448 × 448 (this may vary with the
version of YOLO being used). Then, it runs a single convolutional network on the image and finally its
thresholds the results based on the model confidence.

Figure 2.28: Basic diagram that contains the steps followed by YOLO to make a detection and assign a
bounding box (extracted from [13])

This single convolutional network simultaneously predicts multiple bounding boxes and class prob-
abilities for each of those boxes. For being capable of this, YOLO trains on full images and directly
optimizes detection performance.

YOLO system divides the input image into an S × S grid. If the center of an object falls into a grid
cell, that grid cell is responsible for detecting that object. Each grid cell predicts bounding boxes and
confidence scores for those boxes. These confidence scores reflect how confident the model is that the
box contains an object that falls into an specific category and how accurate it thinks the bounding box
assigned to the prediction is. If there is no object in the cell this confidence score should be zero. Each
bounding box consists of 5 values corresponding to: x, y, w, h, and confidence. The (x, y) coordinates
represent the center of the box relative to the bounds of the grid cell. The width and height (w, h) are
predicted relative to the whole image. Figure 2.29 displays a diagram that shows how the previously
explained process is performed.

• YOLO is capable to run up to 45 frames per second which means that it can be used to process
video in real-time with less than 25 milliseconds of delay.

• YOLO reasons globally about the image when making predictions. This means that it sees the
entirety of the image and considers its features during training and testing to acquire contextual
information about the classification classes included and how do they look like. This allows YOLO
to predict all bounding boxes across all of the included classes simultaneously.

• YOLO learns to generalize representations of objects which provides YOLO with versatility, so it is
less likely to perform incorrectly when applied to different scenarios or receiving unexpected inputs
different of the ones being trained with.

24 Chapter 2. Theoretical foundations

Figure 2.29: Graphical representation of the YOLO methodology used to perform detections (extracted
from [13])

2.7.2 Network Design

YOLO is implemented as a CNN, the initial convolutional layers of the network extract feature from the
image while the fully connected layers predict the output probabilities and coordinates.YOLO network
has 24 convolutional layers followed by 2 fully connected layers. Figure 2.30 displays the architecture of
YOLO network.

Figure 2.30: YOLO Network Design (extracted from [13])

2.8 YOLOv3 25

2.7.3 Limitations

YOLO imposes strong spatial constraints on bounding box predictions as each grid cell only predicts two
boxes and can only have one class. This spatial constraint limits the number of objects that YOLO can
predict per grid cell. YOLO struggles with small objects that appear in groups, such as small animals or
very crowded spaces filled with people. YOLO makes a significant amount of localization errors and has
low recall.

2.8 YOLOv3

After the development of YOLO there have been emerging improvements included in different versions
of it. The main features and improvements included in YOLOv3 are shown in this section of the chapter.

As seen before the main problems of YOLO were localization errors and low recall, therefore some
mechanisms were included in later versions of it in order to improve them while maintaining accuracy,
the mechanisms included are listed below.

1. Batch Normalization, adding Batch Normalization to all the convolutional layers, it is a method
used to make ANNs faster and more stable by normalization of the layers inputs by recentering and
re-scaling, this ensures that in deep convolutional layers inputs are still normalized, applied to this
case it resulted in a 2% improvement of the mean average precision compared to previous version
that did not include Batch Normalization.

2. Anchor boxes, as previously seen YOLO was limited as it was only capable of one prediction per
grid cell, as a solution anchor boxes were implemented, which are a variation in width and height
of the corresponding grid cell that ease object detection as it can keep the best fitting anchor box
and it is not limited by the original shape of the grid cell, this lead to multi-object prediction.
Figure 2.31 displays the grid cell (red) and 5 anchor boxes (yellow) with different shapes.

Figure 2.31: Anchor box visual example (extracted from [14])

26 Chapter 2. Theoretical foundations

3. Speed improvements, the speed improvements came from modifying the architecture of YOLO
itself, this has been adressed by modifying the backbone, which is in charge of feature extraction.
Initially YOLO contained 24 convolutional layer which were reduced to 19 in YOLOv2 as it uses
Darknet-19, for the version used in this TFG, YOLOv3, the number of convolutional layers were
changed again to 53 as the backbone used is Darknet-53. Table 2.3 shows a comparison between
this network and other backbone examples.

Backbone Top-1 Top-5 BnOps BFLOP/s Frames per second (FPS)
Darknet-19 74.1 91.8 7.29 1246 171
ResNet-101 77.1 93.7 19.7 1039 53
ResNet-152 77.6 93.8 29.4 1090 37
Darknet-53 77.2 93.8 18.7 1457 78

Table 2.3: Backbone comparison (extracted from [13])

The first two columns refer to accuracy and the next three to speed, as it can be seen compared
to Res-Net-152 it gives the same performance while giving less billion operations and more bil-
lion floating operations per second and FPS, this means that has an improvement in speed while
maintaining accuracy compared to other backbones used.

4. Precision of small objects, table 2.4 shows different one-stage detectors with their respectively
backbone and the average precision score for small (APs), medium (APm) and large (APl) objects
respectively.

One-stage method Backbone APs APm APl
YOLOv2 Darknet-19 5.0 22.4 35.5
SSD513 ResNet-101-SSD 10.2 34.5 49.8

DSSD513 ResNet-101-DSSD 13.0 35.4 51.1
RetinaNet ResNet-101-FPN 21.8 42.7 50.2
RetinaNet ResNeXt-101-FPN 24.1 44.2 51.2

YOLOv3 608 × 608 Darknet-53 18.3 35.4 41.9

Table 2.4: Average precision comparison between one stage detectors for different sized objects
(extracted from [16])

As it can be seen, YOLOv3 presents significant improvements regarding its previous version,
YOLOv2, as it can be observed, the average precision for small objects has been highly increased
from the previous version by 13.3, however, the average precision scores are less than RetinaNet
but, as previously seen, it is still faster due to the backbone used. The improvement in detecting
small objects is due to short-cut connections that concatenate the intermediate layers of YOLOv3
backbone to the layer after the upsampling layer (in charge of increasing the sampling rate).

5. Specifity of classes, YOLOv2 uses softmax activation function, previosly seen in section 2.5.1,
what leads to each bounding box only being assigned to one class, which in the case of complex
dataset is sometimes not the case, on the other hand "YOLOv3 uses a multi-label approach which
uses independent logistic classifiers and binary cross-entropy loss for the class predictions during
training" [16], this allows individual bounding boxes to be multiple and more specific which allows,
as previously stated, to work with complex datasets that may contain overlaping labels.

2.9 Conclusions 27

Figure 2.32 shows the general architecture used by YOLOv3 layer by layer and can be compared to
the one of YOLO shown in figure 2.30.

Figure 2.32: YOLOv3 general Architecture (extracted from [15])

2.9 Conclusions

YOLOv3 is fast and accurate, and it runs faster than other detection methods while maintaining compa-
rable performance and it allows to trade-off between speed and accuracy by changing the model size and
not retraining it. Figure 2.33 shows a graph that displays the performance difference between different
detectors for COCO dataset.

Figure 2.33: Comparison of different detectors using COCO dataset (extracted from [13])

As previously stated YOLOv3 increased its speed by changing the backbone to Darknet-53, this back-
bone is faster than other state-of-art one-stage detectors backbones while maintaining similar performance
to them, there are also improvements that allows YOLOv3 to perform decently in complex datasets like
multi-label approach and small object improvements with previous versions of it.

Chapter 3

Development

3.1 Introduction

The main objective of this TFG consists in labeling the HARS dataset which, as said before, consists of
a set of videos that take place in certain parts of a cruise and includes a set people performing different
actions.

As it has been stated in the introduction, this work is framed the PALAEMON: A holistic passenger
ship evacuation and rescue ecosystem project (H2020-PALAEMON-814962) whose aim is to engage in-
novative technologies in a new intelligent ecosystem for mass evacuation of vessels. The labeling process
focuses on the position of the persons in the different scenarios included in the dataset, individual actions
(including walking, running, stationary, fall down, sit down and stairs), and group actions (stampede and
blockade).

The main objective of labeling this dataset is to generate a set of ground truth files corresponding
to each one of the videos for different applications that include the coordinates of the bounding boxes
per frame and the actions performed by each one of the persons included as well as the group action
performed by the people on the scenario. In the case of this TFG the generated ground truth is going to
be used by YOLO to validate that, with the labeling process done, it is possible to evaluate the results as
well as to study how YOLO performs in the dataset videos as they are very complex due to the scenarios
conditions such as lighting, person distribution and the high level of occlusions between them.

It is important to highlight that the only part of the ground truth generated that is going to be used
with YOLO are the bounding boxes, as YOLO is only capable of detecting objects but not actions even
though the labeling process also includes individual and group actions.

Figure 3.1 shows a general flowchart of this TFG, highlighting the sections that are detailed in this
chapter.

30 Chapter 3. Development

Figure 3.1: Flowchart of this TFG

This chapter distribution includes the following:

1. Dataset analysis: a detailed explanation of the HARS dataset is presented, this includes the
recording setup used and the main characteristics of it.

2. Labeling tool: the labeling tool used for the labeling process usage is explained as well as the
modifications made to its code and interface to adapt it to the HARS dataset labeling needs.

