
Cooperation and Defection at the Crossroads
Guillermo Abramson1*, Viktoriya Semeshenko2, José Roberto Iglesias3
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Abstract

We study a simple traffic model with a non-signalized road intersection. In this model the car arriving from the right has
precedence. The vehicle dynamics far from the crossing are governed by the rules introduced by Nagel and Paczuski, which
define how drivers behave when braking or accelerating. We measure the average velocity of the ensemble of cars and its
flow as a function of the density of cars on the roadway. An additional set of rules is defined to describe the dynamics at the
intersection assuming a fraction of drivers that do not obey the rule of precedence. This problem is treated within a game-
theory framework, where the drivers that obey the rule are cooperators and those who ignore it are defectors. We study the
consequences of these behaviors as a function of the fraction of cooperators and defectors. The results show that
cooperation is the best strategy because it maximizes the flow of vehicles and minimizes the number of accidents. A rather
paradoxical effect is observed: for any percentage of defectors the number of accidents is larger when the density of cars is
low because of the higher average velocity.
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Introduction

Urban transportation systems are a source of numerous

inefficiencies and of negative externalities. Traffic problems

worsen due to heavy congestions; additionally there are environ-

mental issues such as smog and noise pollution, and huge

economic losses due to congested traffic. In order to improve

efficiency and reduce externalities it is important to understand

traffic dynamics in a controlled environment and to identify

optimal control strategies which could help alleviate the problem.

Traffic flow problems have received much attention for decades.

Many investigations have been carried out using different points of

view and considering various aspects of traffic phenomena, and

are evaluated in order to better understand the overall quality of

traffic flow. One of the main questions in the study of traffic is how

to better accommodate the demand for mobility in a system.

The pioneering traffic flow descriptions on a highway are

derived from observations made by Greenshields, first published

about 75 years ago [2]. Greenshields carried out tests to measure

traffic flow, traffic density and velocity using photographic

measurement methods for the first time. He was able to develop

a model of uninterrupted traffic flow that predicts and explains the

trends which are observed in real traffic.

Nowadays the search for the mechanisms behind the complex

interactions between drivers, vehicles and road infrastructure

continues. Also, traffic congestion has deteriorated considerably.

Recently traffic problems have attracted the attention of physicists

because of observed non-equilibrium properties and various

nonlinear dynamics phenomena. Several approaches have been

proposed to investigate the behavior of vehicular traffic. Most of

the approaches are classified into macroscopic and microscopic

models based on how the movement of vehicles is considered.

In the macroscopic approach a traffic stream is viewed as a

continuous medium. The collective vehicle dynamics is described

in terms of the spatial vehicular density per lane and the average

velocity as a function of the freeway location and time. The first

major step in macroscopic modeling of traffic was carried out by

Lighthill and Whitham in 1955 [3], when they compared the

‘‘traffic flow on long crowded roads’’ with ‘‘flood movements in

long rivers’’. A year later, Richards (1956) [4] complemented the

idea by introducing ‘‘shock-waves on the highway’’ with an

identical approach. That is the origin of the LWR model. It is

common to refer to this class of models as first-order models.

Another kind of macroscopic model, second-order models, contain

an additional partial differential equation for the average velocity

and take into account the finite relaxation time to adapt the

velocity to changing traffic conditions [5,6].

In the microscopic approach the motion of each vehicle in a

traffic stream is considered. Thus, the dynamic variables of the

model represent microscopic properties such as the position and

velocity of a single vehicle. The so-called car-following models

focus on the non-linear interaction and dynamics of single vehicles.

The driving behavior of a vehicle depends significantly on the

motion of the preceding vehicle: the acceleration is a function of

the vehicle’s distance to the preceding one and of its own and

relative velocities [7–9]. These models are used only for detailed

studies (e.g. on-ramp traffic, bottlenecks, effects of traffic optimi-

zation measures), as they consume an enormous amount of CPU
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time because of the large number of variables involved. An

alternative approach are cellular automaton (CA) models, which

permit the simulation of a minimal model of traffic dynamics faster

than real-time simulations [1,10,11]. Cellular automata use integer

variables to describe the dynamic properties of the system by

discretizing space and time. The Nagel-Schreckenberg (NaSch)

model [10] is a basic CA model describing a one-lane traffic flow.

