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We present a detailed study of intermittency in the velocity and magnetic field fluctuations of

compressible Hall-magnetohydrodynamic turbulence with an external guide field. To solve the

equations numerically, a reduced model valid when a strong guide field is present is used.

Different values for the ion skin depth are considered in the simulations. The resulting data are

analyzed computing field increments in several directions perpendicular to the guide field, and

building structure functions and probability density functions. In the magnetohydrodynamic limit,

we recover the usual results with the magnetic field being more intermittent than the velocity

field. In the presence of the Hall effect, field fluctuations at scales smaller than the ion skin

depth show a substantial decrease in the level of intermittency, with close to monofractal scaling.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4807378]

I. INTRODUCTION

The properties of small scales structures in magnetohy-

drodynamic (MHD) and Hall-MHD (HMHD) turbulence

have been the subject of conflicting results and of several

debates. In particular, much attention has been paid in the lit-

erature to the geometrical properties of current sheets in

HMHD, as these structures are associated with magnetic flux

reconnection and magnetic energy dissipation, processes of

uttermost importance in astrophysics and space physics.1–4

While some numerical simulations indicate that current

sheets affected by the Hall effect are wider than in MHD

(see, e.g., Ref. 5), others observe thinner structures6 In all

cases, the geometry of the currents sheets is changed, dis-

playing the so-called X-type structure and reminiscent of the

Sweet-Parker configuration in the MHD case,7 and changing

to a double wedge shape reminiscent of the Petschek config-

uration when the Hall effect is relevant.8 In simulations of

turbulent HMHD, it was observed that the peak of the spec-

trum of the current density was located at a wavenumber cor-

responding to the inverse of the ion skin depth.9–12 Since this

peak can be associated with an average thickness of the cur-

rent sheets, the effect was interpreted as a thickening of the

current sheets as the Hall effect was increased.13 The result

is in good agreements with experiments that indicate that the

thickness of the current sheet in the presence of the Hall

effect is given by the ion skin depth.8

Ref. 5 provides a possible answer to these conflicting

results. In simulations of turbulent HMHD with a guide field,

the authors observe that although the current sheet widens as

the ion skin depth is increased, it also fragments internally

into smaller filaments.

The case in which thinner structures were observed6 sug-

gests that HMHD is more intermittent than MHD. This is also

the case in some observations in the solar wind turbulence

using the Cluster magnetic data.14,15 However, other observa-

tions in the solar wind of high-frequency magnetic field fluc-

tuations from the same spacecraft indicate that while large

scales are compatible with multifractal intermittent turbu-

lence, small scales show non-Gaussian monoscaling.16

A quantification of the level of intermittency is impor-

tant to understand the geometrical distribution of dissipation

in a magnetofluid and a plasma, and it also can provide con-

straints for theories of magnetic energy dissipation and

reconnection. While previous analysis of intermittency in

HMHD was mostly based on the differences observed in the

geometry and size of current sheets, or in the study of proba-

bility density functions (PDFs) of field increments at differ-

ent scales, a precise quantification requires computation of

both PDFs and of structure functions.

The study of intermittency based solely on observations

of individual structures has several shortcomings. Although

the formation of small scale structures can point out to an

increase in the level of intermittency, there is more informa-

tion that is needed to make such claim. If there are thinner

structures, are these structures spatially localized? Or do

they occupy more space than in the MHD case, thus, being

space filling? In the former case, HMHD would be more

intermittent, while in the latter case intermittency would be

decreased by the Hall effect.

In this work, we present a detailed study of intermit-

tency in the velocity and magnetic field fluctuations.

Considering the solar wind as a motivation, the data for the

analysis stem from numerical simulations of MHD and

HMHD turbulence with a guide field. We use the reduced

MHD (RMHD, Refs. 17 and 18) and reduced HMHD

(RHMHD, Refs. 19 and 20) models to generate data under

the approximation of a strong guide field (see also Ref. 21

for studies of kinetic plasma effects using other reduced

models). Then, structure functions and PDFs of the fields are

computed, for increments in the direction perpendicular to

the guide field. To reduce errors, an average of the structure

functions for several directions perpendicular to the guide

field is computed using the SO(2) decomposition.22,23

Although at small scales in the solar wind several kinetic

effects may play important roles, we found that a simple
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Hall magnetofluid reproduces some of the observations in

Ref. 16, and that the presence of the Hall effect results in a

substantial decrease in the intermittency of the velocity and

magnetic fields at scales smaller than the ion skin depth.