3. Labeling process: the criteria used for the labeling process is presented as well as a brief showcase
of how it is performed with the labeling tool.

4. YOLO implementation: YOLOv3 implementation in Google Colab and obtention of data out-
puts used in the evaluation are explained.

5. Processing of the data obtained: the files obtained from the labeling and implementation of
YOLO processes are transformed in order to ease its use in the Experimental results section.

3.2 HARS dataset

In this section the setup used for the recording, the persons and actions that includes and the main
characteristics of the HARS dataset are presented.

3.2.1 Recording setup

The HARS dataset contains a total of 74 videos with an average length of 40 seconds each. Those videos
are equally divided into RGB and Infrared (IR) as the used camera provides RGB and IR recordings
which have been taken in different scenarios included in the cruise ship.

The camera used in the recording of the dataset is the Intel Real Sense D435 [50]. This camera
contains a low-power vision processor for real-time depth sensing. An IR proyector and RGB module are
also integrated, which allows the camera to output the same video recorded in the two different formats
in wich the dataset is acquired: IR and RGB. However, each of this modules has its own characteristics,

3.2 HARS dataset 31

image 3.2 and table 3.1 show an image of the used camera , its main components and the specifications
of the integrated modules respectively.

External packaging of the camera measurements
(extracted from [51])

Modules included in the camera (extracted
from [51])

Figure 3.2: Relevant information about the camera used for the recording process

Module Resolution Frame rate Field of View (FOV) (HxV)
IR 1920x1080 90 fps 87ºx58º

RGB 1280x720 30 fps 69ºx42º

Table 3.1: Specifications of the modules included in the Intel D435

The scenarios in which the recordings of the dataset have taken place are shown along with a brief
description of them, representing the output of the camera for each of the modules used.

1. Common area: consists of a long corridor with mirrors at its sides that has three main exits
(sections of the scenario in from which persons can enter and leave the scene): the beginning and
the end of the corridor and the stairs located at the beginning of it. Figure 3.3 shows the scenario.
It is worth noting that all the sample images shown in this section includes both RGB and IR
images from each scenario.

RGB image IR image

Figure 3.3: Common area scenario shown from RGB (left) and IR (right) camera perspective

2. Cabin corridor: consists of a long corridor that has two main exits, the beginning and the end
of the corridor. It is important to highlight that the middle section of the corridor has different
lighting that the rest of it, as it can be seen in Figure 3.4, that shows the scenario.

32 Chapter 3. Development

RGB image IR image

Figure 3.4: Cabins corridor scenario shown from RGB (left) and IR (right) camera perspective

3. Exit Stairs: consists in a set of two stairs. The viewpoint of the camera is located at the middle
of both and it has two main exits: a door located in the lower floor and the end of the stairs located
in the upper floor. Figure 3.5 shows the scenario.

RGB image IR image

Figure 3.5: Exit stairs scenario shown from RGB (left) and IR (right) camera perspective

4. Exterior: consists in an open area located in the surface of the cruise ship. It contains some tables
and columns and it has three main exits, the door, the left side of the scenario and the right side.
Figure 3.6 shows a picture of this scenario.

RGB image IR image

Figure 3.6: Exterior scenario shown from RGB (left) and IR (right) camera perspective

3.2 HARS dataset 33

5. Lifeboat consists of a section of the cruise ship that contains the lifeboats. This scenario has two
exits: behind the camera and at the end of the hallway. Figure 3.7 shows the scenario.

RGB image IR image

Figure 3.7: Lifeboat scenario shown from RGB (left) and IR (right) camera perspective

6. Stair Corridors consists of a staircase, the camera point of view allows to see the lower floor, this
scenario has two exits, the lower floor and behind the camera. Figure 3.8 shows the scenario.

RGB image IR image

Figure 3.8: Stair corridors scenario shown from RGB (left) and IR (right) camera perspective

3.2.2 HARS dataset characteristics

The dataset is balanced taking into account that it contains the same number of videos recorded in RGB
and in IR, (as the camera provides two outputs of the same video) and the camera view point of both is
the same, with the exception than the IR camera has a larger FOV than the RGB one. This causes that
the video obtained from the IR camera contains more information as it is capable of providing a wider
view from x and y axis. Figure 3.9 display the same frame from the same video in order to have a visual
representation of the FOV characteristic explained before.

34 Chapter 3. Development

RGB image IR image

Figure 3.9: Exterior scenario shown from RGB (left) and IR (right) camera perspective

The actions performed along the dataset can be included in two groups:

1. Individual actions performed by each of the individuals independently from each other that
include: walking, running, sitting, falling down and going through stairs.

2. Group actions performed by all the individuals or the majority of them in the video, including:
stampede and blockade.

All of the actions included as well with the criteria to consider if an action belongs to a certain group
are explained along this chapter.

Most of the videos included in the dataset contain three to four persons performing different actions in
the scenario at the same time. This group of four people includes two men and two women with different
heights. This selection of persons try to cover the diversity of the people that can be found inside a cruise
ship in a real-world scenario.

It is important to highlight that the dataset is not balanced as different scenarios contain a different
number of videos, different number of persons performing actions and different number of frames per
scenario. Table 3.2 includes a summary of the distribution of videos of the dataset by scenario with the
number of persons and the number of frames.

Scenario Number of videos Average number of persons Number of frames
Common Area 10 4 8628x2

Corridor Cabins 5 4 6874x2
Exit Stairs 5 6 2739x2
Exterior 6 4 7413x2
Lifeboat 5 4 2336x2

Stair Corridors 6 4 5854x2

Table 3.2: Video, persons and frames distribution of the HARS dataset

3.3 Dataset labeling 35

3.3 Dataset labeling

3.3.1 Labeling tool

For labeling the dataset, there is used a labeling tool developed in the GEINTRA research group, that
has been adapted to the HARS dataset. This section briefly describes the main characteristics of the
labeling tool.

The available labeling tool has been developed in MATLAB and has a Graphical User Interface (GUI)
to ease its use. The application can be started by running the code included in annotationinterface.m
in MATLAB, what opens two different windows: one in charge of displaying the frames (images that
compose the video) and the other one for the setup of the labeling procedure. As the labeling tool
has been adapted to the HARS dataset a display of the original interface and the one resulting of the
modifications made are shown in figure 3.10.

Original main window of the Annotation Interface

Main window of the Annotation Interface

Figure 3.10: Main windows of the annotation interface window before and after modifications made to
adapt the tool to the HARS dataset

36 Chapter 3. Development

Once the modifications of the labeling interface had been presented other modifications to continue
to adapt the labeling tool to the HARS dataset are presented:

1. Interpolation of labels problems, the linear regression solution was originally thought for uses
in which there was a continuous labeling without being stopped more than 30 frames. As the
average length of the dataset videos is 1200 and the complexity of the actions performed commonly
include some of the persons disappearing for more than 30 frames, the labeling tool had problems
using again interpolation of frames once a person came back from the image. This meant that
interpolation of labels could not be performed again for the user that came back to the image.
The applied solution consisted on modifiyintg the interpolation procedure in order to increase the
number of frames between available labels.

2. Addition of actions of interest, originally the actions that could be labeled by the tool did
not cover all the actions performed in the dataset, therefore the individual action “stairs” and the
group actions “stampede” and “blockade” were defined. Since in each frame there can exist both,
individual and group actions, this change has meant a modification in the original interface of the
labeling tool, adding an sliding window for group actions as well as functions definitions for it
and establishing a relation between the user interaction with the window and the structure which
contains the information picked up from the labeling tool interface and a new modification into the
indexes used by the start labeling and interpolation buttons associated functions. Furthermore, it
has been necessary to modify the structure of the ground truth files, as well as the functions used
to read and write those files in order to add the group actions data.

The labeling tool allows to input a video and extract the frames of it as a .jpg file in a folder called
FRAMES. These frames are the baseline of the labeling process and the labeling tool allows to create
bounding boxes and define actions to each one of the bounding boxes included a group action per frame
in the frames that are obtained from the original video. It also provides users information that include
a number associated to each one of the persons that can be seen in the dataset videos and information
about the color display of the bounding boxes depending on the action selected. Figure 3.11 displays this
information.

Figure 3.11: Annotation Interface information

To start labeling, it must be chosen the frame number, the user ID and the performed action. For
example, figure 3.12 shows the labeling GUI in which the chosen frame is the 81, the user ID is 0 and the
action is “Walk” and the group action is “Blockade”.

3.3 Dataset labeling 37

Figure 3.12: Use of the Annotation Interface

Each person is labeled by clicking with the left mouse button in the upper left and lower right corners
of the corresponding bounding box. An example with two people is shown in figure 3.13, and as mentioned
before the colour of the bounding box depends on the selected action , being the bounding box of user 0
pink as the labeled action is stationary, and the user 2 bounding box blue as the labeled action is walking.

Figure 3.13: Example of the labeled Bounding Boxes.

It is worth highlighting that is is not necessary to label people and actions for each frame, since the
change between frames is small in position, the labeling tool can predict how the bounding box moves
between two non-consecutive frames, with a maximum interval of 30 frames. This means that the labeling
tool labels automatically all the frames included between two labeled frames using linear regression at a
maximum interval of 30 frames, (that correspond to 1 second in the videos).