Based on this model many CA have been extended to investigate

the properties of systems with realistic traffic factors such as

highway junctions, crossings, tollbooths and speed limit zones [12–

14].

An extensive and generous overview of traffic modeling can be

found in a review article by Helbing [15]. He considers empirical

data and reviews the main approaches to modeling pedestrian and

vehicular traffic. Control strategies including ramp metering

[16,17], and variable speed limits [18] have also been widely

studied.

At the most basic level, traffic dynamics are often discussed on a

homogeneous roadway. Next it becomes necessary to consider

road intersections. Modeling intersections is difficult, since

intersection models are phenomenological by nature. They

describe, for instance in the case of a merge, the local priority

rules.

At an intersection a limited space must be shared by vehicles

from different directions. Various approaches have been used to

resolve the obvious traffic conflicts. There are schemes that require

a vehicle to come to a full stop, e.g. stop signs or traffic lights.

Other types of schemes try to avoid the full stop of vehicles, like

traffic circles or roundabouts [19,20].

In this paper we extend the original discrete model proposed by

Nagel and Paczuski [1] in order to account for a non-signalized

intersection. This is a common problem in street intersections

within cities, particularly in old cities where crossings are neither

rotatory nor signalized. Earlier, Zhang et al. [21] considered the

intersection problem within a game-theory framework, and will be

revisited in the next sections. Perc [22] has also studied the effect

of competing strategies in a different discrete traffic model. In this

paper we study the effects of cooperator or defector behavior on

the flow and average velocity of vehicles, as well as the incidence of

accidents when cars do not stop at crossings.

The paper is organized as follows. In the next section we define

the model and the rules that describe the behavior of vehicles on

the street and at an intersection. Next we describe the setting of the

simulations and present the results obtained. Finally, we conclude

and discuss the potential relevance of this work to the solution of

the problems of real traffic.

Model and Methods

Let us present a model for traffic dynamics at a single

intersection and describe the flow in the system. We choose to

model the motion of a vehicle on a single lane street using the

automaton rules proposed by Nagel and Paczuski [1]. The

interaction of vehicles arriving at the intersection, and which one is

going to pass first, is determined by the set of rules that we will

specify hereafter.

We consider a system of two streets, s1 and s2, that cross at a

given point X . The streets have a defined sense of circulation:

South to North for s1 and East to West for s2 (see Fig. 1). Each

street is a ribbon with L slots, with periodic boundary conditions.

On each street we place N vehicles (initially at random), giving

linear density r~N=L, and identified by an index i. Double

occupancy of the sites is prohibited (except at X ). Following Ref.

[1] we consider a variable associated with the distribution of cars

in the streets, the gap gi, that is the number of empty sites in front

of car i up to the car ahead. At the intersection the gap needs

further specification, as will be explained below.

Each car has a time-dependent velocity vi(t) that takes discrete

values between 0 and vmax. Time proceeds discretely, and vi is the

number of sites each vehicle advances during one time step. At the

beginning of the simulation all cars have zero velocity.

For the purpose of defining the interaction at the crossroad we

identify the cars nearest to the intersection as c1 and c2 (in streets

s1 and s2 respectively). Streets are equivalent, i. e. the same traffic

rules are applied to both streets.

General rules of vehicle motion
Firstly, let us describe the dynamics of a vehicle away from the

intersection. For every configuration of the model, one iteration

consists of the following steps, performed simultaneously for all

vehicles:

1. If giƒvi(t){1, car i will reduce its velocity as follows:

(a) With probability q: vi(tz1)~gi.

(b) With probability (1{q): vi(tz1)~gi{1 (overbrake, with a

further reduction of velocity).

2. If gi§vi(t)z1 and vi(t)vvmax, the car will accelerate as

follows:

(a) With probability p: vi(tz1)~vi(t)z1.

(b) With probability 1{p: vi(tz1)~vi(t) (keep the same

velocity).

3. If gi~vi, or if vi~vmax and the gap is gi§vmax, the velocity vi

does not change.