Potential limitations in the validity of HMHD from the more

comprehensive framework of Vlasov-Maxwell kinetic theory

can be found in Refs. 24–26. In particular, Refs. 24 and 25

show that HMHD is a valid limit of kinetic theory whenever

the electron temperature is larger than the ion temperature.

When this condition is not fulfilled, the dispersion relation of

the waves in HMHD differs from that in kinetic theory. This

can be expected since other effects become important. In

spite of these limitations, the presence of the Hall effect is

enough to obtain a decrease in the flow intermittency.

II. REDUCED MHD AND HMHD MODELS

For a compressible flow, the HMHD equations can be

written (in dimensionless form) as

@u

@t
� u� x ¼ �r u2

2
þ qc�1

M2
Sðc� 1Þ

� �
þ 1

M2
A

J� b

q

þ�r
2u

q
þ dþ 1

3
�

� �
rðr � uÞ

q
; (1)

@A

@t
� u� b ¼ �� J� b

q
�r/þ gr2A; (2)

@q
@t
þr � ðquÞ ¼ 0; (3)

r � A ¼ 0: (4)

In these equations, u is the velocity field, x is the vorticity

field, J is the current, b is the magnetic field, q is the density

of the plasma, and A and / are, respectively, the magnetic

and electric potentials. A barotropic law is assumed for the

plasma, with the pressure given by p ¼ Cqc, where C is a

constant and c ¼ 5=3. Equation (4) is the Coulomb gauge,

which acts as a constraint that fixes the electric potential in

Eq. (2). Control parameters of the system are the sonic Mach

number MS, the Alfv�en Mach number MA, the viscosities �
and d (here we consider � ¼ d), and the resistivity g. In our

study, the most important control parameter is the Hall coef-

ficient � ¼ qii=L, where qii is the ion skin depth and L is the

characteristic scale of turbulence. When � ¼ 0, the equations

above result in the well known compressible MHD

equations.

In the presence of a strong guide field, the equations

above can be written using the reduced approximation often

used in magnetohydrodynamics (see, e.g., Refs. 17 and 18).

The approximation assumes that the magnetic field can be

written as

b ¼ B0ẑ þ b0; (5)

where B0 is the intensity of the guide field, and b0 is such

that jb0j=B0 � 1.

For convenience, when writing the dimensionless equa-

tions we assume, without loss of generality, that B0 ¼ 1 (in

practice, the simulations have B0 ¼ 8 in dimensionless

units). We then decompose the velocity and magnetic field

fluctuations in terms of scalar potentials as

u ¼ r� ðuẑ þ f x̂Þ þ rw (6)

and

b0 ¼ r � ðaẑ þ gx̂Þ: (7)

Equation (7) ensures that the magnetic fields remains diver-

gence free, while Eq. (6) gives us a compressible flow. The

potentials f and g allow for dynamical components of the

fields parallel to the guide field, and w describes an irrota-

tional component of the velocity field.

Then, Eqs. (1)–(4) can be written as (for the details, see,

Refs. 5, 19, 20, and 27)

@u

@t
¼ @b

@z
þ ½u; u� � ½a; b� þ �r2u; (8)

@x
@t
¼ @j

@z
þ ½j; a� � ½x;u� þ �r2x; (9)

@a

@t
¼ @ðu� �bÞ

@z
þ ½u; a� � �½b; a� þ gr2a; (10)

@b

@t
¼ bp

@ðu� �jÞ
@z

þ ½u; b� þ bp½u; a�

��bp½j; a� þ gbpr2b; (11)

where

u ¼ �@yf ; (12)

x ¼ �r2
?u; (13)

b ¼ �@yg; (14)

j ¼ �r2
?a; (15)

and the notation ½A;B� ¼ @xA@yB� @xB@yA is employed for

the Poisson bracket. The potential w was eliminated from

these equations using the equation for the pressure. Finally,

bp ¼ bc=ð1þ bcÞ is a function of the plasma “beta.” As in

the previous set of equations, these equations become the

compressible RMHD equations when � ¼ 0.

III. NUMERICAL SIMULATIONS

Simulations analyzed in this work are similar to those

described in Ref. 5. We use a standard parallel pseudospec-

tral code to evaluate the nonlinear terms and solve numeri-

cally the equations.28 A second-order Runge-Kutta time

integration scheme is used. The magnetic field fluctuations

in all simulations are less than 10% of the external magnetic

field value, so we are in the range of validity of the RHMHD

model.

Periodic boundary conditions are assumed in all direc-

tions of a cube of side 2pL (where L � 1 is the initial corre-

lation length of the fluctuations, defined as the length unit).

