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THE RICCI FLOW IN A CLASS OF SOLVMANIFOLDS.

ROMINA M. ARROYO

Abstract. In this paper, we study the Ricci flow of solvmanifolds whose Lie algebra has an
abelian ideal of codimension one, by using the bracket flow. We prove that solutions to the
Ricci flow are immortal, the ω-limit of bracket flow solutions is a single point, and that for any
sequence of times there exists a subsequence in which the Ricci flow converges, in the pointed
topology, to a manifold which is locally isometric to a flat manifold. We give a functional
which is non-increasing along a normalized bracket flow that will allow us to prove that given
a sequence of times, one can extract a subsequence converging to an algebraic soliton, and to
determine which of these limits are flat. Finally, we use these results to prove that if a Lie group
in this class admits a Riemannian metric of negative sectional curvature, then the curvature of
any Ricci flow solution will become negative in finite time.

1. Introduction

The Ricci flow is an evolution equation for a curve of Riemannian metrics on a manifold.
In recent years, the Ricci flow has proven to be a very important tool. Many strong results,
not only in Riemannian geometry, have been proven by using this equation. The objective of
this paper is to study the Ricci flow for solvmanifolds whose Lie algebra has an abelian ideal
of codimension one and get similar results to those obtained by J. Lauret in [L2] in the case of
nilmanifolds.

Let (G, g) be a solvmanifold, i.e. a simply connected solvable Lie group G endowed with a
left-invariant metric g. Assume that the Lie algebra of G has an abelian ideal of codimension
one. Consider the Ricci flow starting at g, that is,

∂
∂tg(t) = −2Rc(g(t)), g(0) = g.

The solution g(t) is a left-invariant metric for all t, thus each g(t) is determined by an inner
product on the Lie algebra. We will follow the approach in [L4] to study the evolution of these
metrics by varying Lie brackets instead of inner products.

More precisely, let µ be a Lie bracket on Rn+1 with an abelian ideal of codimension one. We
may assume that µ is determined by A = adµ(e0)|Rn ∈ gln(R), where Rn+1 = Re0 ⊕Rn and Rn

is the abelian ideal, and so it will be denoted by µA. Each µA determines a Riemannian manifold
(GµA

, gµA
), where GµA

is the simply connected Lie group with Lie algebra (Rn+1, µA) and gµA

is the left-invariant metric determined by 〈·, ·〉, the canonical inner product on Rn+1. Every
solvmanifold whose Lie algebra has an abelian ideal of codimension one is isometric to some µA
(see Section 2). By [L4, Theorem 3.3], the Ricci flow solution is given by g(t) = ϕ(t)∗gµ(t), where
µ(t) is a family of Lie brackets solving a ODE called the bracket flow, and ϕ(t) : G → Gµ(t) is

the Lie group isomorphism with derivative h(t) : (Rn+1, µ) → (Rn+1, µ(t)), and h(t) satisfies

d
dth = −hRic(〈·, ·〉t), d

dth = −Ricµ(t) h, h(0) = I.

In our case, we see that µ(t) = µA(t), where A(t) ∈ gln(R) is the solution to the following ODE,

d
dtA = − tr(S(A)2)A+ 1

2 [A, [A,A
t]]− 1

2 tr(A)[A,A
t], A(0) = A,

This research was supported by a fellowship from CONICET and grants from CONICET, FONCYT and
SeCyT (Universidad Nacional de Córdoba).
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and then we study the evolution of the matrix A. The main results in this paper can be
summarized as follows:

• The Ricci flow solution g(t) is defined for all t ∈ (T−,∞), where −∞ < T− < 0, and if
tr(A2) ≥ 0, then g(t) is a Type-III solution (see Proposition 3.4 and Proposition 3.14).

• The scaling-invariant functional ‖[A(t),A(t)t ]‖
‖A(t)‖2 is strictly decreasing unless µA is an alge-

braic soliton, in which case it is constant (see Lemma 3.6). This happens precisely when
A is either normal or nilpotent of a special kind (see Proposition 3.3).

• For any sequence tk → ∞, there exists a subsequence of (GµA(tk)
, gµA(tk)

) which converges

in the pointed topology to a flat manifold, up to local isometry (see Corollary 3.11).

• If tr(A) = 0 (i.e. GµA
unimodular), then B(t) = A(t)

‖A(t)‖ converges to a matrix B∞, as

t→ ∞ (see Lemma 4.1 and Remark 4.2).
• For any sequence tk → ∞, there exists a subsequence of (GµB(tk)

, gµB(tk)
) which converges

in the pointed topology to (GµB∞
, gµB∞

) (up to local isometry), which is an algebraic
soliton. In addition, (GµB∞

, gµB∞
) is non-flat, unless every eigenvalue of A is purely

imaginary (see Theorem 5.2).
• If GµA

admits a negatively curved left-invariant metric, then there exists t0 > 0 such
that g(t) is negatively curved for all t ≥ t0 (see Theorem 6.5). This is not true in general
for solvmanifolds (see Example 6.6).

Acknowledgements. I wish to express my deep gratitude to my advisor, Jorge Lauret, for his
invaluable guidance. I am also grateful to Ramiro Lafuente and Roberto Miatello for helpful
observations.

2. Preliminaries

2.1. The Ricci flow. Let (M,g) be a Riemannian manifold. The Ricci flow starting at (M,g)
is the following partial differential equation:

(1) ∂
∂tg(t) = −2Rc(g(t)), g(0) = g,

where g(t) is a curve of Riemannian metrics on M and Rc(g(t)) the Ricci tensor of the metric
g(t).

A complete Riemannian metric g on a differentiable manifold M is a Ricci soliton if its Ricci
tensor satisfies

Rc(g) = cg + LXg, for some c ∈ R, X ∈ χ(M) complete,

where χ(M) denotes the space of differentiable vector fields onM and LX the usual Lie derivative
in the direction of the field X.

Equivalently, Ricci solitons are precisely the metrics that evolve along the Ricci flow only by
the action of diffeomorphisms and scaling (i.e. g(t) = c(t)ϕ(t)∗g), giving geometries that are
equivalent to the starting point, for all time t (see [C] for more information about Ricci solitons).

Definition 2.1. A Ricci flow solution g(t) is said to be of Type-III if it is defined for t ∈ [0,∞)
and there exists C ∈ R such that

‖Rm(g(t))‖ ≤ C
t , ∀t ∈ (0,∞),

where Rm(g(t)) is the Riemann curvature tensor of the metric g(t).