The ground truth is then saved to a text file (with extension .gt) whose name can be chosen in the
Annotation Interface (figure 3.14).

38 Chapter 3. Development

Figure 3.14: Generating GT file using the Annotation Interface

This file includes a line for each image (frame) whose structure is shown in figure 3.15, the information
displayed in the cases when more than one person is included in the frame can be seen in figure 3.16.

Figure 3.15: GT File distribution

Figure 3.16: GT File distribution including more than one person per frame

Starting from left to right, each line includes the number of frame, if it was manually labeled (1 Yes,
0 no), and for each labeled user: the user ID, four numbers that are the coordinates ofleft, top and right,
bottom points of the bounding box, the number associated with the action that the user is performing
and finally the corresponding number to the group action developed. The data for each person in a frame
are included in the same line. Finally, an extra number at the end of the line is added that corresponds
to the group action performed in the frame.

3.3.2 Labeling criteria

Once the functionality of the labeling tool and the modifications made are explained, this section in-
troduces the criteria for labeling both, people and actions. Due to the characteristics of the dataset, it
presents several difficulties for labeling related to the high degree of occlusions and the characteristics of
the different scenarios. Furthermore, it is necessary to establish a criteria to define when an action starts
and finish.

3.3 Dataset labeling 39

3.3.2.1 Person Labeling criteria

The first aspect to consider while performing the labeling process is when to label a person. As explained
before, the characteristics of this dataset and its scenarios often result in having people overlaping or
being partially occluded by objects or other people. If the form of a person is recognizable, this means
that at least 50% of the persons body is visible, then the person is labeled.

Left image in figure 3.17 displays two persons partially overlaping, in this case both of them are being
labeled. Right and left pictures in image 3.17 show persons being partially covered by objects. In this
cases if, for example, the bottom part of the person is completelly covered the bounding box is applied to
an estimation of its form, meaning that eventhough the legs can not be seen the bounding box includes
the space they are supposed to occupy.

Figure 3.17: Bounding Boxes delimitations defined for partially covered persons in the scenario

As seen in the section 3.2 all the scenarios contain places that have been denominated exits that
are places where persons in the video can leave or enter the scene. This means that the same criteria
explained before must be applied to choose when to start labeling a person when enters the scene and
when to stop labeling a person when its leaving the scene. When a person enters the scenario the labeling
process begins when at least 50% of its body is visible and when it leaves the scenario the labeling process
ends when the percentage of visible body shown drops from 50%.

1. Starting the labeling process, as explained before, the person that enters the scenario is going
to be labeled if more than 50% of the body is shown. Figure 3.18 shows a case where a person is
passing by the camera in the lower edge of the frame, it can be told by the helmet seen, but as a
human figure cannot be seen due to the low percentage of the persons body showing the person
passing by is not being labeled, therefore barely distinguishable due to a low percentage of the body
being shown in the frame users are not considered.

40 Chapter 3. Development

Figure 3.18: Choosing when to start labeling a user

2. Ending the labeling process, the same criteria explained for the start of the labeling process
applies here, when a person is no longer recognizable due to the percentage shown decrementing as
it is progressively leaving the frame it will no longer be labeled. Figure 3.19 displays two consecutive
frames in which a person can be seen leaving the scene and, as its shape is no longer distinguishable
due to progressively showing less percentage, the labeling process ends.

Figure 3.19: Choosing when to end the labeling process of a user

Finally, there are two special cases that must be considered. The first one is when we can see that there
is a person in the video, but it cannot be distinguished which user is. In this case, the user identification
can be obtained from other frame in the same video, what allows assigning the corresponding label since
the first frame in which the person appears. Figure 3.20 displays the case in which a person can be seen
but not recognized in a scenario.

The second case is the following, a user is labeled until it leaves the frame, this is a special and
important case because the HARS dataset includes videos taken in narrow spaces such as corridors, and

3.3 Dataset labeling 41

as it could be seen in the previous images used as examples, the users have different heights with user 0
being the tallest. This means that in a narrow space, the user that is nearest to the camera can occlude
other people. In this situation, the occluded people is still labeled during a maximum of 300 frames even
if they are not visible, making an estimation of their position.

Figure 3.20: Special case 1 example (A person can be seen in the frame but not identified)

This is a very important aspect, as the main goal of this dataset in to train a model in charge of
detecting anomalies such as a stampede, and if we don not train the model in order to understand that
even if they are not visible there are still users in the frame then there could be some problems. A
different criterion is applied when it is only know that there are people there going forward 300 frames
apart. This means that once a person starts being labeled the labeling process continues until the person
leaves the frame even if the body percentage shown is 0%.

3.3.2.2 Individual actions labeling criteria

As it has been explained before in section 3.2, that explains the main characteristics of the HARS dataset,
it contains 6 different individual actions: walk, run, fall down, sit down, stationery and stairs, each one
of them and the criteria used will be presented up next.

1. Stationary action: stationary definition is to stand still or not to move, so the actionis considered
as stationary if the person is not moving from a point in the ground, this means that no displacement
is allowed. As it can be seen in the example in figure 3.21, the position of the body of the people
in the frame may change but as there is no displacement made the action is considered stationary.

42 Chapter 3. Development

Figure 3.21: Stationary action example where a person moves but does not perform any displacement

Relating this action with the other individual actions included in the dataset, it is considered that
a person is performing a stationary action when the displacement performed finishes and do not
fall down. Figure 3.22 shows two consecutive frames when it can be seen that user 3 is going from
performing a walking action until it stops its displacement and starts a stationary action.

Figure 3.22: Stationary action considerations coming from performing other of the actions included in
the dataset

2. Walking action: it is considered that the action performed is walking when there has been a
displacement between frames at a certain rate. Figure 3.23 displays the difference between walking
action and stationary action in two consecutive frames user 1 and user 2 have not experience any
displacement between those two frames, but user 0 has, so the walking action is assigned to user 0
and the stationary action to the rest of the users.

3.3 Dataset labeling 43

Figure 3.23: Walking action being labeled due to a displacement between frames from user 0
.

It is considered that a user has started the action of walking from a stationary position when the
first step is made, in image 3.24 it can be seen this criterion applied on user 2.

Figure 3.24: Walking action considerations

3. Running action, eventhough it has been explained that once there is displacement of a body
the action becomes walking, that is not entirely true as the action of running is included in the
dataset. Initially a diferentiation between both of these actions was based on a threshold applied to
displacement between a set of frames: if the displacement of frames was greater than the threshold
the action labeled would be running and if it did not reach it it would be walking, however, this
criteria application is not that simple as there are some videos in the dataset in which the users
walk fast, so the criteria used for making a difference between these two different actions is the
motion of the body. Figure 3.25 displays the second criteria used to differentiate both actions as
the displacement between frames is similar but the body motion of the persons included is different.

44 Chapter 3. Development

Figure 3.25: Running and Walking differentiation

As in the walking criteria explained before it is considered that a user has started the action of
running from a stationary position when the first step is made.

4. Falling action, this action is the act of falling down into the floor, in Figure 3.27 it can be seen
that this action is labeled when a user falls down and lays on the floor, not when it the user trips
over, the image on the left displays a case where the user almost falls down, but it never reaches
the floor or the stairs so the action of falling down is never completed and it is not taken into
consideration.

Figure 3.26: Falling Down action

5. Stairs action: this action involves a user to climb up or down through a staircase. It has not any
extra criteria applied to it with the exception that a person would be considered performing this

3.3 Dataset labeling 45

action when it takes the first step into a staircase and that it stops performing that action when it
takes the first step out of the staircase. Figure 3.27 displays two consecutive frames in which user
0 changes from stairs action to running action once he steps out the staircase.

Figure 3.27: Beginning and end of stairs action

It is important to consider that when videos are being labeled in which the users use stairs, there
is a need to include hierarchical priorities as the main objective of the model trained is to detect
anomalies in these videos, so the actions of falling down and stationary are prioritized if they occur
in a staircase segment of the scenario. Figure 3.28 shows cases in the dataset in which stationary
and falling down actions are priorized over the stairs action eventhough they are taking place in a
staircase.

Figure 3.28: Falling Down in stairs action

46 Chapter 3. Development

3.3.2.3 Group actions criteria

One important characteristic of the HARS dataset is that it contains both individual and group actions.
In group actions all the users in the video or the majority of them perform a set of actions that, as a
whole, can be considered a group action of interest for detection anomalies in large cruise ships. The two
group actions that can be seen throughout the dataset are presented below.

1. Stampede: a stampede by definition refers to a situation in which a group of people suddenly
starts running in the same direction and close to each other. Figure 3.29 displays a case in which
the 3 users included in the video start running in the same direction and are close to each other,
therefore both shown cases are considered a stampede.

Figure 3.29: Stampede action sample

During the presentation of the labeling criteria for individual actions, a differentiation between
walking fast and running has been defined. The same criteria applies here, only when the group
of users is running the group action labeled would be stampede. Figure 3.25 displays the criteria
explained before to differentiate walking and running actions.