The runs performed throughout this paper do not contain any
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magnetic or velocity external stirring terms, so the RHMHD

system is let to evolve freely.

To generate the initial conditions, we excite initially

Fourier modes (for both magnetic and velocity field fluctua-

tions) in a shell in k-space with wavenumbers 1 � k � 2,

with the same amplitude for all modes and with random

phases. Only plane-polarized fluctuations (transverse to the

mean magnetic field) are excited, so the initial conditions are

(low- to high-frequency) Alfv�en mode fluctuations with no

magnetosonic modes.

In a first set of simulations, spatial resolution is 5122

grid points in the plane perpendicular to the external mag-

netic field and 32 grid points in the parallel direction (this is

possible because the structures that require high resolution

only develop in the directions perpendicular to the field),

allowing four different runs to be done with four different

Hall coefficients. The kinetic and magnetic Reynolds num-

bers are defined, respectively, as R ¼ 1=�; Rm ¼ 1=g, based

on unit initial r.m.s. velocity fluctuation, unit length, and

dimensionless values for the viscosity and diffusivity. For all

the runs, we used R ¼ Rm ¼ 1600 (i.e., � ¼ 1=1600; g
¼ 1=1600). We also considered a Mach number MS ¼ 1=4,

and an Alfv�en Mach number MA ¼ 1.

For �, four values were considered, namely � ¼ 0 (run

A, MHD), 1/32 (run B), 1/16 (run C), and 1/8 (run D). As the

numerical domain used has size 2p (see above), these values

correspond, respectively, to ion skin depths with associated

wavenumbers k� ¼ 1, 32, 16, and 8. Data from these simu-

lations are used for the analysis in Sec. V.

To quantify the effect of spatial resolution in the level of

intermittency, runs A and D were computed also (with the same

parameters) larger grids, first with spatial resolution of 7682

�32 grid points, and later with 5122 � 64 grid points. This sec-

ond set of simulations (namely, runs A2 and A3, with � ¼ 0,

and D2 and D3, with � ¼ 1=8) are considered in Sec. VI.

IV. MEASURES OF INTERMITTENCY

In order to characterize velocity and magnetic field ani-

sotropy, scaling laws, and intermittency, we present in Sec. V

power spectra, structure functions, and PDFs of velocity and

magnetic field increments.

The perpendicular total energy spectrum Eðk?) is defined

as usual, summing the power of all (velocity and magnetic)

modes in Fourier space over cylindrical shells with radius k?,

with their axis aligned with the direction of the guide field.

To compute structure functions and PDFs, field incre-

ments must be first defined. Given the presence of the external

magnetic field, it is natural to consider an axisymmetric

decomposition for the increments. In general, the longitudinal

increments of the velocity and magnetic fields are defined as

duðx; lÞ ¼ ½uðxþ lÞ � uðxÞ� � l

jlj ; (16)

dbðx; lÞ ¼ ½bðxþ lÞ � bðxÞ� � l

jlj ; (17)

where the spatial increment l can point in any direction.

Structure functions of order p are then defined as

Su
pðlÞ ¼ hdupðx; lÞi; (18)

for the velocity field, and as

Sb
pðlÞ ¼ hdbpðx; lÞi; (19)

for the magnetic field. Here, brackets denote spacial average

over all values of x.

These structure functions depend on the direction of the in-

crement. For isotropic and homogeneous turbulence, it is a

standard practice to average over several directions, to obtain

the isotropic component of the structure functions (see, e.g.,

Refs. 29–31). Due to the axisymmetry associated with the exter-

nal magnetic field, in our case, we will be interested instead

only in the increments perpendicular to ẑ. We denote increments

in this direction as l?, and we follow the procedure explained in

Refs. 22 and 23 to average over several directions of l?.

The method can be described as follows. Velocity and

magnetic field structure functions were computed from Eqs.

(18) and (19) using 24 different directions for the increments

l, generated by integer multiples of the vectors (1, 0, 0), (1,

1, 0), (2, 1, 0), (3, 1, 0), (0, 1, 0), (�1, 1, 0), (1, 2, 0), (�2, 1,

0), (�1, 2, 0), (1, 3, 0), (�3, 1, 0), and (�1, 3, 0) (all vectors

are in units of grid points in the simulations), plus the 12 vec-

tors obtained by multiplying them by �1. Once these struc-

ture functions were calculated, the perpendicular structure

functions Sy
pðl?Þ and Sb

pðl?Þ were obtained by averaging over

these 24 directions in the xy plane.