2.2. Varying Lie brackets. We fix (Rn, 〈·, ·〉), with 〈·, ·〉 an inner product on Rn and we define

Ln = {µ : Rn × Rn → Rn : µ is bilinear, skew-symmetric and satisfies Jacobi},
Nn = {µ ∈ Ln : µ is nilpotent},

and adµ : Rn → Rn the adjoint representation of µ ∈ Ln (i.e. adµ(x)(y) = µ(x, y)).
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Then, GLn(R) acts on Ln by

(2) h.µ(X,Y ) = hµ(h−1X,h−1Y ), X, Y ∈ Rn, h ∈ GLn(R), µ ∈ Ln.

Each µ ∈ Ln defines a Lie group endowed with a left-invariant Riemannian metric,

µ ∈ Ln  (Gµ, 〈·, ·〉),
where Gµ is the simply connected Lie group with Lie algebra (Rn, µ) endowed with the left-
invariant Riemannian metric determined by the inner product 〈·, ·〉. Often, we will denote this
metric by gµ. Note that gµ may be viewed as a metric on Rn, in fact, Gµ is diffeomorphic to Rn.

Geometrically, each h ∈ GLn(R) determines a Riemannian isometry

(3) (Gh.µ, 〈·, ·〉) → (Gµ, 〈h·, h·〉),
by exponentiating the Lie algebra isomorphism h−1 : (Rn, h.µ) → (Rn, µ). Thus the orbit
GLn(R).µ parameterizes the set of all left-invariant metrics on Gµ.

Definition 2.2. Let (G, g) be a Lie group with a left-invariant Riemannian metric; g is called
an algebraic soliton if

(4) Ric(g) = cI +D, for some c ∈ R, D ∈ Der(g),

where Ric(g) is the Ricci operator of g and g is the Lie algebra of G.

Any homogeneous simply connected algebraic soliton is a Ricci soliton (see [LL, Proposition
3.3]).

2.3. Ricci flow on Lie groups and the bracket flow. Let (G, g) be a simply connected Lie
group endowed with a left-invariant Riemannian metric. Then, if we fix 〈·, ·〉 an inner product on
the Lie algebra of G, (G, g) is isometric to (Gµ, gµ), for some µ ∈ Ln. In this case, the equation
of the Ricci flow (1) is equivalent to the following ordinary differential equation (see [L4, Section
3]):

(5) d
dt〈·, ·〉t = −2Rc(〈·, ·〉t), 〈·, ·〉0 = 〈·, ·〉,

where Rc(〈·, ·〉t) := Rc(g(t))(e) and e is the identity of Gµ. In Subsection 2.2, we have observed
that GLn(R).µ parameterizes the set of all left invariant Riemannian metrics on Gµ, then it is
very natural to ask: How is the behavior of the Ricci flow in Ln?

Definition 2.3. Given µ ∈ Ln, the bracket flow starting at µ is the following ordinary differential
equation:

(6) d
dtµ(t) = δµ(t)

(

Ricµ(t)
)

, µ(0) = µ,

where δµ(A) = µ(A·, ·) + µ(·, A·)−Aµ(·, ·), A ∈ GLn(R), µ ∈ Ln.

Let us consider g(t) the Ricci flow solution flow starting at gµ, and µ(t) the solution of the
bracket flow starting at µ. By [L4], we know that g(t) and µ(t) are related in the following way.

Theorem 2.4. [L4, Theorem 3.3] There exists time-dependent diffeomorphisms

ϕ(t) : G→ Gµ(t) such that g(t) = ϕ(t)∗gµ(t), ∀t ∈ (a, b).

Moreover, if we identify G = Gµ, then ϕ(t) : Gµ → Gµ(t) can be chosen as the equivariant
diffeomorphism determined by the Lie group isomorphism between Gµ and Gµ(t) with derivative
h : Rn → Rn, where h(t) :=dϕ(t) |e: Rn → Rn is the solution to any of the following systems of
ordinary differential equations:

(1) d
dth = −hRc(〈·, ·〉t), h(0) = I.

(2) d
dth = −Ricµ(t) h, h(0) = I.

The following conditions hold:
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(3) 〈·, ·〉t = 〈h·, h·〉.
(4) µ(t) = hµ0(h

−1·, h−1·).
Remark 2.5. In this paper, Theorem 2.4 has only been stated in the case of Lie groups, however,
in [L4] it is stated and proved in the general homogeneous case.

So, the Ricci flow g(t) can be obtained from the bracket flow µ(t) by solving (2) and applying
part (3). In the same way, we can obtain µ(t) solving (1) and replacing in (4). In particular,
both flows are defined in the same interval of time. For more information, see [L4].

We now recall some results proved by J. Lauret in [L2] about the Ricci flow for simply
connected nilmanifolds.

Theorem 2.6. [L2] Let µ(t) be the solution bracket flow starting at µ ∈ Nn, and g(t) the Ricci
flow starting at gµ. Then

(i) µ(t) is defined for all t ∈ [0,∞).
(ii) g(t) is a Type-III solution for a constant Cn that only depends on the dimension n.
(iii) µ(t) → 0, as t→ ∞. Moreover, gµ(t) converges in C∞ to the flat metric g0.
(iv) g µ(t)

‖µ(t)‖

converges in C∞ to an algebraic soliton gλ uniformly on compact sets in Rn, as

t→ ∞.

3. The bracket flow in a class of solvmanifolds

In this section, we study the bracket flow for a metric solvable Lie algebra with an abelian
ideal of codimension one.

We consider (Rn+1, 〈·, ·〉), with 〈·, ·〉 the canonical inner product on Rn+1. If the dimension of
the Lie algebra is n + 1, then up to isomorphism, we can assume that the Lie bracket has the
following form with respect to the canonical basis {e0, e1, . . . , en} :

µA(e0, ei) = Aei, i = 1, . . . , n, µA(ei, ej) = 0, ∀i, j ≥ 1, A ∈ gln(R),

where we think of an A ∈ gln(R) as an operator acting on Rn, the subspace generated by
{e1, e2, . . . , en} (i.e. the codimension-one abelian ideal). From now on, we denote these algebras
by (Rn+1, µA), or simply, µA.

Lemma 3.1. If A0 ∈ gln(R), then the bracket flow starting at µA0 is given by µA(t), t ∈ (T−, T+),
where A(t) satisfies

(7) d
dtA = − tr(S(A)2)A+ 1

2 [A, [A,A
t]]− 1

2 tr(A)[A,A
t], A(0) = A0.