2. Blockade: a blockade is, by definition, a situation in which the path that a person is following is
suddenly blocked by an object or, in the case of the dataset, another person and the flow of people
through a section of the scenario is interrupted. In the dataset, all the blockades occur due the
one person falling down and the rest or the majority of the persons included in the video become
stationary. Figure 3.30 displays the case in which user 0 falls down and does not get up, therefore
as the scenario is a narrow corridor the flow of the rest of persons is being interrupted.

3.3 Dataset labeling 47

Figure 3.30: Blockade action sample

3.3.2.4 Important considerations about the labeling process

To finish up with the labeling criteria is important to highlight the following.

IR videos, due to the complexity of the scenarios included in the dataset and the different lighting
conditions that they include, there are some difficulties while labeling the IR videos due to they poor
characteristics. Figure 3.31 shows two exact frames from the same video, the image displays the IR video
and the RGB video respectively, it can be seen that for the IR scenarios there are problems to identify
the users that appear in it.

Figure 3.31: Example of poor characteristics of the IR videos

This problem was solved by initially labeling all the RGB videos, and then use the resulting gt files
for the IR videos. As seen in the section that explained the characteristics of the dataset the IR camera
used to record the videos provide a wider view and a different FOV than the one used to record the RGB

48 Chapter 3. Development

videos. The labeling tool used allows to modify a gt file, therefore with the IR video as base the gt files
were modified and fixed to the dimensions of the IR videos.

3.4 Labeling result

Table 3.3 includes the number of frames corresponding for an action per scenario included in the dataset.

Scenario Walk Run Fall Down Stationary Stairs Blockade Stampede
Common Area 7604 4641 0 5735 0 0 1006

Corridor Cabins 5915 7076 1500 3676 0 1091 2349
Exit Stairs 1941 100 0 443 2338 0 0
Exterior 4237 3029 295 4120 462 332 0
Lifeboat 760 652 0 2458 462 0 0

Stair Corridors 4079 0 1010 368 7440 986 0
Total 24536x2 15498x2 2805x2 16797x2 10240x2 2409x2 3355x2

Table 3.3: Video, persons and frames distribution of the HARS dataset

3.5 Dataset evaluation

This section describes the implementation y evaluation of YOLOv3 for people detection using the HARS
dataset. It has been chosen due to its ballance between computational cost and accuracy.

3.5.1 YOLOv3 implementation in Google Colab

As it has been explained previously, in order to validate the labeling, it is used a YOLO implementation
in Google Colab. In particular, YOLOv3 is used to detect people and objects. In order to validate both,
the YOLO implementation and the dataset labeling, people detections are compared to the labels in the
ground truth files obtained from the labeling tool, this process is performed for all the videos in the
dataset.

For this TFG, YOLOv3 has been implemented in Google Colab [52], since it allows programming
and executing Python code in a web browser, with access to remote GPUs, whitout needing any specific
configuration. YOLO allows obtaining the coordinates of the bounding boxes corresponding to the people
detected in any image, that are saved to a text file. The comparison of the labels and the YOLOv3
detections allows evaluating the HARS dataset. Figure 3.32 shows the flowchart of this TFG highlighting
the part of focus of this section of the chapter.

3.5 Dataset evaluation 49

Figure 3.32: General flowchart of this TFG

The steps followed to implement YOLOv3 in Google Colab are now presented. A general block
diagram including the different steps are shown in Figure 3.33.

Figure 3.33: Flowchart of the implementation of YOLOv3 in Google Colab

1. Graphical Processing Unit (GPU) configuration: due to the characteristics of the PC on
which the TFG has been developed, which does not have a powerful GPU, for the implementation
and execution of YOLOv3 it has been used Google Colab. As it has been mentioned, it is an
online alternative to program and execute python code in a browser, that does not require any
configuration and allows access to GPUs.

2. Download Darknet, Darknet, YOLOv3 backbone is downloaded from [53] repository, and then
installed and compiled. This YOLOv3 implementation [54] has been chosen because it allows to
receive as output a video representing the bounding boxes and probability of each detection, useful
for a visual representation and a first take on how accurate YOLOv3 is. The original implementation
has been modified in order to also obtain a text file including information about the detection such
as bounding box coordinates, probability and frame information. This .txt file obtained is used in
the evaluation process. Figures 3.34 and 3.35 show the process described above.

50 Chapter 3. Development

Figure 3.34: Repository Cloning and Installing

Figure 3.35: Compile

3. Download pretrained YOLO weights: the evaluation and obtaining of the output files and
videos for the dataset is performed with a pretrained YOLOv3 version, that has been trainned with
COCO dataset. It is important to highlight that since the YOLOv3 model used has been trained
with COCO [37] dataset it contains 80 different classes as seen in section 2.2.3. From all of those
classes, the only one of intereset is person. COCO dataset weights has been chosen due to the
characteristics of the dataset itself, it contains dense pose, as for the characteristics of the HARS
dataset, it is important to simultaneously detect people and perform a mapping between pixels that
belong to a specific person as along the HARS dataset there are a lot of mapping between persons
in the scenarios. Image 3.36 displays the process in which this weights are downloaded.

Figure 3.36: Downloading of pretrained YOLOv3 weights with COCO dataset

4. Once YOLOv3 is implemented the process of feeding the system with the videos of the dataset
begins, the videos of the HARS dataset are in a .mp4 format with a size of 640x480 and 30 frames
per second. Figure 3.37 represents the flowchart followed for this process.

3.5 Dataset evaluation 51

Figure 3.37: Flowchart representing how to obtain the different outputs

5. Create access to computer files, as the interest of implementing YOLOv3 in Google Colab
is to input the dataset videos and obtain the result files and output videos that include a visual
representation of the bounding boxes predictions a way to access the dataset videos is created.
Figure 3.38 displays the necessary process to extract videos directly from the computer working
with.

Figure 3.38: Importing the videos directly from the computer

6. Extraction of the ouput video provided by YOLOv3, the next line shown allows to obtain
the output video in an .avi format.

!./darknet detector demo cfg/coco.data cfg/yolov3.cfg

yolov3.weights -dont_show commonarea1c.mp4 -i 0

-out_filename stairscorridor3c.avi -thresh 0.7

This process outputs a video that shows the bounding boxes predicted by YOLO and the percentage
that represents how certain YOLO is that the object detected is, in this case, a person. The obtained
video gives an idea of how well YOLO performs the detection and how well it performs in a dataset
of this type. Figure 3.39 shows a frame in which the information that YOLO provides can be seen.

52 Chapter 3. Development

Figure 3.39: YOLOv3 video output example

7. Extraction of the output coordinates provided by YOLOv3, the next line shown allows to
obtain the output coordinates of the detections in an .txt format.

!./darknet detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights

stairscorridors6i.mp4 -dont_show -ext_output stairscorridors6i.mp4 >

stairscorridors6i.txt

The video output does not provide specific information needed to evaluate the model with metrics
such as Intersection over Union (IoU). For this purpose, it is needed to extract the coordinates of the
bounding boxes that YOLO generates and write them into a .txt file containing those coordinates
for later evaluation. These coordinates are output in the format shown in figure 3.40, that displays
the format of the information provided by YOLO. It provides the percentage related to the detection
and the corresponding coordinates, as well as a number related to the frame in which the detection
has been made.

Figure 3.40: YOLO GT file information format

3.5.2 Data processing for evaluation

Once obtained the ground truth files corresponding to the manual labeling and the YOLOv3 predictions,
it is necessary to process those files fitting them into the same format. For this, MATLAB is used. Below,
the detailed process and the important factors to consider for each one of these files is explained.

3.5 Dataset evaluation 53

3.5.2.1 Preparing Ground Truth file for evaluation

The first thing considered for preparing the ground truth files is the format in which the labeling tool
gives back de coordinates of the ground truth bounding boxes, action, users and frames. Figure 3.41
displays, once again, the format in which this data is obtained.

Figure 3.41: Ground Truth coordinates distribution

First, file information is read and stored line by line. Figure 3.42 shows the array generated from
reading the contents of the file.

Figure 3.42: Example of the generated array with Ground truth file information

The next step done to prepare the data for evaluation is to fill empty coordinates with zeros. This
process has been chosen due to the interest on working with arrays as the use of the specific toolbox
functions used for the evaluation process is eased if the work is done using arrays indexing. Therefore,
as the format selected is arrays, the size of the arrays must be constant through all its content, so the
string generated after this process contains the coordinates of the file plus the coordinates (0,0,1,1) to
indicate an empty detection. The number of extra coordinates included in this process stack up to 4, in
order to have a maximum of 5 detections in the worst-case scenario (just one person detected), doing this
if just one person is detected the remaining ones would have a non-existing bounding box (this is very
important and is explained in detail along this chapter).

It is needed to extract the number of frames included in this file for the evaluation as the labeling
tool used to obtain the ground truth coordinates does not include frames without detections and YOLO
text file does. Figure 3.42 shows a case in which there are no labeling process between frames 171 and
281, therefore it can be seen that the gt file does not contain empty frames.

54 Chapter 3. Development

Figure 3.43: Reading and storing corresponding frame number

Due to the frame information display in the manual ground truth file, an extraction of the string
between positions is performed and the result is converted to an integer number in "double" format. This
information is stored in an array that contains all the frames with a detection of the ground truth in an
array.

Once obtained the number of frames, the detection coordinates are extracted.

