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We study the effect of translational-rotational hydrodynamic coupling on the transient electric linear
dichroism of DNA fragments in aqueous solution. As opposed to previous theoretical works, where
analytic solutions valid in the limit of low electric field were reported, we present here a numeri-
cal approach which allows to obtain numerical results valid independently from the applied electric
field strength. Numerical procedures here used are an extension to the transient-state of those devel-
oped in a previous work for the study of the problem in the steady-state. The molecular orientational
processes induced by an electric field is characterized with statistical arguments solving the Fokker-
Planck equation by means of the finite difference method to know the orientational distribution func-
tion of molecules. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793984]

I. INTRODUCTION

Electro-optical techniques are a useful tool to study phys-
ical properties of macromolecules in solution. Experimental
data of electric birefringence and dichroism depend on op-
tic, electric, and hydrodynamic properties of macromolecules.
For particles with simple geometrical shapes, as cylinders or
ellipsoids, the analysis of experimental data is relatively sim-
ple. However, for asymmetrical shaped particles the analy-
sis results more difficult due to the hydrodynamic coupling
between their translational and rotational movements.1 Bi-
ological macromolecules, like DNA fragments with length
chain greater than persistence length, are an example of non-
symmetrical particles.

An analytic study of transient electric birefringence for
polar and polarizable molecules with arbitrary shape in strong
electric fields has been reported by Kalmykov,2 but that work
does not include the hydrodynamic coupling of molecules.
Nowadays, the influence of hydrodynamic coupling on the
electro-optical effects (electric birefringence and dichroism)
of DNA fragments has been studied through Brownian dy-
namic simulation3–5 and theoretical methods.6–15 Theoretical
analytic results have been reported only for the limit of low
electric field strength because the study of the orientational
process induced by electric field has mathematical difficul-
ties. Simulation studies early made are applied for arbitrary
electric field strength but they have a disadvantage; they re-
quire computer simulations that are too extensive. In the past,
applications of theoretical methods in combination with nu-
merical techniques allowed us to remove the low electric field
condition for the theoretical study of electric dichroism of
DNA fragments in the steady-state.14 In the present work, we
propose to extend that calculation to study the transient elec-
tric dichroism of DNA fragments. We use a rigid bent rod
molecule (BRM) model to describe the particles in solution.
Transient electro-optical effect is calculated using the orienta-
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tional distribution function obtained numerically solving the
Fokker-Planck equation dependent on time. We specially an-
alyze the effect of translational-rotational hydrodynamic cou-
pling on the transient electric dichroism. This study includes
both growth and decay of electro-optical effect when the elec-
tric field is set-on and set-off, respectively. The results are an-
alyzed for electric fields with different strengths.

II. THEORETICAL BACKGROUND

The theoretical background here used has been thor-
oughly described in previous works.12–14 Therefore, we will
develop this section only in a general way.

A. Molecular model

Each DNA fragment is modelled as a rigid BRM geomet-
rically characterized by their arc length S0, curvature radius
R, and bending angle 2γ 0 (Figure 1). The BRM is put on the
plane X′Z′ of the body coordinate system O′X′Y′Z′ which ori-
gin O′ coincides with the BRM center of mass. The molecule
electric properties are its electric charge q and its electric po-
larizability tensor [αE] with principal elements αE

x ′x ′ , αE
y ′y ′ , and

αE
z′z′ . The hydrodynamic properties of BRM are given by its

rotational diffusion tensor [R] with principal elements Rx′x′ ,
Ry′y′ , and Rz′z′ , and the translation-rotation coupling diffusion
tensor [P] with nonzero elements Py′z′ and Pz′y′ . The optical
properties are represented by the transition moment of each
BRM chromophore group. The position and orientation of
BRM with respect to the laboratory coordinate system OXYZ
are given by the coordinates x, y, z of the O′ origin of the body
coordinate system and the Euler angles φ, θ , and ψ .

B. Reduced electric linear dichroism

We considered a diluted solution of DNA fragments
in presence of a static electric field whose direction match
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FIG. 1. Bent rod molecule (BRM) in the body coordinate system.

with the Z axis direction of the laboratory coordinate
system. The reduced electric linear dichroism (RELD) is
defined as

�A

A
= A// − A⊥

A
, (1)

where A// and A⊥ are the absorbances for linearly po-
larized incident light according to the parallel and per-
pendicular directions of the applied electric field, and A
is the absorbance of the solution for randomly oriented
molecules.