Proof. By using the formula for the Ricci operator of a solvmanifold (see for instance [L1, Section
4]), we obtain that the Ricci operator of (GµA

, gµA
) with respect to the basis {e0, e1, . . . , en} is

represented by the matrix

(8) RicµA
=

(

− tr(S(A)2) 0
0 1

2 [A,A
t]− tr(A)S(A)

)

,

where S(A) = 1
2(A+At) is the symmetric part of the matrix A and tr(A) is the trace. Then,

δµA
(RicµA

)(e0, ei) = µA(RicµA
e0, ei) + µA(e0,RicµA

ei)−RicµA
µA(e0, ei)

= − tr(S(A)2)Aei +ARicµA
|Rnei − RicµA

|RnAei
= − tr(S(A)2)Aei + [A,RicµA

|Rn ]ei
=

(

− tr(S(A)2)A+ 1
2 [A, [A,A

t]]− 1
2 tr(A)[A,A

t]
)

ei,

and, on the other hand, we have that δµA
(RicµA

)(ei, ej) = 0, for all i, j ≥ 1, as µA|Rn×Rn = 0.
So,

δµA
(RicµA

) = µB , where B = − tr(S(A)2)A+ 1
2 [A, [A,A

t]]− 1
2 tr(A)[A,A

t].
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Then, this family of Lie algebras is invariant under the bracket flow, which is equivalent to (7).
In addition, the maximal interval of time where µA(t) exists is of the form (T−, T+) for some
−∞ ≤ T− < 0 < T+ ≤ ∞, since (7) is an ODE. �

So, given a matrix A0, we have that the bracket flow starting at µA0 is equivalent to an
evolution equation for a curve of matrices with initial condition A0. In what follows, we will
often think of the bracket flow as this evolution.

Remark 3.2. Note that the only fixed points of the system (7) are the skew-symmetric matrices,
which are precisely the flat solvmanifolds of the form µA, since by (8) they are precisely the
Ricci-flat ones (see [AK] and [Mil]).

Proposition 3.3. For any A0 ∈ gln(R), the following conditions are equivalent:

(i) µA0 is an algebraic soliton.
(ii) A0 is either a normal matrix or A0 is a nilpotent matrix such that [A0, [A0, A0

t]] = cA0,

for some c ∈ R.

Moreover, the evolution of the bracket flow is respectively given by

A(t) =
(

2 tr(S(A0)
2)t+ 1

)−1/2
A0 or A(t) =

(

(−‖A0‖2 + c)t+ 1
)−1/2

A0.

Proof. Assuming part (i), we have two cases:

• If the nilradical of µA0 has dimension n, then A0 is a normal matrix (see [L1, Theorem
4.8]).

• If the nilradical of µA0 has dimension n+1, then µA0 is nilpotent and so A0 is a nilpotent
matrix. In addition, from (8), we have that

(

−1
2‖A0‖2 0
0 1

2 [A0, A0
t]

)

= RicµA0
= cI +D,

and it follows that D(e0) = λe0. Also, we know that [adµA0
(e0),D] = − adµA0

(D(e0)), so
(

0 0
0 1

2
[A0, [A0, A0

t]]

)

= [adµA0
(e0),RicµA0

] = [adµA0
(e0), D] = −λ adµA0

(e0) = −λ
(

0 0
0 A0

)

.

Conversely, if A0 is a normal matrix, then µA0 is an algebraic soliton (see [L1, Theorem 4.8])
and if A0 is a nilpotent matrix which satisfies [A0, [A0, A0

t]] = cA0, then

RicµA0
=

(

−1
2‖A0‖2 0
0 1

2 [A0, A0
t]

)

= c−‖A0‖2
2 I +

(

− c
2 0
0 − c

2I +
1
2‖A0‖2I + 1

2 [A0, A0
t]

)

,

and it is easy to see that

(

− c
2 0
0 − c

2I +
1
2‖A0‖2I + 1

2 [A0, A0
t]

)

is a derivation of µA0 , and so

(i) is proved.
Finally, if µA0 is an algebraic soliton, then the family A(t) = a(t)A0 is invariant under the

flow. Therefore, we have that

• If A0 is a normal matrix, then the bracket flow is equivalent to the following differential
equation for a = a(t)

a′ = − tr(S(A0)
2)a3, a(0) = 1,

and so the solution is A(t) = (2 tr(S(A0)
2)t+ 1)−1/2A0.

• If A0 is a nilpotent matrix, then the bracket flow is equivalent to

a′ =
−‖A0‖2 + c

2
a3, a(0) = 1,

and so the solution is A(t) = ((−‖A0‖2 + c)t+ 1)−1/2A0.

�
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The first natural question that arises is related with the maximal time interval of the solution
A(t). An important point to observe here is that −∞ < T− since (GµA(t)

, gµA(t)
) always has

non-positive scalar curvature (see (8)).

Proposition 3.4. A(t) is always defined for all t ∈ [0,∞) (i.e. T+ = ∞).

Proof. By using (7), we get

d
dt‖A‖2 = 2〈A,− tr(S(A)2)A〉+ 2〈A, 12 [A, [A,At]]〉 − 2〈A, 12 tr(A)[A,At])〉.

But since 〈A, [A, [A,At ]]〉 = −‖[A,At]‖2 and 〈A, [A,At]〉 = 0, it follows that

(9) d
dt‖A‖2 = −2 tr(S(A)2)‖A‖2 − ‖[A,At]‖2 ≤ 0.

Therefore, ‖A‖2 decreases and so A(t) is defined for all t ∈ [0,∞), as the solution remains in a
compact subset. �

Remark 3.5. By Theorem 2.4 and the previous proposition, we obtain that the Ricci flow starting
at any of these solvmanifolds (GµA0

, 〈·, ·〉) is defined for t ∈ [0,∞), often called an immortal
solution.

In what follows, we introduce a positive, non-increasing function along the normalized bracket

flow A(t)
‖A(t)‖ , which is strictly decreasing unless µ A0

‖A0‖
is an algebraic soliton. The advantage of

having this function lies in the fact that it will allow us to prove that for any sequence tk → ∞
there exists a subsequence in which the normalized bracket flow always converges to an algebraic
soliton.

Lemma 3.6. Let µA(t) be the bracket flow starting at µA0 and set B(t) = A(t)
‖A(t)‖ . Then F (B) =

‖[B,Bt]‖2 is a positive, non-increasing function along the flow. Moreover, d
dt |t=t0F (B) = 0, for

some t0, if and only if µB(0) is an algebraic soliton.

Proof. We consider F : gln(R) → R,

F (C) = ‖[C,Ct]‖2.
Then

d
dtF

(

A
‖A‖

)

= d
dt

‖[A,At]‖2
‖A‖4 = 1

‖A‖8 (‖A‖
4 d
dt‖[A,At]‖2 − ‖[A,At]‖2 d

dt‖A‖4).
By using the bilinearity of the inner product and the lie bracket we obtain that

d
dt‖[A,At]‖2 = −4 tr(S(A)2)‖[A,At]‖2 − 2‖[A, [A,At]]‖2,

and from (9)

d
dt‖A‖4 = 2‖A‖2 d

dt‖A‖2 = −4 tr(S(A)2)‖A‖4 − 2‖A‖2‖[A,At]‖2.