Again extracting between two different markers and performing a data type conversion allows to
obtain the coordinates of the detections in an array format.

3.5.2.2 Preparing YOLO coordinates file for evaluation

Finished the processing of the data of the ground truth bounding boxes, the processing of the YOLO
bounding boxes information begins. It is important to take into account the format in which YOLO
outputs the information corresponding to the video input. Figure 3.40 shows the format of the information
provided by YOLO.

As seen in the figure, YOLO gives information regarding the type of object detected, how sure it is
that is a certain object in a percentage representation and the coordinates of its bounding box.

The first step done, as before, is to read the file, it is done by using functions that output a character
array containing all the characters of the file Image 3.44 displays the content of the character array
obtained by using these functions.

Figure 3.44: Content of the character array obtained

YOLO does not only detect persons, but it also detects objects, since COCO dataset weights were used,
this leads to the implemented YOLO model to make detections included in a total of 80 different classes,
once implemented in this dataset apart from persons it detects other different classes, such as backpacks,
suitcases, dining tables, handbags, skateboards and chairs. The next is to remove these detections as they
do not provide relevant information. Figure 3.45 shows the array that contains the information once the
non-useful detections are removed, in this case, the coordinates of the backpack detection are removed.

3.5 Dataset evaluation 55

Figure 3.45: Example of array in which non-useful detection coordinates have been removed.

The next step is to extract the coordinates corresponding to each one of the detections included in the
output .txt file that YOLOv3 implementation provides. It is important to highlight that YOLO provides
coordinates in a different format than the labeling tool. It provides the height and width of the bounding
box and the coordinates of one of the axis, therefore to convert to the same format as the ground truth
files (wich includes the coordinates of one of the lower and upper axis) those two values must be added to
the coordinates of the lower axis of the bounding box. This results in an array containing the coordinates
in the same format as the labeling tool. Figure 3.46 displays the content of the array that contains the
coordinates of the detections.

Figure 3.46: YOLO coordinates assigned to each ’person’ detection

To compare it with the manual ground truth file and obtain results, it is needed to know how many
people per frame there are. YOLO provides one detection per line, therefore it is needed to display them
in a horizontal way as in the ground truth file, in which all the coordinates of the bounding boxes included
in one frame are displayed in the same line. The way chosen to approach this conversion is counting how
many times per frame the string person appears, and, with the convenient transformations, an array
containing the number of persons per frame is obtained.

Using this array and the one containing the coordinates, and performing the same step used in the
manual coordinates to fill empty positions, the resulting variable is generated. Parallel to this, an array
containning the frame number is created counting the times that the string AVGFPS appears, as it only
appears once per frame, is created. Figure 3.47 displays a nested array in which there are included the
number of frame and the coordinates of the corresponding detections in that frame.

56 Chapter 3. Development

Figure 3.47: YoloGTtxt distribution

With the information obtained from the process previosly explained, it is possible to obtain different
metrics that provide information about the performance in person detection and that allow to validate
the dataset labeling. The used metrics are explained in the Experimental Results chapter.

Chapter 4

Results

4.1 Introduction

In this chapter the obtained results are presented. Firstly, the experimental setup is described, this
includes the explanation about the used metrics for this process. After that, there is presented the
procedure followed for the evaluation. Finally, the obtained results are shown and analyzed in detail.

4.2 Experimental setup

This section describes the used metrics as well as the data processing in order to obtain the experimental
results.

4.2.1 Metrics used for evaluation

4.2.1.1 Classification metrics

In a classification process, a positive detection is something that has been detected and negative detection
not being detected. With this in mind, some basic concepts used to define metrics are defined below:

• True Positive (TP): correct detection, the case in which the systems declare a positive and it is
truly positive.

• False Positive (FP): wrong detection, the case in which the system declares a positive but it is truly
a negative.

• False Negative (FN): a negative detection that truly is a positive detection.

• True Negative (TN): a negative detection that truly is a negative detection.

Based on the previously mentioned concepts, there can be defined some important parameters used
to evaluate the performance of a model:

• Precision: shows the quality of a model representing the truly positive detected cases among all
the detections performed by the model. It is defined in the equation 4.1.

Precision = TP

TP + FP
= TP

all detections
(4.1)

58 Chapter 4. Results

• Recall: it is the ability of a model to detect all the ground truth true detections. It is defined in
equation 4.2.

Recall = TP

TP + FN
= TP

all ground truths
(4.2)

• Accuracy: it is the fraction that was correctly predicted among the total number of cases. It is
defined in equation 4.3.

Accuracy = TP + TN

TP + TN + FN + FP
(4.3)

4.2.1.2 Intersection over Union (IoU)

Other widely used metric is the IoU, that allows measuring the behavior of detection systems on a
particular dataset. Applied to the context of this TFG, this metric allows comparing the results obtained
from YOLO with the available ground truth, product of the labeling process.

The IoU represents the area of overlap between two bounding boxes divided by the area of union,
as it can be seen in figure 4.1, in which it is shown the mathematical relationship and a graphical
representation.

Figure 4.1: IoU mathematical definition

4.2.1.3 AUC and ROC curves

Another metric widely used to evaluate the performance of classification models are Area Under ROC
Curve (AUC) represents the separability. It correspond to the area under the Receiver Operating Char-
acteristic (ROC) curve.

There are the performance measurements done at different thresholds and tell us how good the model
is at predicting the classes, the higher the AUC the better the model is at distinguishing classes.

The ROC curve is obtained by plotting the True Positive Rate (TPR) on the Y axis and False Positive
Rate (FPR) on the X axis for different values of a chosen parameter, that is usually a threshold. Figure 4.2
displays an example of a ROC curve, with the axis label, name of the curve and name of the area under
the curve.

4.2 Experimental setup 59

Figure 4.2: ROC curve example

The TPR and FPR are defined as the expressions displayed in equations 4.4 and 4.5 respectively:

TPR = TP

TP + FN
(4.4)

TPR = FP

TN + FP
(4.5)

To understand more about the AUC-ROC curve, figure 4.3 displays the ROC curves corresponding,
from left to right, to a perfect model (in which all the classifications are correct), a model without
classification capacity and a model in which all predictions are wrong.

Figure 4.3: ROC curve visual examples for specific cases.

The first case corresponds to the perfect classificator, as it can be seen the ROC curve corresponds to
a model with 0 false detections and an accuracy of 100% in the detections. The middle one corresponds
to a classification model that performs random classifications, and as it can be seen the area under the
curve corresponds perfectly to a 50%, this means that in a case of a binary classification problem by
probability half the detections falls down into a class and the rest to the other. Finally, the right one
corresponds to a model in which all the classifications are wrong (worst case scenario), this can be seen
in the area under the curve that is 0%.

60 Chapter 4. Results

4.2.2 Preparing the data for evaluation

Once the data has been prepared, the evaluation is carried out, obtaining different metrics. To do that,
there ares used two functions included in two different MATLAB toolboxes: Computer Vision Toolbox
and Statistics and Machine learning Toolbox. The output of the evaluation process are two different
matrixes. This two matrixes are needed in order to use the fuctions included in the toolboxes and obtain
the results. It is important to highlight that eventough MATLAB allows other formats to work with
the matrix format was chosen due to the function bboxOverlapRatio only accepts matrixes including the
coordinates as inputs. The content of these two matrixes include IoU percentage corresponding to the
labeled bounding box and its corresponding YOLO one and the percentage related to how sure YOLO
is that the detections performed belong to the class person .

4.2.2.1 IoU matrix

One of the metrics of interest in the evaluation process of the dataset is the IoU, that is obtained using
the function bboxOverlapRatio included in the Computer Vision Toolbox. Given the coordinates of two
different bounding boxes, this function returns the percentage of overlap ratio.

It is important to take into account that the order of the people’s bounding boxes is not the same in
the YOLO results file and in the manual ground truth one. This means that the first person detection
displayed in the YOLO file might be third person detected in the labeled ground truth. The solution for
this is to evaluate the bounding box IoU between each of the manualy labeled bounding boxes and every
one of the YOLO bounding boxes, saving the results in an array. Once obtained the array a selection of
the maximum value in the array is performed, this selects the bounding box with the most overlap.

Figure 4.4 shows an example of the result of this process for a given frame. It is an array with
dimensions: number of frames by number of persons contained in the frame, where each value corresponds
to the IoU of each pair of bounding boxes in each frame.

Figure 4.4: IoU matrix example

Figure 4.5 represents in a histogram the level of overlap between the YOLO .txt output file bounding
boxes and the manual ground truth file ones for the case of RGB videos. Considering that a 1 would be
a perfect fit of the bounding boxes along all the frames and the worst-case scenario would be a 0 it can
be seen that in this case scenario precision wise YOLO is very accurate considering the characteristics of
the dataset as the majority of the dataset predictions fall in the 0.7 or greater bins.

4.2 Experimental setup 61

Figure 4.5: IoU results matrix plot

4.2.2.2 YOLO accuracy matrix

Other significant data needed for evaluation is how certain YOLO is that a detection corresponds to a
class. In this case it is taken into consideration the percentage assigned to each detection that YOLO
considers it is a person. This percentage can be obtained for the YOLO results text file.

