
ar
X

iv
:1

40
5.

42
77

v1
  [

m
at

h.
FA

] 
 1

6 
M

ay
 2

01
4

Multiplicative Lidskii’s inequalities and
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Abstract

In this paper we study two design problems in frame theory: on the one hand, given a fixed
finite frame F forH ∼= Cd we compute those dual frames G of F that are optimal perturbations of
the canonical dual frame for F under certain restrictions on the norms of the elements of G. On
the other hand, for a fixed finite frame F = {fj}j∈In

for H we compute those invertible operators
V such that V ∗V is a perturbation of the identity and such that the frame V · F = {V fj}j∈In

-
which is equivalent to F - is optimal among such perturbations of F . In both cases, optimality is
measured with respect to submajorization of the eigenvalues of the frame operators. Hence, our
optimal designs are minimizers of a family of convex potentials that include the frame potential
and the mean squared error. The key tool for these results is a multiplicative analogue of
Lidskii’s inequality in terms of log-majorization and a characterization of the case of equality.
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1 Introduction

A finite frame for H ∼= C
d is a sequence F = {fj}j∈In that spans H, where In = {1, . . . , n} (for a

detailed exposition on frames and several recent research topics within this theory see [6, 7] and
the references therein). Given a frame F = {fj}j∈In , a sequence G = {gj}j∈In is called a dual frame
for F if for every f ∈ H the following reconstruction formulas hold:

f =
∑

j∈In

〈f, gj〉 fj and f =
∑

j∈In

〈f, fj〉 gj .

Hence, frames provide a (possibly redundant) linear-encoding scheme for vectors in H.
Let F = {fj}j∈In be a frame for H and let D(F) denote the set of dual frames for F . There

is a distinguished dual called the canonical dual of F , denoted F# ∈ D(F), which is a natural
choice in several ways. But in case n > d it is well known that D(F) has a rich structure (this
last fact is one of the main advantage of frames over bases B = {vj}i∈Id for which D(B) becomes a
singleton). Thus, in applied situations, the structure of D(F) can be exploited to obtain numerically
stable encoding-decoding schemes derived from the dual pair (F ,G), for some choice of dual frame
G ∈ D(F) beyond F#; this is the starting point of the so-called (optimal) design problems for dual
frames (see [11, 13, 15, 16, 17]).

Another research topic in frame theory is the design of (optimal) stable configurations of vectors
(frames) under certain restrictions. Typically, the stability of a frame F is measured in terms of the
spread the eigenvalues of the positive semidefinite operator SF =

∑

j∈In
fj ⊗ fj. One of the most

important examples of such a measure is the frame potential of F , denoted by FP (F), introduced
in [3]; explicitly, for a sequence F = {fj}j∈In then

FP (F) =
∑

j, k∈In

|〈fj , fk〉|
2 = tr(S2

F ) .

In [3, 5] it is shown that minimizers of the frame potential, within convenient sets of frames,
have many nice structural features and are optimal in several ways. Recently, there has also been
interest in the so-called mean squared error of F , denoted MSE(F), given by MSE(F) = tr(S−1

F )
(see [8, 14, 18]).

It turns out that there is an structural measure of optimality, called sub-majorization, that
allows to deal with both the frame potential and the mean squared error. This pre-order relation,
defined between eigenvalues of frame operators, has proved useful in explaining the structure of
minimizers of convex potentials (see [14]). Sub-majorization has also been useful in obtaining the
structure of optimal vector configurations as well (see [17, 19]). In turn, sub-majorization relations
imply a family of tracial inequalities in terms of convex functions, that contain the frame potential
and mean squared errors. We point out that these tracial inequalities have interest in their own
right and collectively characterize sub-majorization.

In this paper we consider two optimal design problems, where optimality is measured in terms
of sub-majorization. On the one hand, given a fixed frame F , we consider the problem of designing
a dual frame G = {gj}j∈In ∈ D(F) such that

∑

j∈In
‖gj‖

2 ≥ t for some appropriate t > 0, the

distance between G and F# is controlled by some ǫ > 0 and such that the spread of the eigenvalues
of SG is minimal (with respect to sub-majorization) among the eigenvalues of SG′ for all such G′.
Thus, we refine the analysis of the optimal design problem for dual frames obtained in [17] (see
Section 3.1 for a detailed description of this problem and some further motivations). Since we keep
control of the distance of these frames to the canonical dual, we consider this optimal solution as
a perturbation of the canonical dual (that improves some of its numerical features). On the other
hand, given a fixed frame F = {fj}j∈In for H ∼= C

d with n > d we consider the problem of designing
an invertible operator V acting on H such that V ∗V is a perturbation of the identity operator i.e.
such that V is nearly a unitary operator (see Section 3.2 for a detailed description of this problem

2



and further motivations) and such that, if we denote by V · F = {V fj}j∈In then, the spread of the
eigenvalues of SV ·F is minimal (with respect to sub-majorization) among the eigenvalues of SV ′·F

for all such V ′. Notice that a frame G for H can be written as V · F for some invertible operator
V acting on H if and only if the frames F and G have the same linear relations. Two such frames
are called equivalent (see [1]): hence, we search for frames V · F that are equivalent to F (in the
previous sense) and such that they improve some numerical features of F . Moreover, since V ∗V is a
perturbation of the identity operator then V · F is a perturbation of F - up to unitary equivalence.

In order to tackle both problems above, we introduce abstract models for them within the
framework of matrix analysis. Although the frame problems seem unrelated, it turns out that the
abstract model for the design of optimal duals plays a crucial role in the analysis of the abstract
model for the perturbations by equivalent frames.

The key tools for these results are the multiplicative analogue of Lidskii’s inequality in terms of
log-majorization obtained by Li and Mathias in [12], and a characterization of the case of equality
(see Section 6). We also use the optimality results proved in [18], which are based in the additive
case for Lidskii’s inequality and the case of equality, studied in the appendix of that paper.

The paper is organized as follows. In Section 2, after setting the general notations used through-
out the paper, we describe the basic framework of finite frames that we shall need, together with
a brief description of general convex potentials. We also include a description of sub-majorization
and log-majorization which are two notions from matrix theory. In Section 3 we give a detailed
description of the two problems in frame theory that we consider in this note, using the notations
and terminology from Section 2. In Section 4 we first introduce an abstract model for the design
of optimal dual frames with restrictions, and apply tools from matrix analysis to obtain optimality
results; we then apply these results to the original frame problem. Similarly, in Section 5 we first
analyze an abstract model for the design of optimal perturbations of a frame by equivalent frames
and then apply the results of the abstract model to the original frame problem. Finally, in Section
6 we develop some aspects of the multiplicative Lidskii’s inequality with respect to log-majorization
which are needed for the analysis of the abstract model in Section 5.

2 Preliminaries

In this section we describe the basic notions that we shall consider throughout the paper.

2.1 General notations.

Given H ∼= C
d and K ∼= C

n, we denote by L(H , K) the space of linear operators T : H → K. If
K = H we denote by L(H) = L(H , H), by Gl (H) the group of all invertible operators in L(H), by
L(H)+ the cone of positive operators and by Gl (H)+ = Gl (H) ∩ L(H)+. If T ∈ L(H), we denote
by ‖T‖ its operator (spectral) norm, by rkT = dimR(T ) the rank of T , and by trT the trace of T .

If W ⊆ H is a subspace we denote by PW ∈ L(H)+ the orthogonal projection onto W . Given
x , y ∈ H we denote by x⊗ y ∈ L(H) the rank one operator given by

x⊗ y (z) = 〈z , y〉x for every z ∈ H . (1)

Note that if ‖x‖ = 1 then x⊗ x = Pspan{x} .

By fixing orthonormal bases (ONB) of the Hilbert spaces involved, we shall identify operators with
matrices, using the following notations: by Mn,d(C) ∼= L(Cd , Cn) we denote the space of complex
n × d matrices. If n = d we write Md(C) = Md,d(C) ; H(d) is the R-subspace of selfadjoint
matrices, Gl (d) the group of all invertible elements of Md(C), U(d) the group of unitary matrices,
Md(C)

+ the set of positive semidefinite matrices, and Gl (d)+ = Md(C)
+ ∩ Gl (d).

Given m ∈ N we denote by Im = {1, . . . ,m} ⊆ N and 1 = 1m ∈ R
m denotes the vector with all

its entries equal to 1. For a vector x ∈ R
m we denote by tr x =

∑

i∈Id
xi and by x↓ (resp. x↑) the

3



rearrangement of x in decreasing (resp. increasing) order. We denote by (Rm)↓ = {x ∈ R
m : x = x↓}

the set of downwards ordered vectors, and similarly (Rm)↑ = {x ∈ R
m : x = x↑}.

Given S ∈ Md(C)
+, we write λ(S) = λ↓(S) ∈ (Rd

≥0)
↓ the vector of eigenvalues of S - counting

multiplicities - arranged in decreasing order. Similarly we denote by λ↑(S) ∈ (Rd
≥0)

↑ the reverse
ordered vector of eigenvalues of S.

2.2 Basic framework of finite frames

Let d, n ∈ N, with d ≤ n. Fix a Hilbert space H ∼= C
d. A family F = {fi}i∈ In ∈ Hn is an frame for

H if there exist constants A,B > 0 such that

A ‖x‖2 ≤
∑

i∈In

| 〈x , fi〉 |
2 ≤ B ‖x‖2 for every x ∈ H . (2)

The optimal frame bounds, denoted by AF , BF are the optimal constants in Eq. (2). If AF = BF

we call F a tight frame. Since dimH < ∞, a family F = {fi}i∈ In is an frame if and only if
span{fi : i ∈ In} = H.