Then, if we consider B = A
‖A‖ , it follows that

(10) d
dtF

(

A
‖A‖

)

= 2‖A‖2(‖[B,Bt]‖4 − ‖B‖2‖[B, [B,Bt]]‖2) ≤ 0,

by using the Cauchy-Schwarz inequality. Moreover, if there exists t0 ∈ R such that d
dt |t=t0F

(

A
‖A‖

)

=

0, then the Cauchy-Schwarz equality holds and there exists c ∈ R such that

(11) [B(t0), [B(t0), B(t0)
t]] = cB(t0).

We have two cases:
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• If c = 0, then [B(t0), [B(t0), B(t0)
t]] = 0, and so tr([B(t0), [B(t0), B(t0)

t]]B(t0)
t) = 0,

this implies that ‖[B(t0), B(t0)
t]‖2 = 0, i.e. B(t0) is normal and µB(t0) is an algebraic

soliton (see Proposition 3.3). On the other hand, by using (7) and (9), it is easy to see
that

(12)
d
dtB = d

dt
A

‖A‖ = 1
2‖A‖

(

[A, [A,At]]− tr(A)[A,At] + ‖[A,At]‖2
‖A‖2 A

)

= ‖A‖2
2

(

[B, [B,Bt]]− tr(B)[B,Bt] + ‖[B,Bt]‖2B
)

,

so, B(t) = B(t0), for all t, sinceB(t0) is a fixed point of (12). It follows that µB(t) = µB(t0)

for all t.
• If c 6= 0, then by using (11), we obtain that tr(B(t0)) = 0 and tr(B(t0)

k) = 0, since

c tr(B(t0)
k+1) = tr([B(t0), [B(t0), B(t0)

t]]B(t0)
k)

= tr([B(t0)
k, B(t0)][B(t0), B(t0)

t])
= 0.

Therefore, B(t0) is a nilpotent matrix that satisfies (11), so by Proposition 3.3 we have
that µB(t0) is an algebraic soliton. In addition, B(t0) is a fixed point of (12), so, µB(t) =
µB(t0) for all t.

Conversely, if µB(0) is an algebraic soliton, then by using (10), we have that d
dtF

(

A
‖A‖

)

= 0. �

Corollary 3.7. Let µA(t) be the bracket flow starting at µA0 and set B(t) = A(t)
‖A(t)‖ . Then for

any sequence tk → ∞ there exists a subsequence of (GµB(tk)
, gµB(tk)

) converging in the pointed

topology to an algebraic soliton (GµB∞
, gµB∞

).

Proof. Every sequence B(tk) has a convergent subsequence, i.e. after passing to a subsequence,
B(tk) converges to a matrix B∞. Then µB∞ is an algebraic soliton by Lemma 3.6, as B∞ is a
fixed point of the flow. �

From now on, our purpose is to study the ODE (7). We emphasize that our aim is not to
solve the ODE, we are interested in understanding the qualitative behavior of the solution along
the time, which is not trivial to predict even when n is very small. In the next lemma we study
how it evolves.

Lemma 3.8. The bracket flow µA(t) starting at µA0 has the form

(13) A(t) = a(t)ϕtA0ϕ
−1
t ,

where a(t) is a positive, non-increasing, real valued function, and ϕt ∈ GLn(R) for each t.

Proof. If h(t) =

(

b(t) 0
0 ϕt

)

∈ GLn+1(R), with b(t) a real function and ϕt ∈ GLn(R), then

−RicµA(t)
h(t) = −

(

− tr(S(A(t))2)b(t) 0
0 (12 [A(t), A(t)

t]− tr(A(t))S(A(t)))ϕt

)

.

The map h given in part (2) of Theorem 2.4 has therefore the form

h(t) =

(

b(t) 0
0 ϕt

)

,

and it follows from (4) of the same theorem that

µA(t) = h(t).µA0 = µ 1
b(t)

ϕtA0ϕ
−1
t
.

In addition,
{

b′(t) = tr(S(A(t))2)b(t),
b(0) = 1,
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so, we have that b is a positive, non-decreasing function. It follows that if a(t) = 1
b(t) , then a(t)

is a positive, non-increasing function. �

In what follows, µA(t), A(t) ∈ gln(R), will be the bracket flow solution starting at µA0 and we
will denote it simply by A(t).

Proposition 3.9. Assume that A(tk) → A∞, for some sequence tk → ∞. Then Spec(A∞) =
a∞ Spec(A0), for some a∞ ∈ R. Here Spec(B) denotes the unordered set of n complex eigenvalues
of the matrix B ∈ gln(R).

Proof. We know that A(t) = a(t)ϕtA0ϕ
−1
t by Lemma 3.8, therefore

Spec(A(tk)) = a(tk) Spec(ϕtkA0ϕ
−1
tk

) = a(tk) Spec(A0), ∀tk ∈ (T−,∞).

Then, as A(tk) → A∞, we have that

Spec(A∞) = a∞ Spec(A0),

where a∞ = limk→∞ a(tk) (recall that from Lemma 3.8, a(t) is a positive, non-increasing func-
tion). �

Proposition 3.10. tr(S(A(t))2) is strictly decreasing if A0 is not skew-symmetric. Moreover,
tr(S(A(t))2) → 0, as t→ ∞.

Proof. Recall that S(A) = 1
2(A+At), and so

(14) tr(S(A)2) = 1
2‖A‖2 + 1

2 tr(A
2).

Then, as in Proposition 3.4 we have already studied d
dt‖A‖2, we will only analyze d

dt tr(A
2). By

using (7), we obtain

(15) d
dt tr(A

2) = d
dt〈A,At〉 = 〈 d

dtA,A
t〉+ 〈A, d

dtA
t〉 = 2〈 d

dtA,A
t〉 = − tr(S(A)2) tr(A2).

Therefore, it follows from (9) and (15) that

d
dt tr(S(A)

2) = −2 tr(S(A)2)2 − 1
2‖[A,At]‖2 ≤ 0,

and if there exists t0 such that d
dt |t=t0 tr(S(A)

2) = 0, then A(t0) is a skew-symmetric and so

A(t) = A(t0), for all t. Conversely if A0 is skew-symmetric, we have that d
dt tr(S(A)

2) = 0. So,

tr(S(A)2) is strictly decreasing if A0 is not skew-symmetric.
In addition,

d
dt tr(S(A)

2) ≤ −2 tr(S(A)2)2,

And then tr(S(A)2) is dominated by

x(t) = 1
2t+(tr(S(A(0))2))−1 ,

which is a solution of d
dtx = −2x2. Therefore tr(S(A(t))2) → 0, as t → ∞. �

Recall that if GµA
is the simply connected solvable Lie group with Lie algebra (Rn+1, µA),

then gµA
denotes the left-invariant Riemannian metric on GµA

such that gµA
(e) = 〈·, ·〉, where

e is the identity of the group GµA
and 〈·, ·〉 is the canonical inner product on Rn+1.