Considering the format in which YOLO displays the percentage of detection values by just applying an
extraction of string and a conversion to double, the probability can be obtained and stored in a variable,
then the remaining step would be to escalate those values in a range from 0 to 1 for the perfcurve function
to understand the values, since the perfcurve only understands numeric values between 0 and 1. Figure 4.6
displays the last step explained where the percentage obtained from the YOLO output text file is fixed
to be between 0 and 1.

Figure 4.6: YOLO accuracy matrix

62 Chapter 4. Results

4.3 Experimental results

To finish with the results chapter, below there are presented the experimental results obtained after
evaluation the whole dataset. There are shown the ROC curves for both, the IoU threshols and the
YOLO scores one in the case of RGB.

Perfcurve function uses as input a labels vector and a corresponding score associated with those labels,
in a classification example would be (how sure the classifier is that an object belongs to that class) and a
class to evaluate in a string of characters format. For this function to work properly it is necessary that
the labels vector includes more than one class, that’s why the code used includes two more labels apart
from person, which are versicolor and boletus, other thing to consider is that the function need at least a
relation 85-15 between the data evaluated and the complementary one (used to fill the non-used labels),
this space is filled in the IoU vector and the percentaje vector with the rand function, which provides a
random number between 0 and 1 associated to a percentaje. The perfcurve function returns as output
the X and Y coordinates to display de ROC curve, the AUC, and the optimal operating point value as
“the value whose sensitivity and specificity are the closest to the value of the area under the ROC curve
and the absolute value of the difference between the sensitivity and specificity values is minimum” [55].

This process allows obtaining the ROC curves of the IoU and YOLO accuracy for any of the scenarios
included in the HARS dataset. This means that an evaluation of the whole dataset or any of the scenarios
included can be made based on the ROC curves obtained, for this analysis the most visual parameter
to consider is the AUC. And as seen along this chapter, the greater the value of the AUC the best
performance by YOLO in that given scenario.

Figure 4.7 shows the ROC curves corresponding to the IoU and the YOLO accuracy percentage
obtained from the whole dataset RGB videos respectively.

ROC of IoU representation ROC of YOLO accuracy representation

Figure 4.7: ROC curves representation for IoU and YOLO accuracy

As it can be seen by the information provided eventhough HARS is a complicated dataset, YOLO
performs good in the precision of the bounding boxes that assigns to the detections made as it can be

4.3 Experimental results 63

seen in the ROC IoU graph (AUC of 0.748), and the accuracy of YOLO, that provides information about
how sure it is that a detection belongs to the person, has good results as well, in the ROC of YOLO
accuracy an AUC of 0.861 can be appreciated.

Figure 4.8 represent the histograms of the matrixes used for the ROC curves, the IoU and YOLO
accuracy matrixes. The IoU matrix histogram represents the number of values of the matrix included
in each of the bins. As it can be seen, the majority of the bounding boxes assigned by YOLO had an
IoU between 0.7 and 1, this means that YOLO performance precision in the HARS dataset is very good
eventhough the difficulties of it. The next histogram, corresponding with the YOLO accuracy of the
detections made, shows that YOLO was, in the majority of the detections made, between 90% and 100%
sure that the detection performed belonged to the person class, this means that YOLO accuracy along
the HARS dataset was very good.

IoU histogram matrix representation YOLO accuracy histogram matrix representation

Figure 4.8: Histogram representations of IoU and YOLO accuracy

It is important to highlight that the results displayed correspond to the RGB analysis of the dataset
as the IR videos display poor results.

As previously seen, the distribution by scenarios of the dataset is not balanced, as each of the different
scenarios in the dataset include different number of videos. Consequently YOLO performs differently
depending on the scenario, taking this into consideration the conclusions are separated and differentiated
by the different scenarios that conform the dataset.

4.3.1 RGB vs IR

As explained in the section describing the characteristics of the dataset, it is composed of RGB videos
and IR videos but, YOLO performs differently in these two types of videos working noticeable better in
the RGB videos. In figure 4.9, there can be seen two frames from the same video recorded with RGB
and IR cameras. As it can be seen, in the IR frame YOLO bounding boxes for two persons are missing.

This underperformance by YOLO in the IR recorded videos can be seen better in the ROC curves
looking at the AUC parameter. As explained at the beginning of the chapter the bigger this parameter is
the better performance by YOLO. In figure 4.10 the different ROC curves for IoU and YOLO accuracy
for RGB an IR videos are shown. The AUC of the IoU and YOLO accuracy in both cases is superior in
the RGB camera than in the IR camera, this means that YOLO performs better in the RGB videos of

64 Chapter 4. Results

the dataset. Apart from the FOV difference between the two cameras used, due to the lighting YOLO
performance deteriorates in comparison with the RGB video.

RGB frame display IR frame display

Figure 4.9: Difference between YOLO detection bounding boxes depending on the video recording setup

RGB ROC curve display

IR ROC curve display

Figure 4.10: Difference between YOLO IoU and accuracy ROC curves

4.3 Experimental results 65

4.3.2 Lighting conditions

The previously seen scenarios contain the best lighting in the whole dataset, so to deepen this lighting
criteria relationship with the YOLO performance the results obtained from one of the worst lighting
scenarios in the dataset are presented. As it can be seen in image 4.11 the only person that YOLO
detects in the IR video is the one below the light in the corridor, consequently the most illuminated one,
and does not detect the other 3 people in the corridor that are being detected in the RGB video.

RGB frame display IR frame display

Figure 4.11: Difference between YOLO detection bounding boxes depending on the video recording
setup

As in the previous example, this can be seen in the IoU and YOLO accuracy ROC curves presented
in figures 4.12 and 4.13.

In the case of the RGB footage recorded these types of scenarios with low lighting do relatively well
and in the case of low-quality lighting in the IR videos of this scenario there can be seen see a very poor
IoU ROC curve and an ROC curve accuracy shaped like a random classifier.

Figure 4.12: RGB ROC curve display

66 Chapter 4. Results

Figure 4.13: IR ROC curve display

4.3.3 Depth and occlusions

In this section of the chapter the performance of YOLO for two different scenarios in the dataset is
analyzed to obtain in which scenarios does it work better depending on the occlusion of the persons in
the scenario and link these conclusions obtained for each of the scenarios with its particularities with the
limitations of YOLO seen in the chapter 2.

1. Common Area scenario: this scenario of the dataset consists in a long hallway with mirror on
its sides. The fact that it has mirrors on its sides makes YOLO perform incorrect detections as it
does not understand the concept of reflection, so YOLO detects reflections as persons. Figure 4.14
shows an example of the incorrect detections performed in the mirror. However these incorrect
detections caused by the mirror are discarded in the processing of the data before evaluation as the
bounding boxes with more IoU are considered but they are also considered false positives.

Figure 4.14: Wrong people detecions made by YOLO due to the mirror

4.3 Experimental results 67

Other significant trait of this scenario is the hallway. The most remarkable feature of this scenario is
depth, depth implies that as the persons travel along the hallway are reduced in size and becoming
closer other people, resulting in an agglomeration of them. This results in a difficult scenario for an
untrained YOLO model in this type of dataset, what causes YOLO to perform poorly. However,
as seen in the figure 4.15 YOLO accuracy ROC curve, the detections that YOLO has performed
had a percentage of confidence assigned with a high value, in most cases due to the good lighting
of the hallway.

Figure 4.15: ROC curve corresponding to this scenario

2. Corridor Cabins scenario: this scenario consists on a narrower hallway with worse lighting than
before. Figure 4.16 displays the scenario. Following up the explanation of the previous scenario
and considering the theory seen in the state of art chapter that YOLO struggles to differentiate
two different people when they are overlapping, so the next conclusions can be obtained, as this is
a narrower case as the previously seen the overlap between the persons is greater since beginning
to end of the hallway.

This fact can be observed in the IoU ROC curves shown in fugure 4.17, as the AUC has decreased
from 0.81 (from previous case) to 0.71 (in this case). However, the lighting factor has only affected
slightly in the YOLO accuracy ROC curve being a decrement from 0.83 (from the previous case) to
0.82 (in this case). Just by analyzing these two similar scenarios the theory seen in chapter 2 where
it is explained that YOLO performance is decreased when objects intersect more is corroborated,
and it can also be seen that its accuracy at classification depends on lighting.

68 Chapter 4. Results

Figure 4.16: Corridor cabins scenario showcase

Figure 4.17: Corridor cabins ROC curve display

Chapter 5

Conclusions and future issues of
research

5.1 Conclusions

In this work the HARS dataset has been labeled using a labeling tool developed by GEINTRA research
gruop. This labeling tool has been modified accordingly to the labeling necessities of this work. Moreover,
there has been carried out an exhaustive experimental evaluation using YOLO in order to obtain decisive
conclusions that show if the HARS dataset allows neural networks to work with.

During the development of the TFG, there has been carried out a search of different used datasets
for people and action recognition and different proposals in the literature in search of the neural network
that provides the best features and performance for the HARS dataset.

The chosen neural network, YOLO, has been implemented in Google Colab using the weight obtained
training with COCO dataset.

Using this neural network, there has been performed an exhaustive evaluation based on the output
files provided from the Google Colab implementation and the files product of the labeling tool, for this
experimental evaluation ROC curves and histograms have been used.