For all runs, this procedure was applied to 9 snapshots

of the velocity and magnetic fields, centered around the time

of the peak of maximum dissipation (at t 	 4:5), and sepa-

rated by intervals Dt ¼ 0:5.

For large enough Reynolds number, the structure func-

tions are expected to show inertial range scaling, i.e., we

expect that for some range of scales Su
p � l

np

? and Sb
p � l

fp

? ,

where np and fp are, respectively, the scaling exponents of

order p of the velocity and magnetic field. As sufficient scale

separation is needed to determine these exponents, in Sec. V,

we show scaling exponents for runs A (� ¼ 0) and D

(� ¼ 1=8), as these runs have well defined MHD (run A) or

HMHD (run D) inertial ranges. Runs B and C have the ion

skin depth in the middle of the inertial range, and each sub-

range (the MHD subrange and the HMHD subrange) is not

sufficiently resolved to compute exponents.

The scaling exponents for each snapshot of the fields are

obtained from the structure functions Su
p and Sb

p using the

least square method (extended self-similarity32,33 is not used

to estimate the exponents). The values presented in Sec. V

correspond to the time average over the 9 snapshots of each

field. As the errors in the least square calculation are negligi-

ble when compared with the variations for each snapshot, the

errors in the determination of the scaling exponents are esti-

mated by the statistical mean square error; e.g., for the mag-

netic field scaling exponents the error is

efp
¼ 1

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

i¼1

ðfpi
� fpÞ2

vuut ; (20)
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where M¼ 9 is the number of snapshots of the field used in

the analysis, fpi
is the slope obtained from a least square fit

for the i-th snapshot, and fp is the mean value averaged over

all snapshots.

Finally, to complete the analysis, we consider PDFs of

longitudinal increments and of derivatives of the perpendicu-

lar velocity and magnetic fields. In all cases, the PDFs are

normalized by their variance, and will be shown together

with a Gaussian with unit variance as a reference.

V. RESULTS

A. Energy spectrum

Before proceeding with the analysis of intermittency,

we briefly present the total energy spectrum for all the runs

with spatial resolution of 5122 � 32 grid points. This is im-

portant as determination of the inertial range based on the

spectrum and on the structure functions is needed to compute

the scaling exponents of the fields.

Figure 1 shows the perpendicular spectrum for the total

energy (kinetic plus magnetic) in runs A, B, C, and D. In run

A, a range of wavenumbers following an approximate power

law can be identified, namely from k? 	 4 to k? 	 20. This

range is used to compute scaling exponents below. As a ref-

erence, we also show in Fig. 1 a Kolmogorov slope.

However, it should be noted that determination of the slope

of the MHD energy spectrum is beyond the interest of this

work, and readers interested in the topic are referred to

detailed recent studies on the subject.34–36,42

It is also interesting to note that the energy spectrum in

Fig. 1 is shallower than that expected for weak

turbulence,37–40 even though the reduced equations are writ-

ten for jb0j � B0. Indeed, we verified that most of the energy

in the simulations is in non-propagating modes (i.e., modes

with kk ¼ 0, see Ref. 41). We also verified explicitly that the

condition jb0j=B0 � kk=k? is violated, where kk and k? are

characteristic parallel and perpendicular wavenumbers

(obtained from the flow parallel and perpendicular integral

scales). This condition is required in RMHD for weak turbu-

lence to develop,39 and as a result we will interpret the fol-

lowing results in the framework of strong turbulence.

As the value of � in the simulations is increased (see runs

B, C, and D in Fig. 1), the spectrum becomes steeper at wave-

numbers larger than k�. This trend has been observed before in

simulations,13,43,47 and it has been argued that it can result in

an inertial range in the HMHD subrange of the form EðkÞ
� k�7=3 (Refs. 15, 44, and 48) (such a spectrum has also been

observed in the solar wind, Refs. 16, 45, and 46). Run D has a

HMHD subrange wide enough to compute structure functions

and scaling exponents (from k? ¼ 1=� ¼ 8 to k? 	 20), while

runs B and C are intermediate between runs A and D and have

two barely resolved subranges. However, these two intermedi-

ate runs will be useful to study trends in the behavior of the

PDFs and of the structure functions as � is increased.

B. Structure functions and scaling exponents

We present here the results for the computation of the

axisymmetric structure functions for the longitudinal compo-

nent of the velocity and magnetic field for runs A, B, C,

and D.