Given F = {fi}i∈ In ∈ Hn, we consider its analysis operator TF ∈ L(H , Cn), given by

TF x =
(

〈x , fi〉
)

i∈In
, for every x ∈ H . (3)

Its adjoint T ∗
F ∈ L(Cn , H) is called the synthesis operator and it is given by T ∗

F a =
∑

i∈ In
ai fi

for every a = (ai)i∈In ∈ C
n. With the notations of (1), the frame operator of F is

SF = T ∗
F TF =

∑

i∈In
fi ⊗ fi ∈ L(H)+ .

Notice that, if F = {fi}i∈ In ∈ Hn then 〈SF x , x〉 =
∑

i∈In

∣

∣ 〈x , fi〉
∣

∣

2
for every x ∈ H. Hence, F

is a frame if and only if SF ∈ Gl (H)+ and in this case AF ‖x‖2 ≤ 〈SF x , x〉 ≤ BF ‖x‖2 for every
x ∈ H. Therefore, AF = λmin(SF ) = ‖S−1

F ‖−1 and λmax(SF ) = ‖SF‖ = BF . Moreover, F is tight
if and only if SF = τ

d IH , where τ = trSF =
∑

i∈In
‖fi‖

2 .

Let F = {fi}i∈In ∈ Hn be a frame for H. A family G = {gi}i∈In is said to be a (alternate) dual of
F if

f =
∑

i∈In

〈f, gi〉 fi , for every f ∈ H .

It is easy to see that G is a dual of F iff T ∗
F TG = IH. Hence, in that case G is a frame and F is a

dual of G and we say that (F ,G) is a dual pair of frames for H. We shall consider

D(F) = {G : G is a dual frame of F } ⊂ Hn .

The so-called canonical dual of F , denoted F#, is given by F# = {S−1
F fi}i∈In . It is straightforward

to check that TF# = TFS
−1
F and then T ∗

FTF# = SF S−1
F = IH so F# ∈ D(F). The canonical

dual is a distinguished dual since it possesses several minimality properties. Nevertheless, notice
that whenever dimH = d < n (i.e. whenever the frame F = {fi}i∈In is a redundant set of
linear generators) then D(F) has infinitely many elements and it turns out to have a very rich
structure. This is one of the main advantages of the redundant frame F over a (not necessarily
orthonormal) basis B = {vi}i∈Id in H, since the set of duals of the latter has only one element,
namely D(B) = {B#}.

In their seminal work [3], Benedetto and Fickus introduced a functional defined (on unit norm
frames), the so-called frame potential, given by

FP ({fi}i∈In) =
∑

i, j ∈In
|〈fi , fj〉|

2 .
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One of their major results shows that tight unit norm frames - which form an important class of
frames because of their simple reconstruction formulas - can be characterized as (local) minimizers
of this functional among unit norm frames. Since then, there has been interest in (local) minimizers
of the frame potential within certain classes of frames, since such minimizers can be considered as
natural substitutes of tight frames. Notice that, given F = {fi}i∈In ∈ Hn then FP (F) = tr S2

F =
∑

i∈Id
λi(SF )

2. Recently, there has been interest in the structure of minimizers of other potentials

such as the so-called mean squared error (MSE) given by MSE(F) = tr(S−1
F ).

These remarks have motivated the analysis of the structure of minimizers of general convex poten-
tials:

Definition 2.1. Let us denote by

Conv(R≥0) = {h : [0 , ∞) → [0 , ∞) : h is a convex function }

and Convs(R≥0) = {h ∈ Conv(R≥0) : h is strictly convex }. Following [14] we consider the
(generalized) convex potential Ph associated to h ∈ Conv(R≥0), given by

Ph(F) = tr h(SF ) =
∑

i∈Id
h(λi(SF ) ) for F = {fi}i∈In ∈ Hn ,

where the matrix h(SF ) is defined by means of the usual functional calculus in L(H)+. △

In order to deal with these general convex potential we consider the notions of submajorization and
log-majorization in the next section.

2.3 Submajorization and log-majorization

Next we briefly describe majorization and log-majorization, two notions from matrix analysis theory
that will be used throughout the paper. For a detailed exposition on these relations see [2].

Given x, y ∈ R
d we say that x is submajorized by y, and write x ≺w y, if

k
∑

i=1

x
↓
i ≤

k
∑

i=1

y
↓
i for every k ∈ Id .

If x ≺w y and trx =
∑d

i=1 xi =
∑d

i=1 yi = tr y, we say that x is majorized by y, and write x ≺ y.

On the other hand we write x6 y if xi ≤ yi for every i ∈ Id . It is a standard exercise to show
that x6 y =⇒ x↓ 6 y↓ =⇒ x ≺w y. Our interest in majorization is motivated by the relation of
this notion with tracial inequalities for convex functions. Indeed, given x, y ∈ R

d and f : I → R a
convex function defined on an interval I ⊆ R such that x, y ∈ Id, then (see for example [2]):

1. If one assumes that x ≺ y, then tr f(x)
def
=

∑

i∈Id

f(xi) ≤
∑

i∈Id

f(yi) = tr f(y) .

2. If only x ≺w y, but the map f is also increasing, then still tr f(x) ≤ tr f(y).

3. If x ≺w y and f is a strictly convex function such that tr f(x) = tr f(y) then there exists a
permutation σ of Id such that yi = xσ(i) for i ∈ Id .

Remark 2.2. Majorization between vectors in R
d is intimately related with the class of doubly

stochastic d × d matrices, denoted by DS(d). Recall that a d × d matrix D ∈ DS(d) if it has
non-negative entries and each row sum and column sum equals 1.

It is well known (see [2]) that given x , y ∈ R
d then x ≺ y if and only if there exists D ∈ DS(d) such

that Dy = x. As a consequence of this fact we see that if x1 , y1 ∈ R
r and x2 , y2 ∈ R

s are such
that xi ≺ yi , i = 1 , 2, then x = (x1 , x2) ≺ y = (y1 , y2) in R

r+s. Indeed, if D1 and D2 are the
doubly stochastic matrices corresponding the previous majorization relations then D = D1 ⊕D2 ∈
DS(r + s) is such that Dy = x. △
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Log-majorization between vectors in R
d
≥0 is a multiplicative analogue of majorization in R

d. Indeed,

given x, y ∈ R
d
≥0 we say that x is log-majorized by y, denoted x ≺log y, if

k
∏

i=1

x
↓
i ≤

k
∏

i=1

y
↓
i for every k ∈ Id−1 and

d
∏

i=1

x
↓
i =

d
∏

i=1

y
↓
i . (4)

Our interest in log-majorization is also motivated by the relation of this notion with tracial inequal-
ities for convex functions. It is known (see [2]) that

if x, y ∈ R
d
≥0 , x ≺log y ⇒ x ≺w y .

Hence, if x, y ∈ R
d
≥0 are such that x ≺log y then for every convex and increasing function f :

(0,∞) → R we get that tr(f(x)) ≤ tr(f(y)).

3 Two problems in frame theory

In this section we present a detailed description of the two frame problems together with some
further motivations, using the notations and terminology from Section 2.

3.1 Optimal perturbation of the canonical dual frame with restrictions

Consider a fixed frame F = {fj}j∈In for H ∼= C
d, with n > d. Then, the set of dual frames D(F)

has a rich structure. It is known that if G ∈ D(F) then SG ≥ SF# = S−1
F , with respect to the

operator order. This strong inequality explains several optimality properties of the canonical dual
frame F . For example, if G = {gi}i∈In and F# = {f#

i }i∈In we have that

∑

i∈In

‖f#
i ‖2 = tr(SF#) ≤ tr(SG) =

∑

i∈In

‖gi‖
2 ,

with equality if and only if G = F#.

Nevertheless, in applied situations, it is desired to consider numerically stable encoding-decoding
schemes derived from the dual pair (F ,G), for some choice of dual frame G ∈ D(F). A possible
way out of this situation is as follows: for t > tr(SF#) consider

Dt(F) = {G = {gi}i∈In ∈ D(F) :
∑

i∈In

‖gi‖
2 ≥ t}

and search for optimal duals within Dt(F) with respect to some measure of optimality (e.g. min-
imizers of the condition number). It turns out (see [17]) that there exists a distinguished class
ODt(F) ⊂ Dt(F) such that for every Go ∈ ODt(F) and every G ∈ Dt(F) we have the majorization
relation λ(SGo) ≺w λ(SG). This last fact implies several optimality properties of the class ODt(F).

Still, in the search for optimal alternative duals for F , there are some properties of the canonical
dual frame F# that we may want to retain. In order to preserve some of the minimal features of
the canonical dual frame and yet search for numerically stable alternative duals (which are possibly
best suited for practical purposes) we introduce the following class of dual frames: set m = 2d−n,
let t > tr(SF#) and ε > 0 be such that t− tr(SF#) ≤ min{(d −m), d} · ε2 and define

D(t , ε)(F) = {G = {gj}j∈In ∈ D(F) :
∑

j∈In

‖gj‖
2 ≥ t , ‖TG − TF#‖ ≤ ε} .

6



Hence, we search for optimal duals for F within D(t , ε)(F). As a criteria for optimality, following
[17] we search for ≺w-minimizers of the eigenvalues of the frame operators SG for G ∈ D(t , ε)(F).
Hence, we consider the associated set

S(D(t , ε)(F))
def
= {SG : G ∈ D(t , ε)(F)} ⊆ Md(C)

+ .

As we shall see, there exist ≺w-minimizers within S(D(t , ε)(F)); moreover, their spectral and ge-
ometrical features can be explicitly computed. We point out that the structure of optimal duals
depends both on the norm restriction (of the frame elements of G) and on the operator norm dis-
tance restriction. As a first step in our analysis, we obtain an explicit representation of the frame
operators of the elements of D(t , ε)(F).