For the HARS dataset set of RGB videos average values of 70% and 100% predominate the IoU
evaluation and values between 90% and 100% have been obtained in the YOLO detection accuracy, due
to the poor performance of YOLO in the set of IR videos included the results of this set are discarded as
they do not provide useful information to obtain conclusions.

In summary the HARS dataset allows neural networks to work with it with RGB as it has been seen
that YOLO is able to detect persons in a precise and reliable way, also ground truth files of the HARS
dataset have been obtained which serves to PALAEMON: A holistic passenger ship evacuation and rescue
ecosystem project (H2020-PALAEMON-814962), therefore the objectives of the TFG have been fulfilled.

5.2 Future issues

As shown in this work, it is seen that having a labeled dataset allows for a lot of evaluation processes
using different neural networks as well as a training process for them. For that reason a great number

70 Chapter 5. Conclusions and future issues of research

of improvements can be done to it some of them were initially planned but due to the lack of time there
were finally not implemented. These improvements are listed below.

1. YOLOv3 trainning, using MATLAB and the labeling process ground truth files, the required file
format for trainning YOLOv3 can be obtained leading to a trainning of YOLOv3, this would result
in a suitable model for the type of scenarios included in the HARS dataset.

2. YOLOv3 evaluation, following the previous point, the trainning of YOLOv3 instead of using
the pretrained weights obtained from COCO would lead to an increment in the neural network
precission and reliability wich wold result in better performace in the RGB and IR video sets of the
HARS dataset.

3. Different types of neural networks trainning and evaluation, during the process of this
TFG the only thing taken into account was person detection but, as individual and group actions
were labeled, a neural network capable of detecting individual and group actions could be trained
and evaluated and if given suitable results it could be implemented in the real world and directly
applied to PALAEMON: A holistic passenger ship evacuation and rescue ecosystem project (H2020-
PALAEMON-814962).

Chapter 6

Tools and resources

In this chapter the needed hardware and software requirements in order to carry out the project are
presented.

6.1 Hardware requirements

1. Processor Any Intel or AMD x86-64 processor.

2. RAM 4 GB.

3. Hard-disk space 5-8 GB for MATLAB installation.

4. Graphics OpenGL 3.3 with 1GB GPU memory.

6.2 Software requirements

1. Windows 10.

2. MATLAB 2021a.

3. Computer Vision Toolbox.

4. Statistics and Machine learning Toolbox.

5. TexStudio.

6. MikTex.

7. Google Colab.

Chapter 7

Budget

In this chapter the different costs needed for the development of this project are summarized. The cost
of the hardware and software used as well as the cost of employee time is analyzed.

7.1 Hardware resources

Concept Price Quantity Total
Intel RealSense Depth Camera D435 284.26€ 1 284,26€

Computer 600€ 1 600€
Total 884.26€

Table 7.1: Price of the different harware used in the TFG

7.2 Software resources

Concept Price Quantity Total
Matlab License 2043.14€ 1 2043.14€

Windows 10 132.84€ 1 132.84€
GitHub 0€ 1 0€

Google Colab 0€ 1 0€
TextStudio 0€ 1 0€

MikTex 0€ 1 0€
Total 2175.98€

Table 7.2: Price of the different software used in the TFG

74 Chapter 7. Budget

7.3 Human resources

Concept Price Quantity Total
Development 60€/hour 250 15000€
Typescript 15€/hour 150 2250€

Total 17250€

Table 7.3: Price of human resources needed in the TFG

7.4 Total cost budget

Concept Cost
Hardware cost 884.26€
Software cost 2175.98€
Human cost 17250€

Total 20310.24€

Table 7.4: Total cost budget of the TFG

Bibliography

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical
image database,” in 2009 IEEE conference on computer vision and pattern recognition. Ieee, 2009,
pp. 248–255.

[2] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali, S. Popov,
M. Malloci, A. Kolesnikov et al., “The open images dataset v4,” International Journal of Computer
Vision, vol. 128, no. 7, pp. 1956–1981, 2020.

[3] “The top image datasets and their challenges,” https://zbigatron.com/the-top-image-datasets/.

[4] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human actions classes from videos
in the wild,” arXiv preprint arXiv:1212.0402, 2012.

[5] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, “Ntu rgb+ d: A large scale dataset for 3d human
activity analysis,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 1010–1019.

[6] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola,
T. Green, T. Back, P. Natsev et al., “The kinetics human action video dataset,” arXiv preprint
arXiv:1705.06950, 2017.

[7] “Collective activity dataset,” https://cvgl.stanford.edu/projects/collective/collectiveActivity.html.

[8] R. J. Sethi, “Towards defining groups and crowds in video using the atomic group actions dataset,”
in 2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015, pp. 2925–2929.

[9] X. Cui, Q. Liu, M. Gao, and D. N. Metaxas, “Abnormal detection using interaction energy poten-
tials,” in CVPR 2011. IEEE, 2011, pp. 3161–3167.

[10] “Artificial neuron model,” https://www.researchgate.net/figure/Artificial-Neuron-model_fig4_
277774116.

[11] “Schematic diagram of ann,” https://www.researchgate.net/figure/
Schematic-diagram-of-ANN-with-input-hidden-and-output-layer-Input-for-this-case-is_fig2_
36428019.

[12] “Visualize cnn with keras,” https://www.kaggle.com/code/amarjeet007/visualize-cnn-with-keras/
notebook.

[13] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object
detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

https://zbigatron.com/the-top-image-datasets/
https://cvgl.stanford.edu/projects/collective/collectiveActivity.html
https://www.researchgate.net/figure/Artificial-Neuron-model_fig4_277774116
https://www.researchgate.net/figure/Artificial-Neuron-model_fig4_277774116
https://www.researchgate.net/figure/Schematic-diagram-of-ANN-with-input-hidden-and-output-layer-Input-for-this-case-is_fig2_36428019
https://www.researchgate.net/figure/Schematic-diagram-of-ANN-with-input-hidden-and-output-layer-Input-for-this-case-is_fig2_36428019
https://www.researchgate.net/figure/Schematic-diagram-of-ANN-with-input-hidden-and-output-layer-Input-for-this-case-is_fig2_36428019
https://www.kaggle.com/code/amarjeet007/visualize-cnn-with-keras/notebook
https://www.kaggle.com/code/amarjeet007/visualize-cnn-with-keras/notebook

76 BIBLIOGRAPHY

[14] “Yolo, yolov2, and yolov3: All you want to know,” https://amrokamal-47691.medium.com/
yolo-yolov2-and-yolov3-all-you-want-to-know-7e3e92dc4899.

[15] Q.-C. Mao, H.-M. Sun, Y.-B. Liu, and R.-S. Jia, “Mini-yolov3: real-time object detector for embed-
ded applications,” Ieee Access, vol. 7, pp. 133 529–133 538, 2019.

[16] “YOLOv3: Real-time object detection algorithm (whats new?),” https://viso.ai/deep-learning/
yolov3-overview.

[17] B. Xu and Z. Chen, “Multi-level fusion based 3d object detection from monocular images,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 2345–
2353.

[18] P. Adarsh, P. Rathi, and M. Kumar, “Yolo v3-tiny: Object detection and recognition using one stage
improved model,” in 2020 6th International Conference on Advanced Computing and Communication
Systems (ICACCS). IEEE, 2020, pp. 687–694.

[19] D. Liciotti, M. Paolanti, E. Frontoni, and P. Zingaretti, “People detection and tracking from an
rgb-d camera in top-view configuration: review of challenges and applications,” in International
Conference on Image Analysis and Processing. Springer, 2017, pp. 207–218.

[20] C. A. Luna, C. Losada-Gutierrez, D. Fuentes-Jimenez, A. Fernandez-Rincon, M. Mazo, and
J. Macias-Guarasa, “Robust people detection using depth information from an overhead time-of-
flight camera,” Expert Systems with Applications, vol. 71, pp. 240–256, 2017.

[21] D. Fuentes-Jimenez, R. Martin-Lopez, C. Losada-Gutierrez, D. Casillas-Perez, J. Macias-Guarasa,
C. A. Luna, and D. Pizarro, “Dpdnet: A robust people detector using deep learning with an overhead
depth camera,” Expert Systems with Applications, vol. 146, p. 113168, 2020.

[22] G. Yao, T. Lei, and J. Zhong, “A review of convolutional-neural-network-based action recognition,”
Pattern Recognition Letters, vol. 118, pp. 14–22, 2019.

[23] M. Majd and R. Safabakhsh, “Correlational convolutional lstm for human action recognition,” Neu-
rocomputing, vol. 396, pp. 224–229, 2020.

[24] A. Sánchez-Caballero, S. de López-Diz, D. Fuentes-Jimenez, C. Losada-Gutiérrez, M. Marrón-
Romera, D. Casillas-Pérez, and M. I. Sarker, “3dfcnn: real-time action recognition using 3d
deep neural networks with raw depth information,” Multimedia Tools and Applications, Mar 2022.
[Online]. Available: https://doi.org/10.1007/s11042-022-12091-z

[25] D. Tsipras, S. Santurkar, L. Engstrom, A. Ilyas, and A. Madry, “From imagenet to image classifica-
tion: Contextualizing progress on benchmarks,” in International Conference on Machine Learning.
PMLR, 2020, pp. 9625–9635.