In a previous work14 an expression for the RELD
in the steady-state of a solution of DNA fragments de-
scribed with the BRM model was deduced. This expres-
sion can be immediately generalized for transient RELD as

follows

�A

A
= 3π

16γo

∫ 2π

0

∫ π

0

[
(−γo − 3Ao) (1 + 3 cos 2θ )

−6 (−γo + Ao) cos 2ψ sin2 θ
]
f (θ, ψ, t) sin θdθdψ,

(2)

where Ao = cos γ o sin γ o and f(θ , ψ , t) is the orientational
distribution function. This function describes the probability
of finding a molecule with an orientation between the angles
(θ , ψ) and (θ + dθ , ψ + dψ) at time t with respect to the
laboratory coordinate system. The orientational distribution
function is not dependent of angle φ due to the fact that the
electric field induces a cylindrical symmetry in the solution.

C. Orientational process

We denominate f(�, t) to the probability density of find-
ing a molecule with coordinates between � = (x, y, z, φ, θ ,
ψ) and � + d� at instant t with respect to the laboratory co-
ordinate system. The probability density f(�, t) is the solution
of the Fokker-Planck equation given by

∂f (�, t)

∂t
= − 1√

g
�∇� · [√

gJ(�, t)
]
, (3)

where operator �∇� is the vector (∂/∂x, ∂/∂y, ∂/∂z, ∂/∂φ, ∂/∂θ ,
∂/∂ψ), g = sin 2θ is the determinant of the metric tensor, and
J(�, t) is the probability current which depends on the drift
and diffusion moments M1 and [M2], respectively, in the fol-
lowing way

J(�, t) = M1f (�, t) − 1

2
[M2] �∇�f (�, t). (4)

We suppose that the probability density is independent of
the coordinate positions and also of the φ angle. In this way,
f(�, t) becomes the orientational distribution function f(θ , ψ ,
t). Under these suppositions Eq. (3) was developed in previous
works12, 14 and results in the following differential equation

(
Qθθ

∂2

∂θ2
+ Qψψ

∂2

∂ψ2
+ Qψθ

∂2

∂ψ∂θ
+ Qθ

∂

∂θ
+ Qψ

∂

∂ψ
+ Q00

)
f (θ, ψ, t) = ∂f (θ, ψ, t)

∂t
, (5)

where

Qθθ = (
Rx ′x ′ cos2 ψ + Ry ′y ′ sin2 ψ

)
,

Qψψ = (
Rx ′x ′ sin2 ψ cot2 θ + Ry ′y ′ cos2 ψ cot2 θ + Rz′z′

)
,

Qψθ = 2
(
Ry ′y ′ − Rx ′x ′

)
sin ψ cos ψ cot θ,

Qθ = cot θ
(
Rx ′x ′ sin2 ψ + Ry ′y ′ cos2 ψ

) − E2

kBT
cos θ sin θ

[(
αE

y ′y ′ − αE
z′z′

)
Rx ′x ′ cos2 ψ

− (
αE

z′z′ − αE
x ′x ′

)
Ry ′y ′ sin2 ψ

] + qE

kBT
Py ′z′ cos θ sin ψ,

Qψ = cos ψ

sin2 θ

{
E2

kBT

[
Rz′z′

(
αE

y ′y ′ − αE
x ′x ′

)
sin2 θ + Ry ′y ′

(
αE

z′z′ − aE
x ′x ′

)
cos2 θ + Rx ′x ′

(
αE

y ′y ′ − αE
z′z′

)
cos2 θ

]

× sin2 θ sin ψ + Eq

kBT
sin θ

(
Py ′z′ cos2 θ − Pz′y ′ sin2 θ

) + (
Rx ′x ′ − Ry ′y ′

)
sin ψ

(
cos2 θ + 1

)}
,
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Q00 = − 1

sin θ

{
qE

kBT

(
Py ′z′ − Pz′y ′

)
sin ψ sin2 θ + E2

kBT
Rz′z′

(
αE

x ′x ′ − αE
y ′y ′

)
sin3 θ

(
2 cos2 ψ − 1

)

+ E2

kBT
sin θ

[
Rx ′x ′

(
αE

y ′y ′ − αE
z′z′

) (
cos2 θ − sin2 θ cos2 ψ

)
Ry ′y ′

(
αE

z′z′ − αE
x ′x ′

) + (
sin2 θ sin2 ψ − cos2 θ

)]}
.