Corollary 3.11. If A(t) → A∞, as t → ∞, then A∞ is a skew-symmetric matrix and for any
sequence tk → ∞ there exists a subsequence of (GµA(tk)

, gµA(tk)
) which converges in the pointed

topology to a manifold locally isometric to (GµA∞
, gµA∞

), which is flat.

Proof. By Proposition 3.10, we know that S(A(t)) → 0, as t → ∞, therefore A∞ is skew-
symmetric and then (GµA∞

, gµA∞
) is flat (see Remark 3.2).

Finally, since µA(t) → µA∞ , by [L3, Corollary 6.20], for any sequence tk → ∞ there exists a
subsequence of (GµA(tk)

, gµA(tk)
) which converges in the pointed topology to a manifold locally

isometric to (GµA∞
, gµA∞

), which is flat, as shown above. �
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In the following proposition, we prove that under an additional hypothesis, the convergence
is actually smooth.

Proposition 3.12. If Spec(A0) * iR and A(t) → A∞, as t→ ∞, then gµA(t)
→ gµA∞

smoothly

on Rn+1.

Proof. For each µA, we define ψ : R⊕ Rn → GµA
by

(16) ψ(r, x) = expµA
(re0) expµA

(x), r ∈ R, x ∈ Rn,

where expµA
: (R ⊕Rn, µA) → GµA

is the Lie exponential of GµA
.

Let ϕ : (Rn+1, µA) → (gln+1(R), [·, ·]) be the linear transformation such that ϕ(e0) = X0 and

ϕ(ei) = Xi, i = 1, . . . , n, where X0 =

(

A 0
0 0

)

and Xi =

(

0 ẽti
0 0

)

, ẽi = (0, . . . , 1, . . . , 0) ∈
Rn. Then ϕ is an isomorphism of Lie algebras.

Therefore, under the isomorphism ϕ, we have that

ψ(r, x) = exp(rX0) exp(x), r ∈ R, x ∈ Rn,

where exp is the exponential function of matrices.
Then

ψ(r, x) = exp(rX0) exp(x) = exp(rX0) exp(x1X1 + . . .+ xnXn),

but exp(rX0) =

(

exp(rA) 0
0 1

)

and exp(x) =

(

I x

0 1

)

, therefore

ψ(r, x) =

(

exp(rA) exp(rA)x
0 1

)

.

It is easy to see that if Spec(A) * iR or A = 0, then ψ is a diffeomorphism. So, as Spec(A0) * iR,
we have that Spec(A(t)) * iR and Spec(A∞) * iR or A∞ = 0 by Proposition 3.9, and therefore
we have that gµA(t)

→ gµA∞
smoothly on Rn (see [L3, Remark 6.11]). �

Remark 3.13. In particular, if µA0 is completely solvable (Spec(adµ x) ⊆ R, for all x), then the
convergence is smooth. This also follows by using Proposition 3.9 and [L3, Corollary 6.20], since
µA(t) is completely solvable for all t.

Recall that if the norm of the Riemann tensor decays at least as fast as C
t , where C is a

constant, then the solution of the Ricci flow is a Type-III solution (see Definition 3.14).

Proposition 3.14. For every µA0 with tr(A0
2) ≥ 0, the Ricci flow g(t) with g(0) = gµA0

is a
Type-III solution, for some constant Cn+1 that only depends on the dimension n+ 1.

Proof. In Proposition 3.4, we proved that µA(t) is defined for t ∈ [0,∞). We observe that, by

using (15), if tr(A0
2) ≥ 0 then tr(A(t)2) ≥ 0 for all t. Further, in Proposition 3.10, we prove

that tr(S(A)2) ≤ 1
2t+(tr(S(A(0))2))−1 , therefore, by using (14), we have that

‖Rm(µA)‖ = ‖µA‖2‖Rm( µA

‖µA‖ )‖ = 2‖A‖2‖Rm( µA

‖µA‖)‖ ≤ 4C
2t+(tr(S(A(0))2))−1 ≤ 2C

t ,

where C is the maximum of the continuous function µ→ ‖Rm(µ)‖ restricted to the unit sphere
of Ln+1. �

The question that naturally arises is whether the flow converges. The following section is
devoted to study such question.
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4. Limit points

In this section, we analyze the ω-limit of the bracket flow µA(t) (i.e. the set of limit points of
sequences under the bracket flow). To do this, we consider two cases: when tr(A0) = 0 ( i.e.,
µA0 is unimodular) and when tr(A0) 6= 0.

Let us first suppose that tr(A0) = 0.
We consider the functional F (A) = ‖[A,At]‖2, which is, in fact, the square norm of the

moment map of the conjugation action of the real reductive group GLn(R) on the vector space
gln(R), and we compute its gradient:

〈grad(F )A, B〉 = d
dt |t=0F (A+ tB) = d

dt |t=0‖[A+ tB,At + tBt]‖2
= d

dt |t=0〈[A+ tB,At + tBt], [A+ tB,At + tBt]〉
= 2〈[A,At], d

dt |t=0[A+ tB,At + tBt]〉
= 2〈[A,At], [B,At] + [A,Bt]〉
= 4〈[A,At], [B,At]〉 = −4〈[A, [A,At]], B〉.

Thus, grad(F )A = −4[A, [A,At]] and the negative gradient flow of F is given by

(17) d
dt Ā(t) = 4[Ā(t), [Ā(t), Ā(t)t]].

Observe that ‖Ā‖ is a decreasing function. Indeed,

d
dt‖Ā‖2 = 2〈Ā′, Ā〉 = 8〈[Ā, [Ā, Āt]], Ā〉 = −8‖[Ā, Āt]‖2,

as 〈[Ā, [Ā, Āt]], Ā〉 = −‖[Ā, Āt]‖2. So, Ā(t) has a limit point A1
∞ and then we have that there

exists the limit of Ā(t), as t → ∞ and it is unique (see [KMP, Introduction]). In addition, if
Ā(t) → A1

∞, we have two cases:

• If A1
∞ 6= 0, then limt→∞

Ā(t)
‖Ā(t)‖ exists and limt→∞

Ā(t)
‖Ā(t)‖ = A1

∞
‖A1

∞‖ .

• If A1
∞ = 0, then by [KMP, Theorem 7.1], limt→∞

Ā(t)
‖Ā(t)‖ exists.

If A0 is nilpotent, then µA0 turns out to be nilpotent and so the bracket flow starting at µA0

has been studied in [L2] (see Theorem 2.6). Therefore, we assume that A0 is not nilpotent.

