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1 Introduction

The development of computational complexity theory
led to a fascinating insight into the inherent difficulty
of computational optimization problems. Optimization
problem of knapsack type involves various applications
in engineering, science and economics, it is significant to
solve various kinds of knapsack problems. Recently, an
improved surrogate constraints method is proposed to
solve multidimensional nonlinear knapsack problems of
large size, witch have surrogate gaps. However the knap-
sack problems are of NP-hard. Furthermore, the knap-
sack problems with demand constraints are frequently
quite difficult to obtain high quality solution because of
loss of monotonicity of constraints. To obtain even fea-
sible solution is extremely difficult. Application of the
algorithms to such a problem directly is not effective.

In this report, by using entropy, a method for evalu-
ating difficulty of multidimensional 0-1 knapsack prob-
lems with demand constraints is proposed. It is shown
in chapter 5 that solving the problems with demand con-
straint is rather difficult than solving that with ordinary
problems with no demand constraint. Computational
experiments show that the proposed method is effective

to evaluate the computational difficulty of the problems.

2  Formulation of Problems

Multidimensional Knapsack Problems with Demand

Constraints can be formulated as follows;

N
[P] maximize flx) = Z nTy (La)
n=1

N
subject to gm(x) = Z CrnZn < b,
el

m=12,...,ml, (1.b)

N
gm(w) = Z Cmn®n < bm:

n=1
m=ml+1ml+2,...,M (1.0)

x(= (z1,20,...,25)T) € X =TIY_,{0,1} C RV, (1.¢)

where,  denotes an N dimensional 0-1 valued decision
variable, f(x) denotes N dimensional vector-valued
objective function (g1(z),g2(x), ..., gmi(x))T and
(gmi141(®), gmi42(x), ..., gnm(x))T denote m1 and M —

m1 dimensional vector-valued constraint functions, re-

spectively. The vector b = (b1,ba, ..., bmi, bmis1,---,00) "

denotes available amounts of resources. The constraint
(1.b) is of ordinary type, and the constraint (1.c) is of
demand type.

By using a surrogate multiplier u = (u1,ua, ... ,uM)T,
the problem [P] is translated into the surrogate demand

constraints problem;

[P5(u)] maximize f(x) (2.a)
subject to uTh(z) <0, (2.b)
zeX, (2.¢)
where,
h(z) = g(x) — b, (2.d)

M
u€U={u€RM|Zum§1, u >0} (2.e)
m=1
Inequality (2.0) is called a surrogate demand constraints
equation,
A surrogate dual [PSP] to the original problem [P] is

written as follows;
[PSP] min{opt[P%(u)]: u € U} (3)

where, opt[ PS(u) ] denotes an optimal value of the ob-

jective function of the problem PS.
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3 Estimation of Difficulty of Problems
Let p, be a probability such that

FP@)]en=0 > ()

=1

or
FPP@)en=1 < fUP(@)]en=0

To estimate the probality p,, the normalized difference

of the upper bound;

dn
FREAL () — [NEAR (z)

dn = P (@)]en=0 = fV5 (@) |0, =1

The following entropy is used to estimate the difficulty

of the problem;

hn = _pnlogQ(pn) -(1- pn)10g2(1 — Dn)

4 Computational Experiments

The results obtained from computational experiments
to 60 problems shown in the references Chu et.al.(12).
The problems tested are generated by using random
number generator such that the objective functions and
constraint functions are correlated to mutually.

From the obtained results, the probability p, in the
problems with demand constraints may be estimated ap-

proximately as
9g—adn—p

where the values of parameters o and f are -12.2 and
1.0, respectively.

In order to study effectiveness of the estimation
method presented, the value of PGC(Percent Gap
Closure) is introduced;

fR,EAL _ fOPT

FREAL _ fOPT x 100

Table 1. Difference of upper bounds, probability p, and

its approximation

Difference Problem

On 00~09 10~19 20~29 00~29 Pn
0.0~ 0.5469 0.5517 0.4098 0.5027 0.503
0.01~ 0.2800  0.2937  0.3085 0.2938 0.234
0.1~ 0.1161 0.1008 0.1221 0.1129 0.100
0.2~ 0.0421  0.0382  0.0490 0.0427 0.043
0.3~ 0.0265 0.0167 0.0187 0.0206 0.018
0.4~ 0.0074  0.0000  0.0000 0.0027 0.008
0.5~ 0.0000 0.0000 0.0000 0.0000 0.003
0.6~ 0.0000 0.0000 0.0000 0.0000 0.001
0.7~ 0.0000  0.0000  0.0000 0.0000 0.001
0.8~ 0.0000 0.0000 0.0000 0.0000 0
0.9~ 0.0000  0.0000  0.0000 0.0000 0
1.0~ 0.0000  0.0000  0.0000 0.0000 0
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Fig.1. Entropy vs Computational Time
(M =ml =75, N=250)
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Fig.2. Entropy vs Tightness Ratio

(ml=4,M =5, N =500: Single

Demand Constraint)
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Fig.3. Entropy vs Tightness Ratio
(ml=M =4,N =500)
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Fig.5. Computational Time vs PGC
(ml=M =5,N=500)

5 Conclusions

Estimation method for difficulties of multidimensional
0-1 knapsack problems with multiple constraints includ-

ing demand constraints is presented. From computa-

tional experiments, the probablity of p, such that
P @) zn=0 > FUB(@)]0,=1

can be approximately expreed as

2~(xd" —-B

and the obtained computational results show that the
approximated expression for the probability p,, is effec-
tive to estimate the entropy of difficulties of the tested

problems.
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