Proposition 3.1. Let F = {fj}j∈In be a frame for C
d and set m = 2d − n. Let t > t0 = tr(SF#)

and ε > 0 be such that t− t0 ≤ min{(d −m), d} · ε2. Then

S(D(t , ε)(F)) = {SF# +B : B ∈ Md(C)
+ , tr(B) ≥ t− t0 , ‖B‖ ≤ ε2 , rk(B) ≤ d−m } .

Proof. Let G ∈ D(t , ε)(F) and notice that then

T ∗
GTF = T ∗

F#TF = IH =⇒ (T ∗
G − T ∗

F#)TF = 0 .

Hence, if we let A = TG − TF# : Cd → C
n then A∗ TF = 0 which implies that T ∗

FA = 0 and hence
R(A) ⊆ ker(T ∗

F ) = ker(T ∗
F#). Therefore, TG = TF# +A and

T ∗
G TG = T ∗

F#TF# + T ∗
F#A+A∗TF# +A∗A = T ∗

F#TF# +A∗A

that is, SG = SF# +B, where B = A∗A ∈ Md(C)
+. Since R(A) ⊆ ker(T ∗

F ) then rk(B) = rk(A) ≤
n−d = d−m and ‖B‖ = ‖A∗A‖ = ‖TG −TF#‖2 ≤ ε2. Notice that tr(SG) =

∑

j∈In
‖gj‖

2 ≥ t which
shows that tr(B) = tr(SG)− tr(SF#) ≥ t− tr(SF#). Incidentally, notice that the existence of such
a B implies the restriction on t of the statement, since

tr(B) ≤ rk(B) · ‖B‖ =⇒ t− tr(SF#) ≤ tr(B) ≤ min{(d−m), d} · ε2 . (5)

In order to show the converse inclusion, let B ∈ Md(C)
+ be such that tr(B) ≥ t−tr(SF#), ‖B‖ ≤ ε2

and rk(B) ≤ d−m = n−d = dimker T ∗
F . Then, we can factor B = A∗A where A : Cd → Cn is such

that R(A) ⊆ ker(T ∗
F ), so that T ∗

FA = 0 and A∗TF = 0. Let G = {(TF# +A)∗ei}i∈In , where {ei}i∈In
denotes the canonical basis of Cn. Thus, TG = TF# + A and hence T ∗

GTF = IH, SG = SF# + B;

in particular,
∑

i∈In
‖gi‖

2 = tr(SG) = tr(SF#) + tr(B) ≥ t and ‖TG − T
#
F ‖ = ‖A‖ = ‖B‖1/2 ≤ ε.

Therefore, G ∈ D(t , ε)(F) is such that SG = SF# +B.

Remark 3.2. With the notations of Proposition 3.1, by Eq. (5) and a straightforward construction
of a matrix B with the required parameters, we see that the relation

t− tr(SF#) ≤ min{(d−m), d} · ε2

between the parameters t and ε is necessary and sufficient for D(t , ε)(F) 6= ∅. △

3.2 Optimal perturbations by equivalent frames

Fix a frame F = {fi}i∈In for Cd, with n > d. Hence, F is a redundant family of linear generators
for C

d; in other words, TF : Cd → C
n is an injective transformation such that R(TF ) ⊂ C

n is a
proper subspace. These last facts can be used to develop some simple linear tests in order to check
whether a sequence a = (ai)i∈In ∈ C

n is the sequence of frame coefficients TF (f) = (〈f, fi〉)i∈In for
some (unique) f ∈ H or whether it has been corrupted (e.g. due to noise in the communication
channel). Indeed, given a linear relation

∑

i∈In
αi fi = 0 of the family F , we get a linear test
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ϕ[(〈f, fi〉)i∈In ] =
∑

i∈In
αi 〈f, fi〉 = 0 for the sequence a; moreover, we can consider a complete set

of tests ϕ1, . . . , ϕn−d ∈ (Cn)∗ in order the check whether the sequence a lies in R(TF ), based on
the linear relations of the family F .

Hence, the linear relations among the elements of F play an important role in this context. On the
other hand, the numerical stability of the frame F is also an important feature in practice. Hence,
there are situations in which we want to improve the stability of the frame F (measured in terms
of the spread the eigenvalues of its frame operator) while preserving the linear relations among the
frame elements. It is well known that if a family G = {gi}i∈In has the same linear relations as F
then there exists an invertible linear operator V ∈ Gl(H) such that G = V · F = {V fi}i∈In . In this
case, following [1] we say that G = V · F = {V fi}i∈In and F are equivalent frames.

As a first step, we can search for an invertible operator V ∈ Gl(H) such that the frame V · F is
optimal with respect to the spread of the eigenvalues of its frame operator. It turns out that the

solution to this (unrestricted) problem is V = S
−1/2
F so that V ·F = {S

−1/2
F fi}i∈In is the associated

Parseval frame (with minimal spread of its eigenvalues). This solution, although optimal, might lie
away from the original frame F in the sense that it is a strong deformation of the space H. In case
we want to consider rather perturbations of F , preserving their linear relations and yet improving its
numerical performance, we can search for invertible operators V such that the equivalent frame V ·F
is optimal in the previous sense, under some restrictions on V . Hence, given a frame F = {fi}i∈In
we introduce the following set of controlled perturbations by equivalent frames: given 0 < δ < 1
and s ∈ [(1 − δ)d, (1 + δ)d] then consider

P(s , δ)(F)
def
= {V · F = {V fi}i∈In : V ∈ Gl(H) , ‖V ∗V − I‖ ≤ δ , det(V ∗V ) ≥ s } . (6)

Our main problem is to compute the structure optimal perturbations V · F ∈ P(s , δ)(F), in the
sense that they minimize the spread of the eigenvalues of the frame operators within this class.
Hence, in order to deal with this problem we also introduce

S(P(s , δ)(F))
def
= {SG : G ∈ P(s , δ)(F)} (7)

and it is straightforward to check that

S(P(s , δ)(F)) = {V ∗SFV : V ∈ Gl(H) , ‖V ∗V − I‖ ≤ δ , det(V ∗V ) ≥ s } . (8)

As we shall see, there exist ≺w minimizers within S(P(s , δ)(F)); moreover, their spectral and geo-
metrical features can be explicitly computed.

4 Optimal perturbation of the canonical dual frame

In this section, given a frame F , we consider a matrix model for the design of optimal perturbations
of the canonical dual frame F#. In Section 4.1, using tools from matrix analysis, we show that
there are optimal solutions within our abstract model. Then, in Section 4.2 we apply these results
to the initial frame design problem.

4.1 A matrix model for S(D(t , ε)(F))

In order to deal with the problem of existence of ≺w minimizers in S(D(t , ε)(F)) for a frame F , we

introduce the following set motivated by Proposition 3.1: given S ∈ Md(C)
+, t > t0

def
= tr(S),

ε > 0 and m ∈ Z with m ≤ d− 1 such that t− t0 ≤ min{(d −m), d} · ε, we define

U(t , ε)(S,m)
def
= {S +B : B ∈ Md(C)

+ , tr(B) ≥ t− t0 , ‖B‖ ≤ ε , rk(B) ≤ d−m} . (9)
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Hence, Proposition 3.1 states (using the notations in that result) that

S(D(t , ε)(F)) = U(t , ε2)(SF# , m) .

In order to deal with the spectral structure of optimal elements in U(t , ε)(S,m) the following (rather

naive) vector model will be useful: given λ ∈ (Rd)↓, t > t0
def
= tr(λ), ε > 0 and m ∈ Z with

m ≤ d− 1 such that t− t0 ≤ min{(d−m), d} · ε we define

Λ(t , ε)(λ , m) = {λ+ µ : 0 ≤ µi ≤ ε , tr µ ≥ t− t0 , supp(µ) ≤ d−m} ⊆ R
d
≥0

where supp(µ) = ‖µ‖0 = #{j ∈ Id : µj 6= 0}.

Remark 4.1. In [17] (also see [18, 19]) we considered a simpler version of the set Λ(t , ε)(λ , m)

defined above. Indeed, given λ = (λi)i∈Id ∈ (Rd)↓, t ≥ t0 = tr(λ) we considered the set

Λt(λ) = {λ+ µ : µ ∈ R
d
≥0 , tr(µ) ≥ t− t0 } .

In this context (see [17]) we showed that there exists a unique ν(λ , t) ∈ Λt(λ) such that

ν(λ , t) = ν(λ , t)↓ and ν(λ , t) ≺w ν for every ν ∈ Λt(λ) ,

i.e., ν(λ , t) is a ≺w-minimizer in Λt(λ). Moreover, ν(λ , t) can be explicitly computed as follows:
let h : [λd , ∞) → R≥0 be given by h(x) =

∑

i∈Id
(x−λi)

+, where α+ stands for the positive part of
α ∈ R. Then, h is a continuous and strictly increasing function in its domain, and for t ≥ t0 there
exists a unique cλ(t) ∈ [λd , ∞) such that h(cλ(t)) = t − t0 . Then, with these notations we have
that ν(λ , t) = (λi + (cλ(t)− λi)

+)i∈Id ∈ R
d i.e.

ν(λ , t) = cλ(t) · 1d ( if cλ(t) > λ1) or ν(λ , t) = (λ1 , . . . , λr , cλ(t) · 1d−r) ( if cλ(t) ≤ λ1)

for some r ∈ Id . Notice that ν(λ , t) = ν(λ , t)↓ and tr(ν(λ , t)) = t in any case. Also

ν(λ , t)− λ =
(

(cλ(t)− λi)
+
)

i∈Id
=⇒ ν(λ , t)− λ = (ν(λ , t)− λ)↑ . (10)

Moreover, ν(λ , t) is determined as the unique ν ∈ Λt(λ) such that ν is a ≺w minimizer in Λt(λ)
and such that ν − λ = (ν − λ)↑. △

The following lemma is a direct consequence of the results from [17] described in Remark 4.1 above.