We express the orientational distribution function in the
following way

f (θ, ψ, t) = f 0 + f E (θ, ψ, t) , (6)

where f 0 is the orientational distribution function before ap-
plying the electric field and f E(θ , ψ , t) represents the modifi-
cations at instant t after applying the electric field. Let us note
that f 0 is a constant because before applying the electric field
all orientations are equally probable. Replacing Eq. (6) in Eq.
(5), we obtain

Q̂f E(θ, ψ, t) = −Q00f
0 + ∂f E(θ, ψ, t)

∂t
, (7)

where



Q = Qθθ∂
2/∂θ2 + +Qψψ∂2/∂ψ2 + Qψθ∂

2/∂ψ∂θ +
Qθ∂/∂θ + Qψ∂/∂ψ + Q00.

The orientational distribution function is obtained solv-
ing Eq. (7) to know f E(θ , ψ , t) and replacing it in Eq. (6).

III. NUMERICAL PROCEDURE TO CALCULATE
THE RELD

The RELD is numerically calculated by means of Eq. (2).
For this, we need to determine previously the orientational
distribution function f(θ , ψ , t). To this end, we solve the dif-
ferential equation given by Eq. (7) using a finite difference
method (FDM)16 as is described in a previous work.17 Ba-
sically, the mentioned numerical procedure consists first in
making a grid of discrete points θ l, ψm on the domain 0 ≤ θ

≤ π and 0 ≤ ψ ≤ 2π , with mesh sizes �θ = π /(nθ − 1) and
�ψ = 2π /(nψ − 1), being nθ and nψ the number of points in
the θ and ψ directions, respectively. Second, we approximate
the angular and temporal derivates in the differential equation
using Taylor series. Finally, we generate an equation system
which solution is the set of values that are assumed by f E(θ ,
ψ , tk) in the grid points at instant tk after applying the elec-
tric field. The equation system, which is obtained from the
discretization of the differential equation and the boundary
conditions, is generated by the following relations17

H1f
E
l+1,m,k + (

H2 − �t−1f E
l,m,k−1

)
f E

l,m,k + H3f
E
l−1,m,k + H4f

E
l,m+1,k + H5f

E
l,m−1,k

+H6f
E
l+1,m+1,k + H7f

E
l−1,m−1,k = H8f

0 − �t−1f E
l,m,k−1 l = 1, 2, . . . , nθ − 2

m = 0, 1, . . . , nψ − 1, (8)

f E
l,0,k − f E

l,nψ−1,k = 0 l = 0, 1, 2, . . . , nθ − 1, (9)

1

4�ψ

[
Ry ′y ′ + Rz′z′ + (

Ry ′y ′ − Rz′z′
)

cos
(
2θ

)] (
f E

l,−1,k − f E
l,1,k − f E

l,nψ−2,k + f E
l,nψ ,k

)

+ qE

kBT

[
Pz′y ′ sin2 θ − Py ′z′ cos2 θ

]
sin θ

(
f E

l,0,k − f E
l,nψ−1,k

)
= 0 l = 0, 1, .., nθ − 1, (10)

1

�θ

[(
Rx ′x ′ + Ry ′y ′

) + (
Rx ′x ′ − Ry ′y ′

)
cos (2ψ)

]
f E

1,m,k −
{

1

�θ

[(
Rx ′x ′ + Ry ′y ′

) + (
Rx ′x ′ − Ry ′y ′

)
cos (2ψ)

]

−2qE

kBT
Py ′z′ sin ψ

}
f E

0,m,k = −2qE

kBT
Py ′z′ sin ψ m = 0, 1, 2, . . . , nψ − 1, (11)

− 1

�θ

[(
Rx ′x ′ + Ry ′y ′

) + (
Rx ′x ′ − Ry ′y ′

)
cos (2ψ)

]
f E

nθ −2,m,k +
{

1

�θ

[(
Rx ′x ′ + Ry ′y ′

) + (
Rx ′x ′ − Ry ′y ′

)
cos (2ψ)

]

−2qE

kBT
Py ′z′ sin ψ

}
f E

nθ −1,m,k = 2qE

kBT
Py ′z′ sin ψ m = 0, 1, 2, . . . , nψ − 1. (12)
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In the above equations, the subscripts p, q, r, with p = l,
l ± 1, q = m, m ± 1 and r = k − 1, k, mean that the function
f E must be evaluated at the point θp, ψq and at the instant tr;
�t = tk − tk − 1 is the interval of time discretization, and Hi