Lemma 4.1. Assume that tr(A0) = 0 and A0 is not nilpotent. Let µA(t) be the bracket flow

starting at µA0 and let Ā(t) be the negative gradient flow (17) starting at A0. Then the limit of
A(t)

‖A(t)‖ exists and

lim
t→∞

A(t)

‖A(t)‖ = lim
t→∞

Ā(t)

‖Ā(t)‖ .

Proof. We prove that, up to scaling and reparameterization of the time, the bracket flow A(t)
starting at A0 is Ā(t), the solution of (17) starting at A0, i.e. we want to show that there exist
c(t) and τ(t) such that A(t) = c(t)Ā(τ(t)).

Let c(t) and τ(t) be solutions of the following system of differential equations with initial
conditions:

c′(t) = − tr(S(Ā(τ(t))2))c(t)3, c(0) = 1,
τ ′(t) = 1

8c(t)
2, τ(0) = 0.

It is easy to see that c(t) and τ(t) are defined for all t, and with a simple calculation it is easy
to verify that c(t)Ā(τ(t)) is a solution of the equation (7), therefore by uniqueness

A(t) = c(t)Ā(τ(t)), ∀t ∈ [0,∞).

If τ(t) → ∞ then

lim
t→∞

A(t)

‖A(t)‖ = lim
t→∞

Ā(τ(t))

‖Ā(τ(t))‖ = lim
t→∞

Ā(t)

‖Ā(t)‖ .
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We suppose that τ(t) → L, L <∞, as t→ ∞, then

lim
t→∞

A(t)

‖A(t)‖ = lim
t→∞

Ā(τ(t))

‖Ā(τ(t))‖ =
Ā(L)

‖Ā(L)‖ .

This implies that Ā(L)
‖Ā(L)‖ is an algebraic soliton, since it is the limit of a normalized bracket flow

(see [LL, Proposition 4.1]). As, A0 is not nilpotent and Ā(t) is conjugated to A0, for each t, we

have then Ā(L)
‖Ā(L)‖ is normal (see Proposition 3.3), i.e. Ā(L) is normal. So, Ā(t) = Ā(L), for all

t ≥ L, by (17).
Therefore,

lim
t→∞

A(t)

‖A(t)‖ = lim
t→∞

Ā(τ(t))

‖Ā(τ(t))‖ = lim
t→∞

Ā(t)

‖Ā(t)‖ ,

as was to be shown. �

Remark 4.2. It follows from Lemma 4.1 and [L2, Section 7] that if µA0 is unimodular, i.e.

tr(A0) = 0, then the ω-limit of A(t)
‖A(t)‖ is a single point.

Lemma 4.3. If tr(A0) 6= 0, then A(t) → 0, as t→ ∞.

Proof. We know that A(t) = a(t)ϕtA0ϕ
−1
t by Lemma 3.8, therefore

tr(A(t)) = a(t) tr(A0).

If A(tk) → A∞, then
a(tk) tr(A0) = tr(A(tk)) → tr(A∞) = 0,

so, as tr(A0) 6= 0, we have that a(tk) → 0.
On the other hand,

Spec(A(tk)) = a(tk) Spec(A0) → Spec(A∞),

and so Spec(A∞) = 0. Then A∞ = 0, since A∞ is a skew-symmetric matrix. �

By using the two previous lemmas, we can prove the following theorem, which provides
information about the ω-limit of µA0 , for any A0 ∈ gln(R).

Theorem 4.4. The ω-limit of µA0 is a single point, for any A0 ∈ gln(R).

Proof. By Lemma 4.3, we have that if tr(A0) 6= 0, then A(t) → 0, as t → ∞. If tr(A0) = 0, we
know by Remark 4.2 that

lim
t→∞

A(t)

‖A(t)‖ = A2
∞.

Then, we have that A(t) → A∞, as t → ∞. Indeed, the norm of A(t) decreases and therefore
limt→∞ ‖A(t)‖ = α. If α = 0, then A(t) → 0 and if α > 0, we have that

lim
t→∞

A(t) = lim
t→∞

α
A(t)

‖A(t)‖ = αA2
∞,

which completes the proof. �

All results obtained so far can be summarized in the following theorem.

Theorem 4.5. Given A0 ∈ gln(R), consider the bracket flow µA(t) starting at µA0 and g(t) the
Ricci flow starting at gµA0

. Then,

(i) g(t) is defined for t ∈ (T−,∞), where −∞ < T− < 0.
(ii) The ω-limit of µA0 is a single point.
(iii) For any sequence tk → ∞, there exists a subsequence of (GµA(tk)

, gµA(tk)
) which converges

in the pointed topology to a manifold locally isometric to (GµA∞
, gµA∞

), which is flat.
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(iv) If Spec(A0) * iR, then gµA(t)
→ gµA∞

smoothly on Rn.

(v) If tr(A0
2) ≥ 0, the Ricci flow g(t) with g(0) = gµA0

is a Type-III solution, for some
constant Cn+1 that only depends on the dimension n+ 1.

Example 4.6. Let A0 =

(

0 x0
y0 0

)

. It is easy to see that the family of matrices of this kind is

invariant under the flow (7), which is equivalent to the following ODE system for the variables
x(t), y(t) :

(18)

{

x′ = x(x+ y)(−3
2x+ 1

2y), x(0) = x0,

y′ = y(x+ y)(−3
2y +

1
2x), y(0) = y0.

The phase plane for this system is displayed in Figure 1, as computed in Maple. It is easy to

Figure 1.

see that it is enough to assume 0 ≤ x0, since if (x, y) is the solution starting at (x0, y0), then
(−x,−y) is the solution starting at (−x0,−y0).

Regarding the interval of definition, the solutions remain in a compact subset and so they are
defined in [0,∞).

The solutions converge to the points (x∞,−x∞), which are precisely the fixed points of the
system and correspond to skew-symmetric matrices (which in turn correspond to flat metrics).
Also, we observe that points of the form (x0, x0), (x0, 0) and (0, y0) correspond to algebraic
solitons (they are symmetric or special nilpotent matrices). Despite the fact that the solutions
in the upper half-plane converge to 0, we can see from the figure that they are approaching the
soliton line y = x, so considering a suitable normalization we may be able to obtain convergence
of those solutions to a non-flat algebraic soliton. This will be the topic of the next section.

5. Normalizing by the bracket norm

According to Theorem 4.5 (iii), for any sequence tk → ∞ there exists a subsequence in which
the Ricci flow converge in the pointed topology to a flat manifold. In order to avoid this type of
convergence and get a more interesting limit, we consider different normalizations of the flow.
In this section, we study the normalized bracket flow by the bracket norm, i.e. if µA(t) is the

bracket flow starting at µA0 , we will study A(t)
‖A(t)‖ . We use the positive, non-increasing function

obtained in Section 3 to determine which limits correspond to flat manifolds. Before stating
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the theorem of convergence, we demonstrate the following technical lemma. From now on, let

B(t) = A(t)
‖A(t)‖ .