Figure 2 shows the structure functions for the magnetic

field fluctuations up to sixth order for runs A and D. The

structure functions show a range of scales with approxi-

mately power law scaling at intermediate scales, and at the

smallest scales approach, the �lp scaling expected for a

smooth field in the dissipative range. The velocity field struc-

ture functions (not shown) display a similar behavior, at the

same range of scales. The inertial range identified in the

energy spectrum Eðk?Þ is consistent with the range of scales

where Su
p and Sb

p show an approximate power law behavior.

From the structure functions, the scaling exponents can

be computed. Exponents for the velocity and the magnetic

field up to sixth order in runs A and D are shown in Fig. 3.

The range of scales used for the calculation corresponds to

the subranges indicated before, with l? ¼ 2p=k?. For � ¼ 0

(run A), the deviation of the exponents np and fp from a

straight line is an indication of intermittency and of multi-

fractality. In the HMHD case (� ¼ 1=8, run D), the expo-

nents are closer to a straight line, indicating less intermit-

tency. In fact, within error bars and up to p¼ 3, the data are

consistent with np ¼ n2p=2 and fp ¼ f2p=2, and therefore

with monoscaling as also observed for high-frequency mag-

netic fluctuations in the solar wind.16

Run D (with � ¼ 1=8) has second scaling exponents n2

and f2 which are larger than 2/3 (the value expected for

FIG. 1. (a) Perpendicular energy spectrum for runs A (solid), B (dot), C

(dash), and D (dash-dot). Note how the spectrum becomes steeper in the

HMHD simulations for wavenumbers larger than the inverse ion skin depth

k� (respectively, 32, 16, and 8 for runs B, C, and D). The slope indicates

Kolmogorov scaling as a reference. (b) Perpendicular energy spectrum com-

pensated by k�5=3 for the same runs.
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Kolmogorov scaling), but which are smaller than 4/3 (the

value expected if the spectrum is �k�7=3, Refs. 49–51). This

can be related to the fact that the total energy spectrum in

Fig. 1 becomes steeper as the amplitude of the Hall effect is

increased, but is still slightly shallower than –7/3 for the run

with � ¼ 1=8. Also, note that the scaling of the velocity field

and of the magnetic field can differ from that of the total

energy, as is known to be the case in MHD.35,52

The deviation from strict scale invariance (linear scal-

ing) in Fig. 3 can be quantified in terms of the intermittency

exponents lu ¼ 2n3 � n6 and lb ¼ 2f3 � f6. The larger

these exponent, the more intermittent the fields. For run A,

these exponents are lu ¼ 0:5760:07 for the velocity field,

and lb ¼ 0:6460:08 for the magnetic field. It is interesting

to point out that these values that indicate that the magnetic

field is more intermittent than the velocity field, are consist-

ent with observations of large-scale fluctuations in the solar

wind (see, e.g., Ref. 53), and with numerical simulations of

MHD turbulence at higher spatial resolution.52

The intermittency exponents are substantially reduced

for run D, with lu ¼ 0:1560:12 for the velocity field and

lb ¼ 0:2360:14 for the magnetic field. This confirms that

intermittency is substantially decreased in the presence of

the Hall effect.

At the spatial resolution used in these runs, the lack of

sufficient scale separation in the MHD and HMHD sub-

ranges for intermediate values of � does not allow the calcu-

lation of scaling exponents for runs B and C. However, the

structure functions for these runs show a behavior intermedi-

ate between runs A and D, and consistent with the behavior

of the spectrum in Fig. 1. In other words, as the Hall coeffi-

cient � is increased, the structure functions steepen at scales

smaller than the ion-skin depth. As an example of this behav-

ior, Fig. 4 shows the fourth order structure function for the

magnetic field for runs A, B, C, and D. Note that runs B and

C show a behavior consistent with the behavior of run A at

large scales (scales larger than the ion-skin depth), and dis-

play a steeper slope (compatible with that found for run D)

at smaller scales.

The results confirm that the presence of the Hall term

steepens the scaling of the energy spectrum (and consis-

tently, of the structure functions), and also show that the Hall

effect reduces intermittency in the velocity and magnetic

FIG. 3. Scaling exponents (with error bars) as a function of the order p up to

sixth order, for the velocity (crosses), and for the magnetic field (diamonds),

(a) for run A (� ¼ 0), and (b) for run D (� ¼ 1=8). Linear scaling of the

exponents with f2p=2 (corresponding to non-intermittent scaling with the

second order exponent consistent with the scaling of the energy spectrum in

Fig. 1) is indicated in both cases by the straight line.

FIG. 4. Fourth order structure function of longitudinal magnetic field incre-

ments for runs A (� ¼ 0, solid line), B (� ¼ 1=32, dashed line), C (� ¼ 1=16,

dashed-dotted line), and D (� ¼ 1=8, dotted line).