4. After updating the velocities, each car advances vi(tz1) sites.

Note that, in rule 2, Nagel and Paczuski [1] consider

p~q~1=2. We prefer to keep some flexibility in the choice of

the probabilities. In the simulations reported below we set

vmax~5, but any value vmax§2 gives the same qualitative

behavior.

Dynamics at the intersection
In order to define the rules that regulate the movement of

vehicles at the uncontrolled intersection, one needs to determine

the priorities when crossing the intersection, just like in real

crossroads, making the transit fluid and avoiding collisions.

Zhang et al. [21] considered a similar problem in a game

theoretical framework. In their model, drivers approaching the

intersection behave either as cooperators (C) or defectors (D),

allowing (or not) the cars arriving on the other street to pass.

Furthermore, drivers always adopt complementary strategies, that

Figure 1. Two intersecting streets. Cartoon showing the geometry
of the model and basic notation.
doi:10.1371/journal.pone.0061876.g001
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is, if c1 is C (D), then c2 is D (C). Thus the dynamics at the

intersection is deterministic, since all pairs are of C–D or D–C

type, and cooperators will always let the defectors cross. Zhang et

al. set the probability of cooperating between 0 and 0:5 (and the

probability of defecting between 0:5 and 1). Since cooperators stop

at the intersection, the street with the larger number of defectors

exhibits an average velocity higher than the other one. However,

the average total flow of both streets appears to be rather

independent of the probability of cooperation.

We believe that the use of cooperating and defecting strategies is

a fair approach for the description of the interaction of drivers at

crossroads in many real situations. A true game description must

take into account the full set of possible interacting strategies. That

is, drivers arriving at the intersection may as well be both

cooperators (C–C) or defectors (D–D). Since the authors of Ref.

[21] penalize only cooperators, it is better to be a defector, and it

results that a driver should not behave a priori in a cooperative way.

It is precisely due to the relative payoffs of the complete set of

interactions that the formal games of Hawks and Doves or

Prisoner Dilemma gain their interest in the description of social

systems.

In our model a driver has a strategy that determines his

behavior at the intersection. These are set at random at the

beginning of the simulation, with probability pc for cooperation

and (1{pc) for defection. In order to avoid deterministic or

synchronization artifacts arising from the periodic boundary

conditions, when a car reaches the end of the lane and re-enters

the street, drivers are reassigned new strategies, at random with

the same probability pc. In this way, heterogeneity in drivers’

behavior is incorporated in the model.

Let us specify the interaction at the crossroad in a way that

imitates what happens in real situations. We impose a single traffic

rule:

N Rule 1: Drivers must always yield to cars approaching from the

right.

Rule 1 is a widespread right-of-way traffic rule that applies for

equivalent streets in the absence of control devices in almost all

countries with a right-hand driving. If street s1 runs from South to

North, and street s2 from East to West (see Fig. 1), the driver c1

must respect the priority of c2 and let him pass first. However,

traffic rules are not always respected, and some drivers may try to

cross disregarding the rule. This behavior may impact the traffic

flow in different ways depending on the density of cars, and it is the

phenomenon that we aim to study.

We define the following strategies:

N Cooperate: abide by Rule 1.

Figure 2. The ordering effect of the intersection. Plot of the car’s positions (horizontal axis) as a function of time (vertical axis) for p~q~0:5,
pc~0:5, r~0:2. Cars move from left to right and the time increases downwards. A: Nagel-Paczuski model [1]; B: our model (street 1). Empty sites are
represented by white dots, sites that are occupied by a car are represented by a specific colored dot, where different colors correspond to different
velocities. Red dots stand for the cars with velocity v~1, orange for v~2, yellow for v~3, green for v~4, blue for v~5, and black for v~0. Note the
backward motion of the traffic jams.
doi:10.1371/journal.pone.0061876.g002
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N Defect: ignore Rule 1.

The result of the interaction can be quantified in terms of a payoff

(rather, a cost) as the time that it takes to cross the intersection.