Lemma 5.1. The following evolution equations along the normalized flow by the bracket norm
hold:

(i) d
dt tr(B) = 1

2‖A‖2‖[B,Bt]‖2 tr(B),

(ii) d
dt tr(B

2) = ‖A‖2‖[B,Bt]‖2 tr(B2).

Proof. To prove (i), we use (7) and (9). Part (ii) follows from (15) and (9). �

Theorem 5.2. For any sequence tk → ∞, there exists a subsequence of (GµB(tk)
, gµB(tk)

) con-

verging in the pointed topology to an algebraic soliton (GµB∞
, gµB∞

). Moreover, the following
conditions are equivalent:

(i) Spec(A0) ⊆ iR.
(ii) (GµB∞

, gµB∞
) is flat.

Proof. As ‖B(t)‖ = 1, every sequence has a convergent subsequence, i.e., B(tk) converge to B∞,
which is an algebraic soliton (see Corollary 3.7). By using (13), we have that

(19) Spec(B(tk)) = Spec( A(tk)
‖A(tk)‖) =

a(tk)
‖A(tk)‖ Spec(A0).

If Spec(A0) ⊆ iR, then tr(B(0)2) = tr
(

A0
2

‖A0‖2
)

< 0, and so by Proposition 5.1 (ii), we have that

tr(B(t)2) < 0 for all t, and tr(B(t)2) is a decreasing function. It follows that tr(B∞
2) < 0 and

then B∞ is normal, as B∞ is an algebraic soliton (see Proposition 3.3). So, by (19), we have that
Spec(B∞) ⊆ iR and so B∞ is a skew-symmetric matrix. Conversely, if B∞ is skew-symmetric,
then Spec(B∞) ⊆ iR, so, by using (19), we have that Spec(A0) ⊆ iR. �

Here again, we wonder ourselves what happens with the ω-limit of A(t)
‖A(t)‖ . Recall that in

Section 4 we saw that if tr(A0) = 0, then the ω-limit of A(t)
‖A(t)‖ is a single point. In the following

proposition we analyze the case tr(A0) 6= 0.

Proposition 5.3. If tr(A0) 6= 0 and B(tk) → B∞, for some sequence tk → ∞, then the ω-limit

of A(t)
‖A(t)‖ is contained in O(n).B∞.

Proof. Let A0 be such that tr(A0) 6= 0 and we suppose that B(tk) → B1
∞ and B(sl) → B2

∞. We
want to see that B1

∞ and B2
∞ are conjugate by an orthogonal matrix.

• If tr(A0) < 0, then tr(B(0)) < 0 and by Proposition 5.1 (i), tr(B(t)) < 0, and therefore
tr(B(t)) is a decreasing function and it follows that tr(B(t)) < tr(B(0)), for all t.

• If tr(A0) > 0, then tr(B(0)) > 0 and by Proposition 5.1 (i), tr(B(t)) > 0, and therefore
tr(B(t)) is an increasing function and it follows that tr(B(0)) < tr(B(t)), for all t.

Then, tr(B1
∞) 6= 0 and tr(B2

∞) 6= 0. Furthermore, the function tr(B(t)) is either increasing or
decreasing. So, tr(B1

∞) = tr(B2
∞). From this and (13) it follows that

lim
k→∞

a(tk)
‖A(tk)‖ tr(A0) = tr(B1

∞) = tr(B2
∞) = lim

l→∞
a(sl)

‖A(sl)‖ tr(A0).

and
Spec(B1

∞) = lim
k→∞

a(tk)
‖A(tk)‖ Spec(A0) = lim

l→∞
a(sl)

‖A(sl)‖ Spec(A0) = Spec(B2
∞).

Finally, we observe that B1
∞ and B2

∞ are normal matrices, since µB1
∞

and µB2
∞

are algebraic

solitons (see Corollary 3.7), and so, B1
∞ and B2

∞ are normal or nilpotent (see Proposition 3.3).
As tr(B1

∞) 6= 0 and tr(B2
∞) 6= 0, they are not nilpotent matrices. Then, we have two normal

matrices with the same spectrum, from which it follows that they are conjugate by an orthogonal
matrix (see [HK]). �
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6. Negative Curvature

In this section, we are interested in how the curvature evolves along the Ricci flow. We define
the sectional curvature K of (g, 〈·, ·〉), a Lie algebra endowed with an inner product, as the
sectional curvature of (G, g), where G is the simply connected Lie group with Lie algebra g and
g is the left-invariant metric in G such that g(0) = 〈·, ·〉. In the case of (Rn+1, µA, 〈·, ·〉), we
simply denote it by KA.We say that a Riemannian manifold has negative curvature, and denote
it by K < 0, if all sectional curvatures are strictly negative.

Next, we enunciate two results proved by Heintze in [Hn]. Theorems 6.1 and 6.3 give necessary
and sufficient conditions for certain solvable Lie algebras with an inner product to have negative
curvature and for a solvable Lie algebra to admit an inner product with negative curvature,
respectively.

Theorem 6.1. [Hn, Theorem 1] Let (g, 〈·, ·〉) be a solvable Lie algebra with an inner product
such that the derived algebra is abelian (i.e., g′ = [g, g] abelian). Then K < 0 if and only if the
following conditions hold:

(A) dim g′ = dim g− 1.
(B) There exists a unit vector A0 ∈ g, orthogonal to g′, such that D0 : g′ → g′ is positive

definite, where D0 is the symmetric part of adA0 |g′ : g′ → g′.
(C) If S0 is the skew-symmetric part of adA0 |g′ , then D2

0+[D0, S0]|g′ is also positive definite.

Remark 6.2. We observe that in the case of µA, the assumption that the derived algebra is
abelian is always true. Furthermore, KA < 0 if and only if conditions (A) - (C) hold. If in
addition A is normal and invertible, then KA < 0 if and only if (B) holds, since condition (A)
is satisfied as A is invertible and condition (C) follows from (B).

Theorem 6.3. [Hn, Theorem 3] Let g be a solvable Lie algebra. Then the following conditions
are equivalent:

(i) g admits an inner product with negative curvature.
(ii) dim g′ = dim g− 1 and there exists A0 ∈ g such that Re(Spec(adA0 |g′)) > 0.

Remark 6.4. Note that if A is invertible, then GµA
admits a left-invariant metric with K < 0 if

and only if either Re(Spec(A)) > 0 or Re(Spec(A)) < 0.