FIG. 2. Axisymmetric structure functions for the longitudinal magnetic field

up to six order for (a) run A (� ¼ 0), and (b) run D (� ¼ 1=8). The order of

the structure function is indicated as follows: p¼ 1 (solid), 2 (dot), 3 (dash),

4 (dash-dot), 5 (dash-triple-dot), and 6 (long dash).
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fields. The velocity and magnetic field scaling exponents

approach a linear behavior characteristic of a self-similar

(non-intermittent) flows. In Sec. V C, this result is confirmed

by an analysis of PDFs of velocity and magnetic field incre-

ments and spatial derivatives.

C. Probability density functions

We now consider PDFs for longitudinal increments of

the x-component of the velocity and magnetic fields. As al-

ready mentioned, the PDFs will be presented normalized by

their variance, and together with a Gaussian distribution with

unit variance as a reference. Deviations from Gaussianity, or

increase of the deviations from Gaussianity as smaller incre-

ments are considered, are a signature of intermittency.

Figure 5 shows the PDFs of the magnetic field incre-

ments for four different spatial increments, namely l¼ 1.6,

0.8, 0.4, 0.2, and 0.1, for runs A, B, C, and D. For all runs,

the PDFs of magnetic field increments are close to Gaussian

for l¼ 1.6, while for smaller spatial increments non-

Gaussian tails and asymmetry develop. This is a common

feature for many turbulent flows, with large scales close to

Gaussian statistics and smaller scales developing deviations

from Gaussianity with strong tails (i.e., with extreme gra-

dients more probable than what can be expected from a nor-

mal distribution). As a reference, the integral scale in all

runs (the scale with the energy containing eddies) is close to

the size of the domain, L 	 2p, while the dissipative scale is

Lg 	 0:05. Increments with l¼ 1.6 are close to the flow inte-

gral scale, increments with l¼ 0.8 or 0.4 are in the inertial

range, while l¼ 0.1 is close to the dissipation length scale.

Although all runs develop non-Gaussian tails, when

comparing the PDFs of the four runs with different values of

�, it is clear that the amplitude of these tails is drastically

reduced as the value of � is increased. Moreover, for the larg-

est value of � considered, we cannot identify a clear increase

in the amplitude of the tails as we look at smaller increments.

This tendency (which is monotonic with increasing �) of the

PDFs of different spatial increments to collapse into a single

curve, with weaker tails than in the MHD case, is an indica-

tion of reduced intermittency and expected for scale-

invariant flows.

Figure 6 shows the same PDFs for increments of the ve-

locity field. Again, the PDFs are close to Gaussian for the

largest increment in the four runs, and non-Gaussian tails de-

velop with increasing amplitude for smaller increments. In

this case, for � ¼ 1=8 all the PDFs seem to collapse into the

Gaussian, and the tails are weaker than for the magnetic

field. This is consistent with the previous observation, using

the intermittency coefficients lu and lb, that the magnetic

field is more intermittent than the velocity field, and that

both fields are less intermittent in HMHD than in MHD.

To quantify the deviations from a Gaussian distribution

in each run, we calculated the skewness and the kurtosis of

the x-derivatives of the x-components of the velocity and

magnetic fields. Note these quantities correspond, respec-

tively, to the third- and fourth-moments of the PDFs in

Figs. 5 and 6 in the limit of vanishing spatial increment. The

skewness and kurtosis of a function f are defined as Sðf Þ

¼ hf 3i=hf 2i3=2
and Kðf Þ ¼ hf 4i=hf 2i2, respectively, where f

can be, e.g., some component of the velocity (or magnetic)

field gradient. The resulting values are listed in Table I. In

accordance with what can be expected from a visual inspec-

tion of Figs. 5 and 6, the skewness of @xux and @xbx is

reduced to almost zero for � ¼ 1=8, which indicates a sub-

stantial reduction in the asymmetry of the PDF. The kurtosis

of @xux and @xbx also decreases with increasing �, which

FIG. 5. PDFs for magnetic field increments, for l¼ 1.6 (solid), 0.8 (dot), 0.4

(dash-dot), 0.2 (dash-triple-dot), and 0.1 (long dashes), and for runs A, B, C,

and D from top to bottom, respectively. In all the figures, a dashed curve

indicates a Gaussian PDF with unit variance.
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indicates a smoothing in the peakedness of the PDFs and a

decrease in the intensity of the tails.