Lemma 4.2. Let λ = (λi)i∈Id ∈ (Rd)↓ , and t > t0
def
= tr λ. Assume that r ∈ Id−1 and c > 0 are

such that the vector γ
def
= (λ1 , . . . , λr , c1d−r) satisfies that

λr ≥ c ≥ λr+1 (so that γ = γ↓ >λ) and tr γ = t . (11)

Then, in this case we have that c = cλ(t) and γ = ν(λ , t).

The following statement finds a minimum for submajorization in the set Λ(t , ε)(λ , 0). Note that
Λ(t , ε)(λ , m) = Λ(t , ε)(λ , 0) for every m ≤ 0.

Theorem 4.3. Let λ = (λi)i∈Id ∈ (Rd)↓ and t0 = tr λ. Let ε > 0 and t ≥ t0 be such that
t− t0 ≤ d · ε. Then there exists ρ ∈ Λ(t , ε)(λ , 0), such that

tr(ρ) = t and ρ ≺w γ for every γ ∈ Λ(t , ε)(λ , 0) .

In this case we can choose a unique ρ = ρ(t , ε)(λ, 0) as above and such that ρ − λ = (ρ − λ)↑.

Moreover, this vector ρ also satisfies that ρ = ρ↓ ∈ (Rd)↓.
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Proof. Assume first that λ ∈ (Rd
≥0)

↓. In what follows we consider the notations from Remark 4.1.
We shall construct the vector ρ(t , ε)(λ, 0) = ρ = (ρi)i∈Id recursively as follows:

1. If cλ(t)− λd ≤ ε then just take ρ = ν(λ , t).

2. If cλ(t)− λd > ε then we put ρd = λd + ε and we consider the following new data:

λ(d−1) = (λ1 , . . . , λd−1) and t(d−1) = t− ρd ( =⇒ t(d−1) − tr λ(d−1) ≤ (d− 1) ε ) .

Then go back to the first step, but applied to the pair (λ(d−1) , t(d−1) ). △

The hypothesis that t − t0 ≤ d · ε assures that this process stops (at some step d − m + 1 ∈ Id)
obtaining the outcome ρ = (ν(λ(m) , t(m)), λm+1 + ε, . . . , λd + ε) ∈ R

d
≥0. That is,

ρ = (λ1 , . . . λs , c1m−s , λm+1 + ε , . . . , λd + ε) with 0 ≤ c− λm ≤ ε (12)

and λs+1 ≤ c < λs in case (λ1 , . . . λs , c1m−s ) = ν(λ(m) , t(m)) , or

ρ = (c1m , λm+1 + ε , . . . , λd + ε) with 0 ≤ c− λm ≤ ε , (13)

in case ν(λ(m) , t(m)) = c1m . It is clear that this ρ ∈ Λ(t , ε)(λ , 0) and that tr ρ = t. Moreover, we

claim that ρ = ρ↓: notice that we only need to show that c ≥ λm+1 + ε, where c = cλ(m)(t(m)).

Indeed, since the algorithm did not stop at the pair (λ(m+1), t(m+1)) then cλ(m+1)(t(m+1)) > λm+1+ε.
By Remark 4.1 and Lemma 4.2, it is easy to see that

cλ(m+1)(t(m+1)) = cλ(m)(t(m+1) − cλ(m+1)(t(m+1))) .

Moreover, since cλ(m)(x) is an increasing function then

cλ(m)(t(m+1) − cλ(m+1)(t(m+1))) ≤ cλ(m)

(

t(m+1) − (λm+1 + ε)
)

= cλ(m)(t(m)) = c .

Hence, λm+1 + ε ≤ cλ(m+1)(t(m+1)) ≤ c, which shows that ρ = ρ↓.

Fix γ ∈ Λ(t , ε)(λ , 0) such that γ = λ+ µ, where µ = (µi)i∈Id is such that 0 ≤ µi ≤ ε for i ∈ Id and

tr(µ) ≥ t−tr(λ). Then, with the notation of Remark 4.1, the truncation (γ1 , . . . , γm) ∈ Λt(m)(λ(m))
because λi ≤ γi for i ∈ Im and

d
∑

i=m+1

γi − λi ≤ (d−m) ε =

d
∑

i=m+1

ρi − λi =⇒ tr (γ1 , . . . , γm) ≥ tr (ρ1 , . . . , ρm) = t(m) .

By construction (ρ1 , . . . , ρm) = ν(λ(m) , t(m)) ≺w (γ1 , . . . , γm). Hence, we get

k
∑

i=1

ρi ≤
k
∑

i=1

γi for every k ∈ Im . (14)

On the other hand, if m+ 1 ≤ k ≤ d then

k
∑

i=1

ρi = t−
d
∑

i=k+1

ρi = t−
d
∑

i=k+1

(λi + ε) ≤ tr(γ)−
d
∑

i=k+1

(λi + µi) =
k
∑

i=1

γi , (15)

since 0 ≤ µi ≤ ε for i ∈ Id . Thus, Eqs. (14) and (15) imply that ρ ≺w γ, since ρ = ρ↓ (even when
the entries of γ are not necessarily arranged in non-increasing order). The fact that

ρ− λ = (ν(λ(m) , t(m))− λ(m) , ε · 1d−m) = (ρ− λ)↑
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follows from Eq. (10) and that c− λm ≤ ε.

Now, assume that λd < 0. Take some s > −λd , so that the translated vector λ+ s · 1d ∈ (Rd
≥0)

↓.
Let ρ = ρ(t+d · s , ε)(λ + s · 1d , 0) be the ≺w-minimizer in Λ(t+d · s , ε)(λ + s · 1d , 0) constructed
in the first part of this proof. Since Λ(t+d · s , ε)(λ + s · 1d , 0) = Λ(t , ε)(λ , 0) + s · 1d we see that
ρ− s · 1d ∈ Λ(t , ε)(λ , 0) is a ≺w-minimizer in Λ(t , ε)(λ , 0).

Finally, assume that ρ′ ∈ Λ(t , ε)(λ , 0) is a ≺w-minimizer in Λ(t , ε)(λ , 0) and such that ρ′ − λ =

(ρ′ − λ)↑. If ρ = ρ(t , ε)(λ, 0) is as before, then: in case ρd = λd + ε (respectively ρ′d = λd + ε) then
it is easy to see that also ρ′d = λd + ε (respectively ρd = λd + ε); this observation allows reduce the
problem of uniqueness of ρ to the case in which ρd < ε and ρ′d < ε, where uniqueness of ρ follows
from the comments after Eq. (10) in Remark 4.1. �

Remark 4.4. With the notations of Theorem 4.3, notice that the proof of that result shows an
explicit and simple algorithm that computes the optimal vector ρ in terms of the vector ν(λ̃ , t̃)
described in Remark 4.1, for an explicit (and computable) λ̃ ∈ R

r and t̃ ∈ R. Since ν(λ̃ , t̃) can be
also computed in terms of a simple algorithm (as described in Remark 4.1), we see that the optimal
vector ρ can be effectively computed (with a fast algorithm). △

The following result complements Theorem 4.3.

Theorem 4.5. Let λ ∈ (Rd)↓ and t0 = tr λ. Let ε > 0, m ∈ Z with m ≤ d − 1 and let t ≥ t0 be
such that t− t0 ≤ min{(d−m), d} · ε. Then there exists ρ ∈ Λ(t , ε)(λ , m), such that

tr(ρ) = t and ρ ≺w γ for every γ ∈ Λ(t , ε)(λ , m) .

Moreover, we can choose a unique ρ = ρ(t , ε)(λ,m) as above such that ρ − λ = (ρ − λ)↑ (although
the entries of ρ may not be arranged in non-increasing order).

Proof. If we assume that m ≤ 0 then we let ρ(t , ε)(λ,m)
def
= ρ(t , ε)(λ , 0). Since in this case

Λ(t , ε)(λ , m) = Λ(t , ε)(λ , 0), Theorem 4.3 implies that ρ(t , ε)(λ , m) has the desired properties.

Assume now that m ∈ Id−1. Set λ̃ = (λm+1 , . . . , λd) ∈ (Rd−m)↓, s = t −
∑m

i−1 λi , and consider

ρ(s , ε)(λ̃ , 0) ∈ Λ(s , ε)(λ̃ , 0) ⊆ R
d−m as in Theorem 4.3. Then we define

ρ = ρ(t , ε)(λ , m)
def
= (λ1 , . . . , λm , ρ(s , ε)(λ̃ , 0)) ∈ R

d . (16)

Clearly, ρ ∈ Λ(t , ε)(λ , m) and tr(ρ) = t. Let γ = λ+µ ∈ Λ(t , ε)(λ , m), so that 0 ≤ µi ≤ ε for i ∈ Id ,

supp(µ) ≤ d−m and tr(µ) ≥ t− t0 . By Lidskii’s (additive) inequality we get that λ+ µ↑ ≺ γ.

But µ↑ = (0 · 1m , µ̃), where µ̃ = (µ̃i)i∈Id−m
∈ (Rd−m)↑ is such that 0 ≤ µ̃i ≤ ε for i ∈ Id−m and

tr(µ̃) = tr(µ) ≥ t− t0 = s− tr(λ̃). Hence, λ̃+ µ̃ ∈ Λ(s , ε)(λ̃ , 0) and therefore ρ(s , ε)(λ̃ , 0) ≺w λ̃+ µ̃,
by Theorem 4.3. Thus, using the fact that we have submajorization by blocks as in Remark 2.2,

ρ(t , ε)(λ , m) = (λ1 , . . . , λm , ρ(s , ε)(λ̃ , 0)) ≺w (λ1 , . . . , λm , λ̃+ µ̃) = λ+ µ↑ ≺ γ .