Cooperation results in a fluid flow, while interactions D–C, C–D

or D–D produce delays in the crossing. In order to implement this

we need to set up rules to define the gaps and velocities of cars c1

and c2, in addition to those of the rest of the system. These are the

following:

1. Determination of the gaps:

(a) If c1 (c2) is cooperator: The gap is measured as the distance

from the car to the intersection X (cooperators slow down

when approaching the intersection). (This rule applies only if

the car is at a site strictly less than X{1, otherwise it would

give g~0 and it would stop.).

(b) If c1 (c2) is defector: measure the gap as usual, up to the car

ahead.

(c) For either case: if there is a car at the intersection driving from

the other street, measure the gap up to X (neither C or D will

crash intentionally).

2. Determination of velocities:

(a) If c1 is cooperator and is at site X{1, it yields. If the velocity

of c2 is such that it will cross the intersection, c1 sets its

velocity to 0 (‘‘stop at the intersection’’). However, if the

speed of c2 is not large enough to cross at that step, c1 sets its

velocity according to the general rule and keeps advancing.

Note that c1 yields disregarding the strategy of c2.

(b) If c1 is defector and c2 is cooperator, both may try to cross at

the same time (if their velocities are large enough to allow it

in the current time step). In this case, the velocities are set up

in such a way that cars advance only up to the intersection

(not further, not before). This rule slightly favors the right

hand driver (the cooperator) with respect to the left hand one

(defector), by penalizing the defector (with a reduction of

speed). However, neither car stops. This simulates an

‘‘almost crash’’, where both drivers lose some time (the

Figure 3. The three phases of traffic. The flow as a function of the density in streets s1 [A and C] and s2 [B and D]. A system with p~q~0:9
appears in the left column [A and B], with the more noisy case of p~q~0:5 shown next to it [C and D]. The curves show the behavior for three
different values of the probability of cooperation pc : 0, 0.5 and 1, as shown in the legends.
doi:10.1371/journal.pone.0061876.g003

Figure 4. The effect of cooperation. The total flow w vs. the
probability of cooperation pc , for different values of the density. For
small and medium densities the flow is not monotonous, showing a
maximum at an intermediate value of pc . For high densities the flow
decreases with pc .
doi:10.1371/journal.pone.0061876.g004
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defector more than the cooperator). At the next time step

they will accelerate if it is allowed by the traffic density.

(c) If c1 and c2 are defectors, both may try to cross at the same

time (again: both speeds need to be large enough given their

current positions). In this case neither car yields, and we

penalize both of them with a crash. Cars are given velocities

just enough to bring them to the intersection, and they are

flagged to have their speeds set to 0 the next time step. So they

will stay at X one more time step, causing interruption of the

traffic flow, which will pile up behind them. The next time

step cars will accelerate if allowed by the traffic density.

Given this set of rules, we performed various simulations. In the

next section, we present the results obtained.

Results and Discussion

In the simulations, the length of each street is L~1000 sites. N
cars are distributed at random in each street, giving a density

r~N=L. Starting with an initial condition in which all vehicles

have zero velocities, we wait a reasonable transient time in order

to obtain a stationary phase, defined by the average velocity in

both streets. We then calculate the flow of cars, defined as the

average velocity times the density, w~SvTr, additionally averaged

over the stationary state. We also calculate various statistical

properties of the distribution of velocities.

Let us first observe a comparison between a pure Nagel system

and street s1 of our model (Fig. 2). System parameters correspond

to a rather noisy behavior of the drivers, with p~q~0:5, and a

density of r~0:2 cars per site. For the case of the pure Nagel

system (see Fig. 2.A), there are congestion clusters (jams), which

are formed randomly due to velocity fluctuations of the cars.

These cars either stop moving or move very slowly, and can

accelerate to full speed only after having left the jam, keeping this

velocity until the next one. Thus, the stationary state is

characterized by an inhomogeneous mixture of jam free regions

and higher density jammed regions. These jammed regions

decrease the average flow in the system. In Fig. 2.B we show the

results of our model. We observe that, from the beginning, the

intersection acts as an ordering defect. Even if its action is local, its

effect is far reaching. When the cars reduce their velocity, and

even stop at the intersection, a free space is created ahead of the

defect. After crossing the intersection cars can accelerate to

maximum velocity, resulting in an almost completely ordered flow

that persits downstream. So, the intersection acts as a source of

order in the traffic. By allowing vehicles to pass one at a time it

effectively destroys the spontaneous jams observed by Nagel.