Theorem 6.5. Let GµA0
be a solvable Lie group that admits a left-invariant metric with negative

curvature. If µA(t) is the bracket flow starting at µA0 , then there exists s0 ∈ R such that
KA(t) < 0, for all t ≥ s0.

Proof. It is sufficient to prove that the theorem holds for B(t) = A(t)
‖A(t)‖ , i.e. there exists t0 ∈ R

such that KB(t) < 0, for all t ≥ t0. Indeed, for each t, µA(t) and µB(t) differ only by scaling.
By assumption, GµA0

admits a left-invariant metric with negative curvature, then by using

Remark 6.4 we have that either Re(Spec(A0)) > 0 or Re(Spec(A0)) < 0.
Assume that, after passing to a subsequence, B(tk) converges to B∞, as k → ∞. Then,

arguing as in Proposition 5.3, we have that B∞ is normal and

Spec(B∞) = α Spec(A0), α ∈ R, α 6= 0.

so, either Re(Spec(B∞)) > 0 or Re(Spec(B∞)) < 0. Then S(B∞) is either positive or negative
definite. It follows by Remark 6.2 that KB∞ < 0. Thus, there exists L ∈ N such that KB(tk) < 0,
for all k ≥ L.

Finally, there must exist t0 such that KB(t) < 0, for all t ≥ t0, otherwise we would be able
to extract a convergent subsequence B(tk), whose sectional curvatures are not strictly negative,
and this contradicts the previous paragraph. �

We now show that the above theorem is not longer valid in the general solvable case.
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Example 6.6. We consider (µλ,α, 〈·, ·〉) defined as follows:

µλ,α(e0, ei) = α





λ

1− λ

1



 ei, µλ,α(e1, e2) = e3,

and 〈·, ·〉 the inner product for which {e0, e1, e2, e3} is an orthonormal basis. By [L1, Theorem

4.8], we know that (µλ,α, 〈·, ·〉) is an algebraic soliton if and only if α =
√
3√

2(λ2+(1−λ)2+1)
. We

consider the 2-dimensional plane π = 〈e1, e3〉 and we compute its sectional curvature:

K(e1, e3) = ‖U(e1, e3)‖2 − 〈U(e1, e1), U(e3, e3)〉 = 1
4 − 3λ

λ2+(1−λ)2+1
.

So,

K(e1, e3) ≥ 0 ⇔ 1
4 − 3λ

λ2+(1−λ)2+1
≥ 0 ⇔ λ ≤ 2−

√
3 ó λ ≥ 2 +

√
3.

We observe that if 0 < λ ≤ 2 −
√
3, then 0 < 1 − λ, and so ad(e0) is a matrix such that

Re(Spec(ad(e0))) > 0. Then, Theorem 6.3 said that if 0 < λ ≤ 2 −
√
3, then (µλ,α, 〈·, ·〉), with

α =
√
3√

2(λ2+(1−λ)2+1)
, admits an inner product with negative curvature. On the other hand, since

(µλ,α, 〈·, ·〉) is an algebraic soliton, if µ(t) is the bracket flow starting at µλ,α, then (Gµ(t), gµ(t))
has planes with curvature bigger than or equal to zero.

The next question is what happens with the Ricci flow when we start with a metric whose
sectional curvatures are all negative. First, we will introduce a theorem proved by Heintze in
[Hn].

Let (g, 〈·, ·〉) be a solvable Lie algebra with an inner product such that (A) - (C) of the
Theorem 6.1 hold. Then, we have a orthogonal decomposition g = A0 + [g, g]. For α > 0, let
(gα, 〈·, ·〉) be the Lie algebra with the same inner product that (g, 〈·, ·〉) but with the following
modification in the Lie bracket

[A0,X]α := α[A0,X], para todo X ∈ g′ = g′α.

Theorem 6.7. [Hn, Theorem 2] Let (g, 〈·, ·〉) be a solvable Lie algebra with an inner product and
assume that (A)-(C) hold. Then there exists α0 > 0 such that (gα, 〈·, ·〉) has negative curvature
for all α ≥ α0.

We return to Example 6.6. Let λ be fixed and we consider the bracket flow µ(t) starting at
µα,λ. Then µ(t) is given by

µ(t)(e0, ei) = α(t)





λ

1− λ

1



 ei, µ(t)(e1, e2) = h(t)e3,

with α = α(t) and h = h(t) that satisfy the following differential equations:
{

α′ = −cλα3, α(0) = α,

h′ = −3
2h

3, h(0) = 1,

where cλ = (λ2 + (1 − λ)2 + 1). Furthermore, solving the equations we obtain that α(t) =
1√

2cλt+α−2
and h(t) = 1√

3t+1
. Clearly, in this case, the bracket flow converge to a flat metric,

but for fixed t, we have that

K(e1, e3) =
h2

4 − λα2 = 1
4(3t+1) − λ

2cλt+α−2
0

.

Then,

K(e1, e3) ≥ 0 ⇔ 1
4(3t+1) ≥ λ

2cλt+α−2
0

⇔ (2cλ − 12λ)t ≥ 4λ− α−2
0 .
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Further, 2cλ− 12λ = 4((λ− 2)2 − 3). So, if 0 < λ ≤ 2−
√
3, there exists t0 such that K(e1, e3) ≥

0,∀t ≥ t0.

Let λ be such that 0 < λ ≤ 2 −
√
3, and we consider µα,λ, α ∈ R>0. Then (µα,λ, 〈·, ·〉) is a

solvable Lie algebra with an inner product that satisfies (A) - (C). By Theorem 6.7, we know
that there exists α0 > 0 such that ((µα,λ)α0 , 〈·, ·〉) has negative curvature. Then, (µαα0,λ, 〈·, ·〉)
has a negative curvature. On the other hand, we know that if µ(t) is the bracket flow starting
at µαα0,λ there exists t0 such that ∀t ≥ t0, (Gµ(t), gµ(t)) has planes with curvature bigger than
or equal to zero.

References

[AK] D. Alekseevskii, B. Kimel’fel’d, Structure of homogeneous Riemannian spaces with zero Ricci cur-
vature, Funktional Anal. i Prilozen 9 (1975), 5-11 (English translation: Functional Anal. Appl. 9 (1975),
97-102.

[B] A. Besse, Einstein manifolds, Ergeb. Math. 10(1987), Springer-Verlag, Berlin-Heidelberg.
[C] B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T, Ivey, D. Knopf, P. Lu, F.

Luo, L. Ni, The Ricci flow: Techniques and Applications, Part I: Geometric Aspects, AMS Math. Surv.

Mon. 135 (2007), Amer. Math. Soc., Providence.
[Hn] E. Heintze, On homogeneous manifolds of negative curvature, Math. Ann. 211, (1974), 23-34.
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