Finally, notice that the vector ρ as defined in Eq. (16) may be not arranged in non-increasing order.
Nevertheless, according to Theorem 4.3

ρ(t , ε)(λ , m)− λ = (0 · 1m , ρ(s , ε)(λ̃ , 0)− λ̃) ∈ (Rd)↑ .

Let ρ′ ∈ Λ(t , ε)(λ , m) be a ≺w-minimizer in Λ(t , ε)(λ , m) and such that ρ′−λ = (ρ′−λ)↑. Then it is

easy to see that ρ′ = (λ1 , . . . , λm , ρ′′), where ρ′′ ∈ Λ(s , ε)(λ̃ , 0) is a ≺w minimizer in Λ(s , ε)(λ̃ , 0)

and such that ρ′′ − λ̃ = (ρ′′ − λ̃)↑. Hence, by Theorem 4.3, we conclude that ρ′′ = ρ(s , ε)(λ̃ , 0) and
therefore ρ′ = ρ(t , ε)(λ , m). �

Based on Lidskii’s inequality, Theorem 4.5 allows to compute the structure of optimal elements in
U(t , ε)(S,m) from its rather naive model in R

d.

11



Theorem 4.6. Let S ∈ Md(C)
+, t > t0

def
= tr(S), ε > 0 and m ∈ Z with m ≤ d − 1 such that

t−t0 ≤ min{(d−m), d}·ε. Let λ = λ(S) and ρ = ρ(t , ε)(λ , m) ∈ Λ(t , ε)(λ , m) be the ≺w minimizer
from Theorem 4.5. Then,

1. There exists S0 ∈ U(t , ε)(S,m) such that λ(S0) = ρ↓;

2. S1 ∈ U(t , ε)(S,m) is such that λ(S1) ≺w λ(S′) for every S′ ∈ U(t , ε)(S,m) ⇐⇒ λ(S1) = ρ↓.

3. If S +B ∈ U(t , ε)(S,m) is such that λ(S +B) = ρ↓ then there exists an o.n.b. {vj}j∈Id for C
d

such that, with the notations of (1),

S =
∑

j∈Id

λj(S) vj ⊗ vj and B =
∑

j∈Id

λd−j+1(B) vj ⊗ vj .

Proof. Let {wj}j∈Id be an o.n.b. for C
d such that S =

∑

j∈Id
λj wj ⊗ wj , where λ(S) = λ =

(λi)i∈Id . Let ρ = ρ(t , ε)(λ , m) be as in Theorem 4.5 and let µ = ρ − λ, so that µ = µ↑. Let
B0 =

∑

j∈Id
µj wj ⊗ wj and notice that then B0 ∈ Md(C)

+, ‖B0‖ ≤ ε, tr(B0) = t − tr(S) and

rk(B0) =supp(µ) ≤ m−d, so that S+B0 ∈ U(t , ε)(S,m). Moreover, by construction λ(S+B0) = ρ↓.

Let S′ ∈ U(t , ε)(S , m) and let B ∈ Md(C)
+, ‖B‖ ≤ ε, rk(B) ≤ d − m and tr(B) ≥ t − tr(S) so

that S′ = S + B. By Lidskii’s additive inequality we conclude that λ + λ(B)↑ ≺ λ(S′). Now, by
the hypothesis on B we conclude that λ+ λ(B)↑ ∈ Λ(t , ε)(λ , m). Hence

ρ ≺w λ(S) + λ(B)↑ ≺ λ(S′) .

Hence, if S1 ∈ U(t , ε)(S , m) is such that λ(S1) = ρ↓ then λ(S1) ≺w λ(S′) for every S′ ∈ U(t , ε)(S , m).
Conversely, if S1 ∈ U(t , ε)(S , m) is such that λ(S1) ≺w λ(S′) for every S′ ∈ U(t , ε)(S , m) then

λ(S1) ≺w λ(S0) ≺w λ(S1) implies that λ(S1) = λ(S0) = ρ↓.

Finally, if S + B ∈ U(t , ε)(S,m) is such that λ(S + B) = ρ↓ then by Lidskii’s additive inequality,

the fact that λ(S) + λ(B)↑ ∈ Λ(t , ε)(λ , m) and Theorem 4.5 we see that

λ+ λ(B)↑ ≺w λ(S +B) = ρ↓ ≺w λ+ λ(B)↑ =⇒ λ(S +B) = (λ+ λ(B)↑)↓ .

Hence, the existence of the o.n.b. {vj}j∈Id of item 3 is a consequence of [18, Theorem 8.8] (the case
of equality in Lidskii’s additive inequality).

Remark 4.7. The proof of Theorem 4.5 together with Remark 4.4 show that the vector ρ =
ρ(t , ε)(λ,m) ∈ Λ(t , ε)(λ , m) as in the statement of Theorem 4.6 can be explicitly computed in terms
of a simple (and fast) algorithm depending on t, ε, λ and m. △

4.2 Computation of optimal perturbations of the canonical dual frame

Notations 4.8. Let F = {fj}j∈In be a frame for Cd and set m = 2d−n. Let ε > 0 and t > tr(SF#)
be such that t− tr(SF#) ≤ min{(d−m), d} ·ε2. Recall that Proposition 3.1 and Eq. (9) imply that

S(D(t , ε)(F)) = U(t , ε2)(SF# , m) . (17)

Theorem 4.9. Consider the Notations 4.8. Let λ = λ(SF#) and ρ = ρ(t , ε2)(λ , m) be the ≺w

minimizer for Λ(t , ε2)(λ , m) given in Theorem 4.5. Then,

1. There exists G0 ∈ D(t , ε)(F) such that λ(SG0) = ρ↓.
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2. Fix any G ∈ D(t , ε)(F). Then this G satisfies that

SG ≺w SG′ for every G′ ∈ D(t , ε)(F) ⇐⇒ λ(SG) = ρ↓ .

3. Given G ∈ D(t , ε)(F), then λ(SG) = ρ↓ ⇐⇒ G = {f#
i + ki}i∈In for some K = {ki}i∈In such

that T ∗
F TK = 0 and such there exists an o.n.b. {vj}j∈Id for C

d with

SF# =
∑

j∈Id

λj vj ⊗ vj and SK =
∑

j∈Id

(ρ− λ)j vj ⊗ vj . (18)

In this case SG = SF# + SK ; in particular, SF# and SG commute.

Proof. It is a direct consequence of Eq. (17), Theorem 4.6 and the characterization of dual frames
given in Proposition 3.1.

Notice that Theorem 4.9 contains a procedure to compute optimal duals G = {gi}i∈In ∈ D(t , ε)(F).
In what follows, given h ∈ Conv(R≥0) we consider its associated convex potential Ph on finite
sequences in C

d given by Ph(F) = tr(h(SF )) =
∑d

i=1 h(λi(SF )).

Corollary 4.10. Fix an increasing function h ∈ Conv(R≥0). With the notations and terminology
of Theorem 4.9, the following inequality holds:

Ph(G) ≥
∑

i∈Id

h(ρi) for every G ∈ D(t , ε)(F) , (19)

and this lower bound is attained. If we assume further that h ∈ Convs(R≥0), then G ∈ D(t , ε)(F)

attains the lower bound in (19) ⇐⇒ G = {f#
i +ki}i∈In for some K = {ki}i∈In such that T ∗

FTK = 0
and such there exists an o.n.b. {vj}j∈Id for which Eq. (18) holds.

Proof. It follows from Theorems 4.9 and the standard results of Section 2.3.

Remark 4.11. There are some h ∈ Conv(R≥0) for which their associated convex potential Ph can
be computed in a rather direct way (i.e., without necessarily computing the eigenvalues of the frame
operator of the sequence of vector). For example, if h(x) = x2 then Ph = FP is the so-called frame
potential. In this case, given a sequence G = {gi}i∈In then it is well known that

Ph(G) = FP (F) =
∑

i, j∈In

|〈gi , gj〉|
2 .

Now, consider a fixed frame F = {fj}j∈In and assume that λ(SF ) is a known data. Set m = 2d−n,
let ε > 0 and t > tr(SF#) be such that t − tr(SF#) ≤ min{(d − m), d} · ε2. In this case λ(SF#)
is also a known data and therefore ρ ∈ R

d as in Corollary 4.10 can be explicitly computed (see
Remark 4.7). Thus, according to Corollary 4.10 above we get

FP (G) =
∑

i , j∈In

|〈gi , gj〉|
2 ≥

∑

i∈Id

ρ2i , for every G ∈ D(t , ε)(F) . (20)

The previous inequality provides a quantitative criteria for checking the optimality of G. That
is, the closer FP (G) is to this explicit lower bound, the more concentrated λ(SG) is (which is the
type of analysis that originally motivated the introduction of the frame potential). Indeed, since
h(x) = x2 is strictly convex, Corollary 4.10 and Theorem 4.9 imply that if G ∈ D(t , ε)(F) attains
the lower bound in Eq. (20) then λ(SG) has minimal spread (in the sense that is a ≺w-minimizer)
among λ(SG′) for G′ ∈ D(t , ε)(F). Moreover, in this case the geometrical structure of SG can be
described explicitly in terms of the geometrical structure of SF . △
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5 Optimal perturbations by equivalent frames

In this section, given a frame F , we consider a matrix model for the design of perturbations of the
identity V such that V · F has the desired optimality properties. In Section 5.1, using tools from
matrix analysis, we show that there are optimal solutions within our abstract model. Along the
way, we will prove some results that are interesting in their own right, and develop some aspects
of the multiplicative Lidskii’s inequality with respect to log-majorization (see Section 6). Then, in
Section 5.2 we apply these results to the initial frame design problem.