Now we study macroscopic fundamental flow diagrams for a

variety of traffic scenarios. These diagrams show the relation

between the flow and the density and are represented in Fig. 3.

Three phases are observed: (1) a low density phase, with freely

flowing traffic at the maximum speed (where the flow grows

linearly with the density); (2) a high density phase, corresponding

to heavily congested traffic and very slow speed, with the flow

depending inversely on the density of cars; (3) an intermediate

density phase where the flow remains in a plateau independent of the

density and thus the average velocity is in inverse proportion to the

density. The first two phases are also present in Nagel-Paczuski’s

model [1]; the third phase has been observed by Zhang et al. [21].

The transition between the free flow phase and the plateau is a

crossover that, in street s1 (panels A and C in Fig. 3), appears as a

peak. We looked at the dynamics in this region in detail, and this

peak does not correspond to any abrupt phase transition. A close

up of one of the peaks appears as an inset in Fig. 3.A. The fast

reduction of flow in the yielding street (s1) must be interpreted,

precisely, as the yielding vehicles stopping, at the first stages of the

jamming produced by an increased density. We remark that, since

the flows in both streets are considered separately, the intersection

can be seen as a defect in the street. However, the fact that one of

the streets is the preferential one makes the flow different in the

yielding street and the preferential one.

We performed simulations for two pairs of values of the

probabilities p and q (see Model and Methods). On one side,

p~q~0:5 represents the behavior of undecided or cautious

drivers, which we call a noisy system. These are drivers that half of

the time do not accelerate to the maximum possible velocity, and

the rest of the time brake more than it is strictly necessary. This set

of values has been used by Nagel and Paczuski [1], and will serve

as a reference. Another pair of values, p~q~0:9, represents more

‘‘deterministic’’ drivers, who mostly try to optimize their motion.

Observe, in Fig. 3, that the behavior of the system is qualitatively

Figure 5. The distribution of velocity as a function of density.
The average velocity , the standard deviation and the skewness of the
distribution are plotted for pc~1 and p~q~0:9.
doi:10.1371/journal.pone.0061876.g005

Figure 6. Crashes. Number of crashes per cars per unit time, as a
function of density. The curves correspond to the case p~q~0:5, for
three values of the density of cooperators (as shown in the legend).
doi:10.1371/journal.pone.0061876.g006
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the same in both cases. Nevertheless, the flow of the noisy system is

a little slower than the more deterministic one (the corresponding

curves on the left panels of Fig. 3 are higher than those on the

right). In addition, we explored a wide range of values for the

probability of cooperation pc, ranging from zero cooperators to a

fully cooperating system. As expected, the flow is the same in both

streets when pc~0 (all defectors, black squares). When pcw0 the

flow is greater in street s2 than in street s1. Observe that the impact

of cooperation is less relevant in the noisy case, p~q~0:5.

On Fig. 4 we plot the total flow as a function of the probability of

cooperation pc, for several fixed values of the density, in order to

visualize the effect of cooperation. This is shown for the two

scenarios, p~q~0:9 and p~q~0:5. The trends are similar in

both cases, even though the flow is greater for the deterministic

case. More interesting than this is the fact that, for less congested

systems, the dependence on cooperation is non monotonous.

There is a maximum flow at an intermediate value of pc, indicating

that an excess of cooperation may induce a jam at the intersection.

On the other hand, for high densities (e.g. r~0:7, as shown) the

flow monotonically decreases with the probability of cooperation.

Indeed, scenarios with very high densities usually perform better,

in real life, when drivers switch their strategies to a new one

(neither C nor D), alternating turns to cross the intersection,

instead of stopping constantly yielding to the vehicles on the right.