are coefficients given by

H1 = Qθθ

�θ2
− Qψθ

2�θ�ψ
+ Qθ

2�θ

∣∣∣∣
l,m

,

H2 = −2Qθθ

�θ2
− 2Qψψ

�ψ2
+ Qψθ

�θ�ψ
+ Q00

∣∣∣∣
l,m

,

H3 = Qθθ

�θ2
− Qψθ

2�θ�ψ
− Qθ

2�θ

∣∣∣∣
l,m

,

H4 = Qψψ

�ψ2
− Qψθ

2�θ�ψ
+ Qψ

2�ψ

∣∣∣∣
l,m

,

H5 = Qψψ

�ψ2
− Qψθ

2�θ�ψ
− Qψ

2�ψ

∣∣∣∣
l,m

,

H6 = Qψθ

2�θ�ψ

∣∣∣∣
l,m

,

H7 = H6,

H8 = −Q00|l,m .

The equation system given by Eqs. (8)–(12) should be it-
eratively solved. From the first iteration (k = 1) the values of
f E(θ , ψ , t1) are determined using the initial condition f E(θ ,
ψ , t0) = f 0, where t0 = 0 is the instant at which the elec-
tric field is applied. As f 0 is an arbitrary constant, we choose
f 0 = 1 to make the calculations. In the second iteration, the
values of f E(θ , ψ , t2) are determined using the values of f E(θ ,
ψ , t1) obtained in the first iteration. In this way, repeating this
procedure, the values of f E at instant tk are determined solving
the equation system given by Eqs. (8)–(12) on the basis of the
values of f E at instant tk − 1.

At each instant tk the orientational distribution function
f (θ , ψ , tk) is calculated using Eq. (6) and the values of f E(θ ,
ψ , tk) obtained for this iteration. Finally, the function f (θ , ψ ,
tk) is redefined in order to satisfy the following normalization
condition

f (θ, ψ, tk) = f 0 + f E(θ, ψ, tk)

2π
∫ 2π

0

∫ π

0 (f 0 + f E) sin θdθdψ
. (13)

Let us note that the above procedure is useful to study the
growth of RELD after electric field was applied, and also the
decay of RELD after removing electric field. For the latter,
we merely need to make E = 0 in the equations and continue
the iterative process.

Finally, transient REDL can be calculate by integration
of Eq. (2) for different instants tk.

IV. RESULTS AND DISCUSSION

All calculations were made using a grid with nθ = nψ

= 91 points and an interval of time discretization �t = 0.1
μs to solve the Fokker-Planck equation, like it is described in
Sec. III.

FIG. 2. RELD versus time for BRM solution with the parameters described
in the text. Solid black line: values obtained solving Fokker-Planck equation
with MDF, Dashed red line: values obtained with approximate analytic results
reported by Bertolotto et al.13 Electric field with strength 2 kV/cm is set-on
at t = 0 and set-off at t = 20 μs.

We calculated the transient RELD according to the-
oretical and numerical procedures described in this work,
for a BRM model with a bending angle of 116o and arc
length of 600 Å. The molecular parameters here used are the
same implemented by Bertolotto et al.13 in a previous work.
The principal elements of electric polarizability tensor are
αE

x ′x ′ = 7.311 × 10−33 Fm2, αE
y ′y ′ = 5.341 × 10−33 Fm2, and

αE
z′z′ = 2.397 × 10−32 Fm2. The elements of the hydrody-

namic tensors are Rx′x′ = 63640 s−1, Ry′y′ = 67960 s−1,
and Rz′z′ = 641800 s−1, Py′z′ = 2.847 × 10−4 m/s and Pz′y′

= −4.285 × 10−4 m/s. Electric charge of BRM is q = 0.16Q,
where Q is the DNA fragment charge when all the phosphate
groups are ionized. Temperature T is set on 293 K. RELD is
always calculated from t = 0 to t = 40 μs and the electric
rectangular pulse is set-on at t = 0 and set-off at t = 20 μs.

Figure 2 shows the RELD curves versus time obtained for
BRM with bending angle 116o and an electric field strength E
= 2 kV/cm. Figure 2 also shows the RELD curves calculated
through approximate analytic results reported by Bertolotto
et al.13 valid in the limit of low electric field strength (up to
2 kV/cm, approximately). Both calculations are in satisfactory
agreement. During the first moments after the electric field is
applied the RELD in Figure 2 is negative. Then, RELD be-
comes positive and grows until achieving a steady-state value.
When electric field is set-off an overshoot occurs and then
RELD decays to zero. Behaviour above described is charac-
teristic of BRM that are oriented by two mechanisms. One of
them is due to the interaction between the induce dipole mo-
ment and the electric field and the other is owned to the hy-
drodynamic coupling between the translational and rotational
movements.