5.1 A matrix model for S(P(s , δ)(F))

In order tackle the problem of the existence and computation of optimal perturbations by equivalent
frames of a fixed frame we introduce the following matrix model: given S ∈ Md(C)

+, 0 < δ < 1
and s ∈ [(1 − δ)d, (1 + δ)d] then consider

O(s , δ)(S) = {V ∗SV : V ∈ Gl(H) , ‖V ∗V − I‖ ≤ δ , det(V ∗V ) ≥ s } . (21)

With the notation of Section 3.2 and Eqs. (6), (7), since SV ·F = V SFV
∗ then Eq. (8) becomes

S(P(s , δ)(F)) = O(s , δ)(SF ).

The following result, that is the multiplicative analogue of Lidskii’s (additive) inequality, will play
a key role in our work on frames. We develop its proof in an Appendix (see Section 6).

Theorem 5.1. Let S ∈ Gl (d)+ and let γ ∈ (Rd
>0)

↓. Then, for every V ∈ Gl (d) such that λ(V ∗V ) =
γ we have that

λ(S) ◦ γ↑ ≺log λ(V ∗SV ) ≺log λ(S) ◦ γ ∈ (Rd
>0)

↓ . (22)

Moreover, if λ(V ∗SV ) = (λ(S)◦γ↑)↓ (resp. λ(V ∗SV ) = λ(S)◦γ) then there exists an o.n.b. {vi}i∈Id
of Cd such that

S =
∑

i∈Id

λi(S) vi ⊗ vi and |V ∗| =
∑

i∈Id

γ
1/2
d+1−i vi ⊗ vi (23)

(

resp. S =
∑

i∈Id
λi(S) vi ⊗ vi and |V ∗| =

∑

i∈Id
γ
1/2
i vi ⊗ vi

)

.

The previous result allows to show the existence of optimal (minimal spread) elements in O(s , δ)(S)
(see Eq. (21)); we further compute their geometric structure.

Theorem 5.2. Let S ∈ Gl (d)+, 0 < δ < 1 and let s ∈
[

(1 − δ)d , (1 + δ)d
]

. Define the following
data: λ = log λ(S) =

(

log λi(S)
)

i∈Id
∈ (Rd)↓ ,

t = log

(

s · det(S)

(1− δ)d

)

≥ tr(λ) and ε = log

(

1 + δ

1− δ

)

> 0 .

Let ρ = ρ(t , ε)(λ , 0) ∈ Λ(t , ε)(λ , 0) be as in Theorem 4.3. Denote by µ = µ(s , δ)(S) the vector

µ = (1− δ) · exp ρ =
(

(1− δ) e ρi
)

i∈Id
∈ (Rd

>0)
↓ . (24)

Then,

1. There exists S̃0 ∈ O(s , δ)(S) such that λ(S̃0) = µ.

2. For every S̃ ∈ O(s , δ)(S) we have that

k
∏

i=1

µi ≤
k
∏

i=1

λi(S̃) for every k ∈ Id . (25)
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3. Given S̃ = V ∗SV ∈ O(s , δ)(S) then equality holds in Eq. (25) for every k ∈ Id (i.e. µ = λ(S̃))

⇐⇒ det(V ∗V ) = s and there exists an o.n.b. {vi}i∈Id for C
d such that

S =
∑

i∈Id

λi(S) vi ⊗ vi and V V ∗ =
∑

i∈Id

µi

λi(S)
vi ⊗ vi . (26)

Proof. First notice that

t− tr(λ) = log

(

s

(1− δ)d

)

≤ d · log

(

1 + δ

1− δ

)

= d · ε .

Hence, we can compute ρ(t , ε)(λ , 0) as in Theorem 4.3.

Let {vi}i∈Id be an o.n.b. for C
d such that Svi = λi(S) vi for i ∈ Id . Then we define V =

∑

i∈Id
( µi

λi(S)
)1/2 vi ⊗ vi ∈ Gl (d)+ and S̃0 = V SV . It is clear that λ(S̃0) = µ. Since log λ(V 2) =

log(1− δ) · 1d + ρ− λ, we get that

log(1− δ) ≤ log λi(V
2) ≤ log(1− δ) ε = log(1 + δ) =⇒ 1− δ ≤ λi(V

2) ≤ 1 + δ , i ∈ Id ,

which is equivalent to ‖V 2 − I‖ ≤ δ. Also, det(V 2) = (1 − δ)d det(S)−1 exp(tr(ρ)) = s so that
S̃0 ∈ O(s , δ)(S) with λ(S̃0) = µ.

In order to show items 2 and 3, let us first assume that V ∈ Gl (d)+. Then, by Theorem 5.1,

λ(S) ◦ λ(V 2)↑ ≺log λ(V SV ) and (λ(S) ◦ λ(V 2)↑)↓ = λ(V SV )

if and only if there exists an o.n.b. such that Eq. (23) holds. Therefore

log(λ(S)) + log(λ(V 2))↑ = log(λ(S) ◦ λ(V 2)↑) ≺ log(λ(V SV )) . (27)

Assume further that det(V 2) ≥ s and ‖I − V 2‖ ≤ δ. Then 1 − δ ≤ λi(V
2) ≤ 1 + δ and hence

log(1− δ) ≤ log(λi(V
2)) ≤ log(1 + δ) for every i ∈ Id . On the other hand

tr log(λ(V 2)) = log(det V 2) ≥ log(s) .

Hence γ = log(λ(V 2))↑ − log(1− δ) · 1 ∈ (Rd
≥0)

↓ is such that

tr(γ) ≥ log

(

s

(1− δ)d

)

and 0 ≤ γi ≤ log(1 + δ)− log(1− δ) = log

(

1 + δ

1− δ

)

, i ∈ Id .

Thus, using the notations in the statement we see that

log(λ(S)) + γ = λ+ γ ∈ Λ(t , ε)(λ , 0) =⇒ ρ ≺ λ+ γ .

Therefore, in this case we have that ρ + log(1 − δ) · 1 ≺w λ + log(λ(V 2))↑. These facts together
with Eq. (27) imply that

ρ+ log(1− δ) · 1 ≺w log(λ(S)) + log(λ(V 2))↑ ≺ log(λ(V SV )) .

Since the exponential function is convex and increasing, the submajorization relation above implies
Eq. (25). Moreover, if equality holds in Eq. (25) for k ∈ Id then, by the previous majorization
relations, we conclude that (1 − δ) exp(ρ) = (λ(S) ◦ λ(V 2)↑)↓ = λ(V SV ). Hence, by Theorem 5.1,
we see that there exists an o.n.b. {vi}i∈Id that satisfies Eq. (26). Conversely, notice that if there
exists an o.n.b. {vi}i∈Id for which Eq. (26) holds then it is straightforward to show that equality
holds in Eq. (25) for k ∈ Id .

Finally, if V ∈ Gl (d) is arbitrary, the result follows from the positive case using the reduction
described at the end of the proof of Proposition 6.3.
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5.2 Computation of optimal perturbations by equivalent frames

We begin with the following result, which is a consequence of Theorem 5.1, and the relations
between submajorization and increasing convex functions described in Section 2.3.

Theorem 5.3. Let F = {fi}i∈In be a frame for C
d, with frame operator SF ∈ Gl (d)+, and fix an

increasing function h ∈ Conv(R≥0). Given γ ∈ (Rd
>0)

↓ then,

1. If V ∈ Gl (d) is such that λ(V ∗V ) = γ then we have that

∑

i∈Id

h(λi(SF ) γd+1−i) ≤ Ph(V · F) , (28)

and this lower bound is attained.

2. If we assume further that h ∈ Convs(R≥0) then equality holds in Eq. (28) iff there exists an
o.n.b. {vi}i∈Id such that

SF =
∑

i∈Id

λi(SF ) vi ⊗ vi and |V ∗| =
∑

i∈Id

γd+1−i vi ⊗ vi . (29)

Proof. Recall that if V and F are as above then SV ·F = V ∗SF V . Hence, by Theorem 5.1 and the
remarks in Section 2.3 we conclude that

λ(SF ) ◦ λ(V
∗V )↑ ≺log λ(SV ·F ) =⇒ λ(SF ) ◦ λ(V

∗V )↑ ≺w λ(SV ·F ) .

The submajorization above together with the fact that h is an increasing and convex function
imply Eq. (28). On the other hand, it is clear that this lower bound is attained. Assume now
that the lower bound in Eq. (28) is attained for some V as above. Using the fact that h is (an
increasing) strictly convex function and the submajorization relation above then we conclude that
(λ(SF ) ◦ λ(V

∗V )↑)↓ = λ(SV ·F ) (see the remarks in Section 2.3). Thus, again by Theorem 5.1, we
conclude that there exists an o.n.b. {vi}i∈Id for Cd for which Eq. (29) holds.

Notations 5.4. Let F = {fi}i∈In be a frame for C
d with frame operator SF ∈ Gl (d)+. Let

0 < δ < 1 and let s > 0 be such that (1 − δ)d ≤ s ≤ (1 + δ)d. Then, with the notations from Eqs.
(6), (7) and (21) then, the identity in Eq. 8 becomes

S(P(s , δ)(F)) = O(s , δ)(SF ) .

Thus, the following result is a direct consequence of the previous identity and Theorem 5.2.