We must remark that the flow is an average measure of the

traffic. In order to get a complementary description we analyzed

the distribution of velocities. On Fig. 5 we plot the mean value, v,

the standard deviation, s and the skewness, k of this distribution,

as a function of the density r. One can see that for small densities

the velocity stays very near the maximum vmax (laminar flow), and

then sharply decreases when the cars start to pile up at the

intersection jam. The intermediate density region is a perfect

inverse power law r{1, corresponding to the plateau of the flow

that we showed before. A break in this law is seen at r&0:6,

corresponding to the beginning of the high density regime. The

standard deviation is close to zero in the laminar flow region.

Then, it starts to grow when the flow enters in the plateau region

and exhibits a maximum for intermediates values of the density,

indicating a big dispersion in the velocities. The dispersion

diminishes for high values of the density: the traffic becomes more

uniform and slower. For very high densities the average velocity is

very small and so is the standard deviation. The skewness of the

distribution complements this information. For small densities it is

negative, since the maximum of the distribution corresponds to

large values of the velocity. When increasing the density the

skewness goes through zero, indicating a symmetric distribution.

For high values of the density the distribution is centered at low

velocities, and the skewness is positive.

Another important variable to consider is the number of

crashes. A crash does not only cause a time delay in traffic but also,

in real systems, has an economic impact. In Fig. 6 we plot the

number of crashes per car and per unit time, x, as a function of the

density of traffic, for different values of the probability of

cooperation pc. One can see that there is a peak in the number

of accidents for low densities. This is due to the fact that even

though the number of cars is small they move fast, and then the

number of accidents per unit time is large. On the contrary, when

the density is high the average velocity is small and the number of

accidents per unit time decreases almost to zero. For all densities,

we also verify that the number of accidents decreases when

increasing the probability of cooperation (and goes to zero when

all drivers are cooperators). Also, more deterministic systems (not

shown), display more crashes due to the higher vehicle speed.

The correlation between the rate of crashes and the flow is

analyzed in Fig. 7. An hysteresis loop is observed. When the flow

increases at a low density the number of crashes increases very fast

(due to high vehicle speed), attaining a maximum when the flow

enters the plateau (for a density r&0:1). Within the plateau the

number of crashes diminishes and when the flow decreases at high

Figure 7. Correlation between crashes and flow. Relation between the flow and the number of crashes per car and per unit time for p~q~0:9
and two values of pc. In the right panel (B), follow the direction of the arrow when reading the description in the text.
doi:10.1371/journal.pone.0061876.g007

Figure 8. Universality of crashes and cooperation. Crashes vs pc

in the case p~q~0:9, shown for four values of vehicle density.
doi:10.1371/journal.pone.0061876.g008
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densities the number of crashes further decreases going finally to

zero at very high densities where the traffic goes to a standstill.

Finally, in Fig. 8 we show the number of crashes normalized by

the average velocity, x=v, vs the probability of cooperation pc. This

function decreases in a monotonic way when increasing the

probability of cooperation, as expected. Moreover, as the curves

corresponding to four values of vehicle density show, there is a

nearly universal exponential behavior as a function of the

cooperation, which is independent of the density. This behavior

could provide a good field test of our model in real situations. This

will be studied in further work.

Alternative rules
The rules of interaction between a defector in s1 and a

cooperator in s2 (rule 2.b) imply some advantage of the latter,

which is the opposite of some paradigmatic games of defection and

cooperation like the Prisoners’ Dilemma. In order to study this

point we have analyzed some alternative rules to 2.b. They may be

summarized as follows:

2.b1) The defector keeps his velocity as if the intersection did

not exist, while the cooperator reduces his velocity to arrive just to

the intersection at X . This rule clearly favors the defector by

penalizing the cooperator (who has the priority). The cooperator is

obliged to reduce his velocity and the situation is an almost crash,

but differently from the original rule, the defector is not penalized.

At the next time step the cooperator c2 accelerates from the point

X .

2.b2) A slight variant of 2.b1: c2 reduces his velocity to arrive

just to the intersection X and there stops, i.e. it will continue in the

next step accelerating from v~0. The situation for the defector is

the same as in rule 2.b1.