Figure 3 shows the RELD curves versus time obtained for
BRM with bending angle 116o and an electric field strength
E = 2 kV/cm calculated considering each orientation mech-
anism individually. The orientation by polarization produces
a RELD signal always negative. On the contrary, the orienta-
tion owned to hydrodynamic coupling corresponds a RELD
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FIG. 3. Individual contributions to RELD curve of Figure 2. Solid black
line: values obtained solving Fokker-Planck equation with MDF, Dashed red
line: values obtained with approximate analytic results reported by Bertolotto
et al.13 Always positive curves represent the contribution owned to hydrody-
namic coupling and always negative curves those owned to polarization. The
middle curves correspond to both contributions together.

signal always positive. The combination of both contributions
results in the curve of Figure 2. In Figure 3 we can see that
curves calculated with the MDF and those analytic curves re-
ported by Bertolotto et al.13 are in agreement.

Figure 4 shows the different contributions to RELD for
an arc with the same parameters used in Figure 3 in pres-
ence of an electric field with strength equal to 60 kV/cm. The
contribution of the hydrodynamic coupling is small relative
to polarization contribution in this case of high electric field.
Therefore, results show that the hydrodynamic coupling ef-
fect is a determining factor for RELD at low electric field
and becomes a factor that slightly modules RELD curves
without changing its shape for high electric field. Figure 4

FIG. 4. RELD curve and its decomposition in individual contributions for
an electric field strength equal to 60 kV/cm. Solid black line: orientation due
polarization and hydrodynamic coupling combined, Dashed red line: contri-
bution owned to hydrodynamic coupling, Dotted blue line: contribution due
to polarization.

FIG. 5. RELD curves for BRM solution with the same parameters used
by Porschke and Antosiewicz4 at different electric field strengths given in
kV/cm. Solid black line: values obtained solving Fokker-Planck equation
with MDF, Dashed red line: values obtained by Porschke and Antosiewicz4

with Brownian dynamic simulation.

shows an overshoot in the hydrodynamic contribution curve
(dashed red line) when the electric field is set-off. This over-
shoot is explained as follows: for only orientation by hydrody-
namic coupling, the probability density of finding a molecule
in a given orientation range at t = 20 μs is greater when
the plane X′Z′ of the body coordinate system is aligned in
the direction parallel to the electric field. When the elec-
tric field is removed, the molecule diffusion around its Z′

axis is faster than those around the X′ and Y′ axes. There-
fore, during the first moments after removing the electric
field the molecule orientation is such that the absorbance
A// grows with respect to the absorbance A⊥, and then also
grows the RELD. This behaviour also occurs to E = 2 kV/cm
but it is not strong enough to see it for this electric field
strength.

On the other hand, Figure 4 shows that the different con-
tributions to RELD are clearly not additive. Only in the limit
of low electric field the RELD curves approximate to the
sum of individual contributions, as can be seen for the case
E = 2 kV/cm (see Figure 2).

In order to estimate the errors of numeric calculus for
high electric fields we contrasted the results of the present
approach with those obtained with computational simulation
by other authors. Figure 5 shows the RELD curves calculated
for a BRM model with the same physical parameters used by
Porschke and Antosiewicz,4 together with the results obtained
for those authors using Brownian dynamic simulation. Both
sets of curves are in satisfactory agreement for all electric field
strength range (from 10 to 100 kV/cm).

V. CONCLUSIONS

In this work, previous theoretical developments have
been used in combination with numerical procedures to cal-
culate the transient RELD of DNA fragments in aqueous
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solutions. Fokker-Planck equation was numerically solved to
describe the orientation of DNA fragments in an electric field
using a BRM model characterized by its electric charge, its
electric polarizability tensor and its hydrodynamic properties
that include the coupling between the translational and rota-
tional movements.

The present work differs with respect to those in the
present-day bibliography in two aspects. One of them, arises
because this work extends the application range of pre-
vious theoretical studies removing the restriction of low
electric field; the cost to remove this restriction is the
implementation of numerical procedures instead of getting
analytical solutions. On the other hand, with respect to
those works that use computational simulation this work
differs in the use of a completely different technique. We
checked that the results of the present numerical calculus
are in agreement with those reported in the present-day
bibliography.

As the numerical approach here implemented is rela-
tively fast from the point of view of computational time,
it is a useful technique to determine physical parame-
ters of DNA fragments in aqueous solution fitting exper-
imental data of transient RELD for different electric field
strengths.
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