Theorem 5.5. Let F = {fi}i∈In be a frame for Cd with frame operator SF ∈ Gl (d)+. Let δ and s

as in 5.4. Define the following data: λ = log λ(SF ) =
(

log λi(SF )
)

i∈Id
∈ (Rd)↓ ,

t = log

(

s · det SF

(1− δ)d

)

≥ tr λ and ε = log

(

1 + δ

1− δ

)

> 0 .

Let ρ = ρ(t , ε)(λ , 0) ∈ Λ(t , ε)(λ , 0) be as in Theorem 4.3. Denote by µ = µ(s , δ)(F) the vector

µ = (1− δ) · exp ρ =
(

(1− δ) e ρi
)

i∈Id
∈ (Rd)↓ .

Then,

1. There exists V0 · F ∈ P(s , δ)(F) such that λ(SV0·F ) = µ.
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2. For every V · F ∈ P(s , δ)(F) we have that

k
∏

i=1

µi ≤
k
∏

i=1

λi(SV ·F) for every k ∈ Id . (30)

3. Equality holds in Eq. (30) for every k ∈ Id (i.e. λ(SV ·F) = µ) ⇐⇒ det(V ∗V ) = s and there
exists an o.n.b. {vi}i∈Id for Cd such that

SF =
∑

i∈Id

λi(SF ) vi ⊗ vi and V V ∗ =
∑

i∈Id

µi

λi(S)
vi ⊗ vi . (31)

The previous result establishes the existence of perturbations V · F ∈ P(s , δ)(F) by equivalent
frames, that are optimal in a rather structural sense. For example, these optimal perturbations are
minimizers of convex potentials. In turn, these convex potential can be used to obtain a direct and
simple (scalar) quantitative measure of performance of arbitrary perturbations within P(s , δ)(F).
We formalize these remarks in the following

Corollary 5.6. Fix an increasing function h ∈ Conv(R≥0). With the notations and terminology
of Theorem 5.5 :

1. For every V · F ∈ P(s , δ)(F) then

Ph(V · F) ≥
∑

i∈Id

h(µi) , (32)

and this lower bound is attained.

2. Assume further that h ∈ Convs(R≥0). Then, V · F ∈ P(s , δ)(F) attains the lower bound in

(32) iff det(V ∗V ) = s and there exists an o.n.b. {vi}i∈Id for C
d such that Eq. (31) holds.

Proof. With the notations above and using the fact that SV ·F = V ∗SF V , then the remarks in
Section 2.3 and Theorem 5.2 imply that

(log µi)i∈Id ≺w (log(λi(SV ·F )))i∈Id =⇒ µ ≺w λ(SV ·F ) .

Then, the submajorization above together with the fact that h is an increasing and convex function
imply Eq. (32). Assume further that the lower bound in Eq. (32) is attained for some V as above.
Using the fact that h is (an increasing) strictly convex function and the submajorization relation
above then we conclude that µ = λ(SV ·F). Hence, by Theorem 5.2, we conclude that there exists
an o.n.b. {vi}i∈Id for Cd for which Eq. (31) holds.

5.3 Expansive perturbations by equivalent frames

Arguing as in proof of Theorem 5.2 above, in terms of Theorem 5.1 and the results from [17]
described in Remark 4.1, we can get the following perturbation result which is of independent
interest.

Theorem 5.7. Let S ∈ Gl (d)+ and let s > 1. Define

λ = (log λi(S))i∈Id ∈ (Rd)↓ and t = log s+ tr λ > tr λ .

Let ν = ν(λ , t) ∈ Λt(λ) be as in Remark 4.1. Denote by µ = (eνi)i∈Id . Then,
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1. There exists V0 ∈ Gl (d) expansive (i.e. V ∗
0 V0 ≥ I) such that

det(V ∗
0 V0) = s and λ(V ∗

0 S V0) = µ .

2. If V ∈ Gl (d) is expansive and such that det(V ∗V ) = s, then µ ≺log λ(V ∗SV ).

3. Equalities hold in item 2 ⇐⇒ there exists an o.n.b. (of eigenvectors) {vi}i∈Id for C
d such

that S and V V ∗ satisfy Eq. (26). �

We shall consider expansive perturbations of a fixed frame F by equivalent frames, with a fixed
determinant parameter: Let F = {fi}i∈In be a frame for Cd and let s > 1. Denote by

PEs(F) =
{

V · F : V ∈ Gl (d) , det V ∗V = s and V ∗V ≥ I
}

.

Corollary 5.8. Let F = {fi}i∈In be a frame for Cd with frame operator SF ∈ Gl (d)+. Let s > 1.
Consider the data λ , t , ν and µ as in Theorem 5.7 with S = SF . Then,

1. There exists V0 · F ∈ PEs(F) such that λ(SV0·F ) = µ.

2. For every other V · F ∈ PEs(F) we have that
k
∏

i=1
µi ≤

k
∏

i=1
λi(SV ·F ) for k ∈ Id .

3. Equality holds in item 2 for every k ∈ Id (i.e. λ(SV ·F ) = µ) ⇐⇒ there exists an o.n.b.
{vi}i∈Id for Cd such that SF and V V ∗ satisfy Eq. (31). �

6 Appendix - multiplicative Lidskii’s inequality

Although majorization and log-majorization are not a total relations in R
d they appear naturally in

many situations in matrix analysis. Some examples of this phenomenon are the Schur-Horn theorem
characterizing the main diagonals of unitary conjugates of a selfadjoint matrix A, and Horn’s
relations between the eigenvalues and singular values of matrices. Another interesting example of a
majorization relation is Lidskii’s inequality for selfadjoint matrices; namely, if A, B are selfadjoint
matrices then λ(A) + λ↑(B) ≺ λ(A+B). Lidskii’s inequality has a multiplicative version obtained
by Li and Mathias in [12]. In the positive invertible case, Li and Mathias’s results can be put into
the deep theory of singular value inequalities developed by Klyachko in [10]. Next, we describe
these results in detail and characterize the case of equality in Li-Mathias’s multiplicative inequality.
The following inequalities are the multiplicative version of Lidskii’s inequality:

Theorem 6.1 ([12]). Let S ∈ Md(C)
+ and V ∈ Gl (d). Let J ⊆ Id be such that |J | = k and

λi(S) > 0 for i ∈ J . Then we have that

k
∏

i=1

λd+1−i(V
∗V ) ≤

∏

i∈J

λi(V
∗SV )

λi(S)
≤

k
∏

i=1

λi(V
∗V ) . �

We complement this result by characterizing the case of equality in the inequalities above. We shall
use some results of [18, Section 8], where we study the case of equality in the additive Lidskii’s
inequalities, and also some combinatorial problems. We begin by revisiting the following well known
inequality from matrix theory. Our interest relies in the case of equality.

Lemma 6.2 (Weyl’s inequalities). Let A, B ∈ Md(C) be Hermitian matrices. Then,

λi(A+B) ≤ λi(A) + λ1(B) for every i ∈ Id . (33)

If there is i ∈ Id such that λi(A+B) = λi(A) + λ1(B) then there is a unit vector x such that

Ax = λi(A)x and B x = λ1(B)x .
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Proof. It is a particular case of [18, Lemma 8.1]. �

Proposition 6.3 (Ostrowski’s inequality). Let S ∈ Md(C)
+ and let V ∈ Md(C) be such that

V ∗V ≥ I. Then, for i ∈ Id we have that

λi(S) ≤ λi(V
∗SV ) . (34)

Moreover, if there exists J ⊂ Id such that λi(S) = λi(V
∗SV ) for i ∈ J , then there exists an o.n.s.

{vi}i∈I ⊂ C
d such that

|V ∗| vi = vi and S vi = λi(S) vi for i ∈ I .

Proof. The first part of the statement is well known (see for example [4, Thm. 5.4.9.]). Hence, we
prove the second part of the statement by induction on |J |, the number of elements of J . Assume
first that V ∈ Md(C)

+ is such that V 2 ≥ I. Fix i ∈ J and notice that, by Sylvester’s law of inertia,
λi(V (S − λi(S) I)V ) = 0, since λi(S − λi(S) I) = 0. By Lemma 6.2 we have that

λi(V SV )− λi(S)λd(V
2) = λi(V SV ) + λ1(−λi(S)V

2)
6.2
≥ λi(V (S − λi(S) I)V ) = 0 . (35)

Since λd(V
2) ≥ 1 and λi(V SV ) = λi(S) ( i ∈ J ) we conclude that λd(V

2) = 1. Moreover, by the

equality in Eq. (35) and Lemma 6.2, there is x ∈ C
d, ‖x‖ = 1 such that V SV x

6.2
= λi(V SV ) x and

−λi(S)V
2x

6.2
= λ1(−λi(S)V

2) x = −λi(S)λd(V
2) x = −λi(S) x .

Hence V 2x = x and then V x = x. Thus, V SV x = λi(V SV ) x =⇒ Sx = λi(V SV ) x = λi(S) x .

This proves the statement for |J | = 1. If we assume that |J | > 1 then we fix vi = x and consider
W = {vi}

⊥, which reduces both A and V . Therefore an easy inductive argument involving the
restriction S|W and V |W shows the general case.

If we now consider an arbitrary V ∈ Md(C) such that V ∗V ≥ I then let V ∗ = U |V ∗| be the polar
decomposition of V ∗. In this case V ∗SV = U |V ∗| S |V ∗|U∗ so that λi(V

∗SV ) = λi(|V
∗| S |V ∗|)

for every i ∈ Id , where |V ∗|2 = V V ∗ = U∗(V ∗V )U ≥ I. These last facts together with the case of
equality for positive expansions prove the statement.

In order to state our results we introduce the following notion.