It is interesting and reassuring that these alternative rules

produce no significative changes in the presented results and for

this reason we do not include new figures. Some minor differences

arise when considering rule 2.b2 because the cooperators driving

in street s2 are obliged to stop completely at the intersection. Thus,

they exhibit a lower average speed. But these changes are not

relevant enough and show only small variations in the numerical

values of the measured variables when compared with the general

results already presented.

Conclusions

We studied the flow and speed of cars circulating on intersecting

one-lane streets, and where drivers coming from the right have the

precedence. The drivers may be cooperators—when they respect

the right precedence—or defectors if they ignore this rule. We

observed some significative trends in the results, that we detail

below.

The flow increases linearly with the density of cars for very low

densities and then remains constant for a wide range of densities.

For high densities the flow decreases dramatically to values very

near zero (see Fig. 2). This indicates the existence of two critical

densities: the first one when the system enters into the plateau of

constant flow and the second when it leaves the plateau. Within

the plateau region the flow is constant, suggesting that the street

has a ‘‘capacity’’ up to r*0:7. However, the width of the plateau

decreases with the number of defectors both in streets s1 and s2.

Also, ‘‘undecided’’ drivers that accelerate less that the maximum

possibility or brake more than needed reduce the global

performance: the flow is much lower when p~q~0:5 than when

p~q~0:9.

These results can be confirmed by observing the velocity as a

function of the density (Fig. 5). The velocity is maximum for low

densities, then decreases in inverse proportion to the density for

intermediate values and reaches zero for high densities. Again, the

plateau region provides a good traffic flow, but the dispersion of

the speeds is high.

It is curious that the behavior of cooperation or defection is not

very relevant. Indeed for intermediate or high densities of cars it is

more important to be a ‘‘decided’’ driver, accelerating or breaking

the maximum or minimum respectively, than to cooperate. The

maximum flow is obtained for half of the drivers being defectors

and for intermediate densities, or when all the drivers are defectors

for high densities. As a matter of fact, for high densities the

absolute respect of the right hand precedence can completely

block the circulation in street s1, a well known phenomenon in

many real traffic situations.

Nevertheless one must keep in mind that the defectors may be

particularly dangerous when the density is low. In this case the

average speed is high and the number of accidents can also be very

high (see Fig. 7).

One can conclude that a significant fraction of defectors is very

dangerous at low densities, or in regions of high speed, but a

number of them is necessary to increase the flow at intermediate or

high densities of cars. Indeed for very high densities the righ hand

precedence is annoying and alternate crossing should be preferred.

Comparison with real data are in progress, as is also the study of

two-lane streets and the comparison between non-signaled and

signaled crossings. Also, we plan to extend our model to the study

of two-dimensional block model cities, in the line of Refs. [23,24].

Author Contributions

Conceived and designed the experiments: GA VS JRI. Performed the

experiments: GA VS JRI. Analyzed the data: GA VS JRI. Contributed

reagents/materials/analysis tools: GA VS JRI. Wrote the paper: GA VS

JRI.

References

1. Nagel K, Paczuski M (1995) Emergent traffic jams. Phys. Rev. E 51: 2909–2918.

2. Greenshields BD (1935) A Study of Traffic Capacity. Highway Research Board

Proceedings 14: 448–477.

3. Lighthill MJ, Whitham GB (1955) On kinematic waves: II. A theory of traffic on

long crowded roads. Proc. Roy. Soc. A 299: 317–345.

4. Richards PI (1956) Shock waves on the highway. Opns. Res. 4: 42–51.

5. Payne HJ (1971) Models of freeway traffic and control. In: Bekey GA, editor.

Mathematical Models of Public Systems: Simulation Council Proceedings Series,

La Jolla 1: 51–61.

6. Payne HJ (1979) FREFLO: A macroscopic simulation model of freeway traffic.

Transp. Res. Rec. 722: 68–77.

7. Gazis DC, Herman R, Potts RB (1959) Car-following theory of steady-state

traffic flow. Opns. Res. 7: 499–505.

8. Gazis DC, Herman R, Rothery RW (1961) Nonlinear follow-the-leader models

of traffic flow. Opns. Res. 8: 545–567.

9. Reuschel A (1950) Fahrzeugbewegungen in der Kolonne. Österr. Ingen.-Archiv
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