VI. EFFECT OF RESOLUTION

Recently, it was stressed the need of using well resolved

numerical simulations to quantify high order statistics and

intermittency in MHD.54 In particular, it has been claimed

that if the flow is not properly resolved, a partial

thermalization of the small scales may result in artificial

Gaussian statistics and an artificial decrease of the intermit-

tency. Considering this, in this section, we present results for

simulations with the same parameters as in runs A and D,

but with larger parallel or perpendicular spatial resolution.

We consider two runs with 7682 � 32 grid points, namely,

runs A2 and D2, and two runs with 5122 � 64 grid points,

runs A3 and D3. Runs A2 and A3 have the same parameters

and initial conditions as run A, while runs D2 and D3 are the

same as run D except for the change in resolution.

We computed structure functions, scaling exponents,

and PDFs for runs A2, D2, A3, and D3 and compared the

results with those found for runs A and D. In all cases, the

results were consistent within error bars. As an illustration,

in Fig. 7, we show the velocity field and magnetic field scal-

ing exponents for runs D, D2, and D3 (all with � ¼ 1=8, and

FIG. 6. PDFs for velocity field increments, for l¼ 1.6 (solid), 0.8 (dot), 0.4

(dash-dot), 0.2 (dash-triple-dot), and 0.1 (long dashes), and for runs A, B, C,

and D from top to bottom, respectively. In all the figures, a dashed curve

indicates a Gaussian PDF with unit variance.

TABLE I. Skewness (S) and kurtosis (K) for the x-derivatives of bx and ux,

for all runs with spatial resolution 5122 � 32 and with different amplitudes

of the Hall effect �. Sð@xbxÞ and Kð@xbxÞ are, respectively, the skewness and

kurtosis of the magnetic field spatial derivatives, while Sð@xuxÞ and Kð@xuxÞ
are the corresponding quantities for the velocity field derivatives.

Quantity � ¼ 0 � ¼ 1=32 � ¼ 1=16 � ¼ 1=8

Sð@xuxÞ �0.18 �0.013 �0.01 �0.001

Kð@xuxÞ 19 8.1 5 4.9

Sð@xbxÞ 0.36 0.17 0.11 0.07

Kð@xbxÞ 26 15.7 6.6 5.8

FIG. 7. (a) Velocity field scaling exponents (with error bars) as a function of

the order p up to sixth order, for runs D (stars), D2 (crosses), and D3 (dia-

monds) all with � ¼ 1=8. Linear scaling of the exponents is indicated as a

reference. (b) Same for the magnetic field scaling exponents.
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respectively, with 5122 � 32; 7682 � 32, and 5122 � 64 grid

points). Increasing the parallel or perpendicular resolution

neither does change the scaling exponents nor does it change

the fact that the exponents are close to the straight line and

less intermittent than in the MHD case.

In run A2, the intermittency exponents are lu

¼ 0:52 6 0:08 and lb ¼ 0:7060:07, while in run A3, we

obtain lu ¼ 0:5760:07 and lb ¼ 0:6460:08, consistent

within error bars with the values found in run A. In run D2,

the intermittency exponents are lu ¼ 0:1560:04 and

lb ¼ 0:2460:06, while in run D3 the exponents are lu ¼
0:1460:12 and lb ¼ 0:2460:14, also consistent with the

values obtained in run D.

Figure 8 shows the PDFs of velocity and magnetic field

increments in runs D, D2, and D3, for a spatial increment

l¼ 0.1. The PDFs are almost indistinguishable. Similar results

were obtained for runs A, A2, and A3. When computing the

PDFs of spatial derivatives of the fields, we obtained

Sð@xuxÞ¼�0:19; Sð@xbxÞ¼0:41;Kð@xuxÞ¼18, and Kð@xbxÞ
¼26 for run A2, and Sð@xuxÞ¼�0:18, Sð@xbxÞ¼0:36;
Kð@xuxÞ ¼19, and Kð@xbxÞ¼27 for run A3. For the runs with

Hall effect, we found Sð@xuxÞ¼�0:001;Sð@xbxÞ¼0:08;
Kð@xuxÞ¼8:4, and Kð@xbxÞ¼6:5 for run D2, and Sð@xuxÞ
¼�0:001;Sð@xbxÞ¼0:07;Kð@xuxÞ¼5:9, and Kð@xbxÞ¼5:8
for run D3. These values should be compared with the values

in Table I for runs A and D at lower resolution.