[26] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object
detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 779–788.

[27] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in 2005 IEEE
computer society conference on computer vision and pattern recognition (CVPR’05), vol. 1. IEEE,
2005, pp. 886–893.

https://amrokamal-47691.medium.com/yolo-yolov2-and-yolov3-all-you-want-to-know-7e3e92dc4899
https://amrokamal-47691.medium.com/yolo-yolov2-and-yolov3-all-you-want-to-know-7e3e92dc4899
https://viso.ai/deep-learning/yolov3-overview
https://viso.ai/deep-learning/yolov3-overview
https://doi.org/10.1007/s11042-022-12091-z

BIBLIOGRAPHY 77

[28] R. Stewart, M. Andriluka, and A. Y. Ng, “End-to-end people detection in crowded scenes,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2325–
2333.

[29] D. Fuentes-Jimenez, C. Losada-Gutierrez, D. Casillas-Perez, J. Macias-Guarasa, D. Pizarro,
R. Martin-Lopez, and C. A. Luna, “Towards dense people detection with deep learning and depth
images,” Engineering Applications of Artificial Intelligence, vol. 106, p. 104484, 2021.

[30] T. Bagautdinov, F. Fleuret, and P. Fua, “Probability occupancy maps for occluded depth images,” in
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 2829–2837.

[31] T. Ophoff, K. Van Beeck, and T. Goedemé, “Improving real-time pedestrian detectors with
rgb+depth fusion,” in AVSS Workshop - MSS. Auckland, New Zealand: IEEE, 2018.

[32] L. Fei-Fei, J. Deng, and K. Li, “Imagenet: Constructing a large-scale image database,” Journal of
vision, vol. 9, no. 8, pp. 1037–1037, 2009.

[33] G. A. Miller, “Wordnet: a lexical database for english,” Communications of the ACM, vol. 38, no. 11,
pp. 39–41, 1995.

[34] “Wordnet: A lexical taxonomy of english words,” https://towardsdatascience.com/%EF%B8%
8Fwordnet-a-lexical-taxonomy-of-english-words-4373b541cfff.

[35] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali, S. Popov,
M. Malloci, A. Kolesnikov, T. Duerig, and V. Ferrari, “The open images dataset v4: Unified image
classification, object detection, and visual relationship detection at scale,” IJCV, 2020.

[36] “JFT-300 dataset [last accessed 09/06/2022],” https://paperswithcode.com/dataset/jft-300m.

[37] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick,
“Microsoft coco: Common objects in context,” in European conference on computer vision. Springer,
2014, pp. 740–755.

[38] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human actions classes from videos
in the wild,” CRCV-TR-12-01. UCF Center for Research in Computer Vision, Tech. Rep., 2012.

[39] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola,
T. Green, T. Back, P. Natsev et al., “The kinetics human action video dataset,” arXiv preprint
arXiv:1705.06950, 2017.

[40] W. Choi, K. Shahid, and S. Savarese, “What are they doing?: Collective activity classification
using spatio-temporal relationship among people,” in 2009 IEEE 12th international conference on
computer vision workshops, ICCV Workshops. IEEE, 2009, pp. 1282–1289.

[41] “Collective activity,” https://paperswithcode.com/dataset/collective-activity.

[42] R. J. Sethi, H. Jo, and Y. Gil, “Structured analysis of the isi atomic pair actions dataset using
workflows,” Pattern Recognition Letters, vol. 34, no. 15, pp. 2023–2032, 2013.

[43] R. J. Sethi, “Towards defining groups and crowds in video using the atomic group actions dataset,”
in 2015 IEEE International Conference on Image Processing (ICIP), 2015, pp. 2925–2929.

[44] “Activation functions in neural networks explained,” https://www.mygreatlearning.com/blog/
activation-functions/.

https://towardsdatascience.com/%EF%B8%8Fwordnet-a-lexical-taxonomy-of-english-words-4373b541cfff
https://towardsdatascience.com/%EF%B8%8Fwordnet-a-lexical-taxonomy-of-english-words-4373b541cfff
https://paperswithcode.com/dataset/jft-300m
https://paperswithcode.com/dataset/collective-activity
https://www.mygreatlearning.com/blog/activation-functions/
https://www.mygreatlearning.com/blog/activation-functions/

78 BIBLIOGRAPHY

[45] “Artificial neuron,” https://intellect.ml/artificial-neuron-200.

[46] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in
Proceedings of the IEEE international conference on computer vision, 2017, pp. 2980–2988.

[47] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “Dssd: Deconvolutional single shot detector,”
arXiv preprint arXiv:1701.06659, 2017.

[48] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-based fully convolutional
networks,” Advances in neural information processing systems, vol. 29, 2016.

[49] “YOLO you only look once, real tiem object detectin explained,” https://towardsdatascience.com/
yolo-you-only-look-once-real-time-object-detection-explained-492dc9230006.

[50] “Intel d-435,” "https://www.intelrealsense.com/depth-camera-d435/" [Last accessed 03-Dec-2021].

[51] “Intel® realsense? d435,” https://www.intelrealsense.com/depth-camera-d435/.

[52] “Google colab webpage,” https://colab.research.google.com/ [Last accessed 09/06/2022].

[53] “Alexeyab darknet,” https://github.com/AlexeyAB/darknet.

[54] “Real-time object detection using yolo upon google colab in 5 minutes,” https://medium.com/
@artinte7/real-time-object-detection-using-yolo-upon-google-colab-in-5-minutes-fd65a4903df5.

[55] “Defining an optimal cut-point value in roc analysis: An alternative approach,” https://pubmed.
ncbi.nlm.nih.gov/28642804/.

https://intellect.ml/artificial-neuron-200
https://towardsdatascience.com/yolo-you-only-look-once-real-time-object-detection-explained-492dc9230006
https://towardsdatascience.com/yolo-you-only-look-once-real-time-object-detection-explained-492dc9230006
"https://www.intelrealsense.com/depth-camera-d435/"
https://www.intelrealsense.com/depth-camera-d435/
https://colab.research.google.com/
https://github.com/AlexeyAB/darknet
https://medium.com/@artinte7/real-time-object-detection-using-yolo-upon-google-colab-in-5-minutes-fd65a4903df5
https://medium.com/@artinte7/real-time-object-detection-using-yolo-upon-google-colab-in-5-minutes-fd65a4903df5
https://pubmed.ncbi.nlm.nih.gov/28642804/
https://pubmed.ncbi.nlm.nih.gov/28642804/

Universidad de Alcalá
Escuela Politécnica Superior

Universidad
de Alcalá

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Introduction
	1.2 Objectives
	1.3 Memory Structure

	2 Theoretical foundations
	2.1 Introducción
	2.2 Datasets for people detection
	2.2.1 ImageNet
	2.2.2 Open Image
	2.2.3 COCO
	2.2.4 Summary

	2.3 Datasets for action recognition
	2.3.1 UCF-101
	2.3.2 NTU RGB+D
	2.3.3 Kinetics (Kinetics Human Action Video Dataset)
	2.3.4 Summary

	2.4 Group action datasets
	2.4.1 Collective activity dataset
	2.4.2 Atomic Group actions
	2.4.3 UMN
	2.4.4 BEHAVE

	2.5 Artificial Neural Networks
	2.5.1 Activation functions
	2.5.2 ANN structure

	2.6 Convolutional Neural Networks
	2.7 People and object detection with YOLO
	2.7.1 YOLO features
	2.7.2 Network Design
	2.7.3 Limitations

	2.8 YOLOv3
	2.9 Conclusions

	3 Development
	3.1 Introduction
	3.2 HARS dataset
	3.2.1 Recording setup
	3.2.2 HARS dataset characteristics

	3.3 Dataset labeling
	3.3.1 Labeling tool
	3.3.2 Labeling criteria
	3.3.2.1 Person Labeling criteria
	3.3.2.2 Individual actions labeling criteria
	3.3.2.3 Group actions criteria
	3.3.2.4 Important considerations about the labeling process

	3.4 Labeling result
	3.5 Dataset evaluation
	3.5.1 YOLOv3 implementation in Google Colab
	3.5.2 Data processing for evaluation
	3.5.2.1 Preparing Ground Truth file for evaluation
	3.5.2.2 Preparing YOLO coordinates file for evaluation

	4 Results
	4.1 Introduction
	4.2 Experimental setup
	4.2.1 Metrics used for evaluation
	4.2.1.1 Classification metrics
	4.2.1.2 Intersection over Union (IoU)
	4.2.1.3 AUC and ROC curves

	4.2.2 Preparing the data for evaluation
	4.2.2.1 IoU matrix
	4.2.2.2 YOLO accuracy matrix

	4.3 Experimental results
	4.3.1 RGB vs IR
	4.3.2 Lighting conditions
	4.3.3 Depth and occlusions

	5 Conclusions and future issues of research
	5.1 Conclusions
	5.2 Future issues

	6 Tools and resources
	6.1 Hardware requirements
	6.2 Software requirements

	7 Budget
	7.1 Hardware resources
	7.2 Software resources
	7.3 Human resources
	7.4 Total cost budget

	Bibliography