Definition 6.4. Let S ∈ Gl (d)+ and let V ∈ Gl (d). We say that V is an upper multiplicative
matching (UMM) of S (resp. lower MM or LMM of S) if there exists a family {Jk}k∈Id such that
Jk ⊆ Jk+1 ⊆ Id for 1 ≤ k ≤ d− 1, |Jk| = k for k ∈ Id and such that

∏

i∈Jk

λi(V
∗SV )

λi(S)
=

k
∏

i=1

λi(V
∗V ) , k ∈ Id

(

resp.
∏k

i=1 λ
↑
i (V

∗V ) =
∏k

i=1 λd+1−i(V
∗V ) =

∏

i∈Jk
λi(V

∗SV )
λi(S)

, k ∈ Id

)

. △

Theorem 6.5. Let S ∈ Gl (d)+ and let V ∈ Gl (d) be a UMM or a LMM of S. Then S and |V ∗|
commute.

Proof. We can assume that V is not a multiple of the identity. We use the splitting technique
considered in [12]. Let V ∈ Gl (d) be an UMM of S. Assume further that V ∈ Gl (d)+ and let
{ui}i∈Id be a o.n.b for Cd such that V =

∑

i∈Id

λi(V )ui ⊗ ui . Let 2 ≤ k ≤ d be such that λk−1 > λk .
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Let Vk = λ−1
k V , which is also an UMM for S. In this case λi(Vk) = λi(V )

λk(V ) for every i ∈ Id . In

particular, λk(Vk) = 1. Let Bk =
∑

i∈Id

µi · ui ⊗ ui ∈ Gl (d)+ , where

µ = (λ1(Vk) , . . . , λk−1(Vk) , 1d−k) ∈ (Rd
>0)

↓ .

Notice that Wk = ker(Bk − I) = span{ui : k ≤ i ≤ d} =⇒ dim Wk = d + 1 − k. Also notice that

the orthogonal projection Pk
def
= PWk

coincides with the spectral projection of V corresponding to
the interval (0, λk(V )].

On the other hand, by construction of Bk , we see that Bk ≥ I and V −1
k Bk = BkV

−1
k ≥ I. Using

that Vk is an UMM of S, we can take Jk−1 ⊆ Id such that |Jk−1| = k − 1 and

∏

i∈Jk−1

λi(VkSVk)

λi(S)
=

k−1
∏

i=1

λi(V
2
k ) . (36)

Then, by Ostrowski’s inequality we get that

∏

i∈Jk−1

λi(VkS Vk)

λi(S)
≤

∏

i∈Jk−1

λi((Bk V
−1
k )(VkS Vk)(V

−1
k Bk))

λi(S)
=

∏

i∈Jk−1

λi(BkS Bk)

λi(S)
.

Using Ostrowski’s inequality again, we see that λi(BkS Bk)
λi(S)

≥ 1 for every i ∈ Id and therefore

∏

i∈Jk−1

λi(VkS Vk)

λi(S)
≤

∏

i∈Jk−1

λi(BkS Bk)

λi(S)
≤
∏

i∈Id

λi(BkS Bk)

λi(S)

=
det(BkS Bk)

det(S)
= det(B2

k) =

k−1
∏

i=1

λi(V
2
k ) .

By Eq. (36) we see that the previous inequalities are actually equalities. Hence, if we let Jc
k−1 =

Id \ Jk−1 then |Jc
k−1| = d+ 1− k and

∏

i∈Jc

k−1

λi(BkS Bk)

λi(S)
= 1 =⇒ λi(BkS Bk) = λi(S) for i ∈ Jc

k−1 .

By the case of equality in Ostrowski’s inequality in Proposition 6.3 we conclude that there exists
an o.n.s. {vi}i∈Jc

k−1
⊆ C

d such that

Bkvi = vi and Svi = λi(S) for i ∈ Jc
k−1 . (37)

Then we conclude that {vi}i∈Jc

k−1
is another o.n.b. of Wk . Hence Pk =

∑

i∈Jc

k−1
vi⊗ vi and, by Eq.

(37), we conclude that Pk and S commute. Finally, since V can be written as a linear combination
of its spectral projections Pk (for λk−1 > λk ) and the identity I, we see that V and S commute in
this case. The general case for arbitrary V ∈ Gl (d) follows from the positive case with the reduction
described at the end of the proof of Proposition 6.3.

Assume now that V ∈ Md(C)
+ is a LMM of S. Then V −1 is an UMM for V SV . Indeed, if Jk ⊆ Id

is such that
k
∏

i=1

λ
↑
i (V

2) =
∏

i∈Jk

λi(V SV )

λi(S)
,
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then we have that

k
∏

i=1

λi(V
−2) =

(

k
∏

i=1

λ
↑
i (V

2)

)−1

=





∏

i∈Jk

λi(V SV )

λi(S)





−1

=
∏

i∈Jk

λi(V
−1(V SV )V −1)

λi(V SV )
.

By the first part of this proof, we conclude that V −1 and V SV commute, which implies that S and
V commute. If V ∈ Gl (d) is arbitrary we conclude that S and |V ∗| commute with the reduction
described at the end of the proof of Proposition 6.3.

Now we can re-state and prove Theorem 5.1:

Theorem 5.1 Let S ∈ Gl (d)+ and let γ ∈ (Rd
>0)

↓. Then, for every V ∈ Gl (d) such that λ(V ∗V ) = γ

we have that
λ(S) ◦ γ↑ ≺log λ(V ∗SV ) ≺log λ(S) ◦ γ ∈ (Rd

>0)
↓ .

Moreover, if λ(V ∗SV ) = (λ(S)◦γ↑)↓ (resp. λ(V ∗SV ) = λ(S)◦γ) then there exists an o.n.b. {vi}i∈Id
of Cd such that

S =
∑

i∈Id

λi(S) vi ⊗ vi and |V ∗| =
∑

i∈Id

γ
1/2
d+1−i vi ⊗ vi (38)

(

resp. S =
∑

i∈Id
λi(S) vi ⊗ vi and |V ∗| =

∑

i∈Id
γ
1/2
i vi ⊗ vi

)

.

Proof. Let S and V be as above. Assume further that V ∈ Gl (d)+ and notice that then λ(V S V ) =
λ(S1/2V 2 S1/2). By Theorem 6.1 we get that, for every J ⊂ Id with |J | = k,

∏

i∈J

λ
↑
i (S) λi(V

2) =
∏

i∈J

λi(S
−1/2(S1/2V 2S1/2)S−1/2)

λi(S−1)
≤

k
∏

i=1

λi(S
1/2V 2S1/2) .

This shows that λ ◦ λ↑(S) ≺log λ(V S V ) or equivalently, that λ(S) ◦ λ↑ ≺log λ(V S V ). Moreover,
the previous facts also show that if λ(V S V ) = (λ(S) ◦ λ↑)↓ then S−1/2 is an UMM of S1/2V 2S1/2.
By Theorem 6.5 we see that S−1/2 and S1/2V 2S1/2 commute, which in turn implies that S and V

commute.

Since S and V commute we conclude that there exists an o.n.b. {wi}i∈Id of Cd such that

S =
∑

i∈Id

λi(S) wi ⊗ wi and V =
∑

i∈Id

λ
↑
σ(i)(V ) wi ⊗ wi

for some permutation σ ∈ Sd . That is, in this case we have that

(

λ(S) ◦ λ↑(V 2)
)↓

= λ(V SV ) =
(

λ(S) ◦ λ↑
σ(V

2)
)↓

.

Notice that by replacing S and V by tS and tV for sufficiently large t > 0 we can always assume
that S − I ∈ Gl (d)+ and V − I ∈ Gl (d)+. Using the properties of the logarithm, we conclude that
the vectors log λ(S) and log λ(V 2) ∈ (R>0)

↓ are such that

(

log λ(S) + log λ↑(V 2)
)↓

=
(

log λ(S) + log λ↑
σ(V

2)
)↓

.

By [18, Proposition 8.6 and Remark 8.7] we conclude that log λ(S) = log λσ(S). That is, if we set
vi = wσ−1(i) for i ∈ Id then the o.n.b. {vi}i∈Id satisfies the conditions in Eq. (38). The general
case, for V ∈ Gl (d), follows by the reduction described at the end of the proof of Proposition 6.3.
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On the other hand, notice that a direct application of Theorem 6.1 shows that

k
∏

i=1

λi(V
∗SV )

λi(S)
≤

k
∏

i=1

λi(V
∗V ) =⇒

k
∏

i=1

λi(V
∗SV ) ≤

k
∏

i=1

λi(S) λi(V
∗V ) .

Hence, we conclude that λ(V ∗SV ) ≺log λ(S) ◦ λ(V
∗V ) ∈ (Rd

>0)
↓. Finally, in case that λ(V ∗SV ) =

λ(S) ◦ λ(V ∗V ) we see that S is an UMM for S and therefore S and |V ∗| commute. In this case it
is straightforward to check that there exists an o.n.b. {vi}i∈Id with the desired properties. �

References

[1] R. Balan, Equivalence relations and distances between Hilbert frames. Proc. Amer. Math. Soc. 127 (1999), no. 8, 2353-2366.

[2] R. Bhatia, Matrix Analysis, Berlin-Heildelberg-New York, Springer 1997.

[3] J.J. Benedetto, M. Fickus, Finite normalized tight frames, Adv. Comput. Math. 18, No. 2-4 (2003), 357-385 .

[4] R.A. Horn, C.R. Johnson, Matrix analysis. Second edition. Cambridge University Press, Cambridge, 2013.

[5] P.G. Casazza, M. Fickus, J. Kovacevic, M.T. Leon, J.C. Tremain, A physical interpretation of tight frames. Harmonic
analysis and applications, 51–76, Appl. Numer. Harmon. Anal., Birkhäuser Boston, MA, 2006.
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