Wan et al.54 argue that for a MHD simulation to be well

resolved, the kurtosis of the current should remains inde-

pendent of the spatial resolution. In our MHD and HMHD

runs that condition is fulfilled, at least up to the level of sta-

tistical fluctuations that can be expected when comparing

two simulations of a turbulent flow. To verify this, we com-

puted the skewness and kurtosis of the component of the cur-

rent density parallel to the external magnetic field, i.e., SðjzÞ
and KðjzÞ. In the MHD simulations (� ¼ 0), we obtained

SðjzÞ ¼ 0; 70 and KðjzÞ ¼ 21 in the simulation with 5122

�32 grid points, SðjzÞ ¼ 0; 71 and KðjzÞ ¼ 22 in the simula-

tion with 7682 � 32 grid points, and SðjzÞ ¼ �0; 70 and

KðjzÞ ¼ 21 in the simulation with 5122 � 64 grid points.

In the HMHD simulations with � ¼ 1=8, we obtained SðjzÞ
¼ �0; 02 and KðjzÞ ¼ 4:5 in the simulation with 5122 � 32

grid points, SðjzÞ ¼ �0; 01 and KðjzÞ ¼ 4:8 in the simulation

with 7682 � 32 grid points, and SðjzÞ ¼ �0; 02 and KðjzÞ
¼ 4:5 in the simulation with 5122 � 64 grid points.

Although there is a small increase in SðjzÞ and KðjzÞ as

the perpendicular resolution is increased in both the MHD

and HMHD runs, the increase is smaller than 10% in most

cases. Increasing the parallel resolution seems to have no

significative effect. As a result, we conclude that the simula-

tions are well resolved even with the more stringent criteria

of Wan et al.54 Moreover, the reduction of the intermittency

in presence of the Hall term is also confirmed by the skew-

ness and kurtosis of the current at both spatial resolutions.

As a result, we conclude that increasing resolution has

no significant effect on the results we reported in Sec. V, and

that the decrease in the intermittency of the flow presented

above has its source in the Hall effect and not in a numerical

artifact when the flow is not properly resolved.

VII. SUMMARY AND CONCLUSIONS

In this work, we presented a study of intermittency in

the velocity and magnetic field fluctuations of compressible

Hall-magnetohydrodynamic turbulence with an external

guide field. Unlike previous works, we were not interested in

the characterization of geometrical properties or in the size

of individual structures in the flow (e.g., current sheets), but

rather interested in their overall statistical properties.

The equations were solved numerically using a reduced

model valid when a strong guide field is present, and both

structure functions and probability density functions of field

increments were computed. In the magnetohydrodynamic

limit, we recovered results found in the previous studies,

with the magnetic field being more intermittent than the ve-

locity field. However, in the presence of the Hall effect, we

found field fluctuations at scales smaller than the ion skin

depth to be substantially less intermittent, with close to

scale-invariant scaling.

As the intensity of the Hall effect was increased in the

simulations (i.e., the ion skin depth was made larger in units

of the box size), we found both the total energy spectrum

and the structure functions to develop a steeper scaling in a

wider subinertial range, for all scales smaller than the ion

skin depth. The behavior of the scaling exponents for both

the velocity and the magnetic field up to sixth order becomes

closer to monofractal as the Hall effect is increased, and the

intermittency exponent decreases accordingly.

In agreement with these results, the probability density

functions of longitudinal velocity and magnetic field incre-

ments have weaker non-Gaussian tails and less asymmetry at

FIG. 8. (a) PDFs of velocity field increments for l¼ 0.1 and � ¼ 1=8, for

runs D (solid line), D2 (dotted line), and D3 (dashed-dotted line). The three

PDFs are practically indistinguishable. The dashed line shows a Gaussian

distribution as a reference. (b) Same for magnetic field increments.
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scales smaller than the ion skin depth. For velocity and mag-

netic field gradients, the skewness and kurtosis also decrease

as the Hall effect is increased.

The results were obtained for simulations with spatial

resolution of 5122 � 32 grid points, and verified in simula-

tions at larger spatial resolution, with 7682 � 32 grid points

and with 5122 � 64 grid points. As a result, we can safely

conclude that increasing the resolution has no effect on the

results, and that the decrease in the intermittency of the flow

has its source in the Hall effect.

It is interesting that although a decrease in the intermit-

tency has been observed in high-frequency magnetic field

fluctuations in the solar wind,15,16,55 the observations also

show PDFs with strong non-Gaussian tails. These non-

Gaussian tails are absent in our simulations, and considering

the limitations of the HMHD model we are led to conjecture

that their origin in the solar wind lies in other kinetic effects

that are not captured by our model (see, e.g., Refs. 55 and 56).
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