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Abstract

We present a general procedure to introduce electronic polarization into classical Molec-

ular Dynamics (MD) force-fields using a Neural Network (NN) model. We apply this

framework to the simulation of a solid-liquid interface where the polarization of the

surface is essential to correctly capture the main features of the system. By introduc-

ing a multi-input, multi-output NN and treating the surface polarization as a discrete

classification problem, for which NNs are known to excel, we are able to obtain very

good accuracy in terms of quality of predictions. Through the definition of a custom

loss function we are able to impose a physically motivated constraint within the NN

itself making this model extremely versatile, especially in the modelling of different

surface charge states. The NN is validated considering the redistribution of electronic

charge density within a graphene based electrode in contact with aqueous electrolyte

solution, a system highly relevant to the development of next generation low-cost su-

percapacitors. We compare the performances of our NN/MD model against Quan-

tum Mechanics/Molecular dynamics simulations where we obtain a most satisfactorily

agreement.
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The first reports of Machine Learning (ML) in computational materials modelling emerged

close to three decades ago1, yet only very recently has their presence in this field become

ubiquitous, in particular in the form of Supervised Learning (SL)2–4. SL encompasses a

group of methodologies with the same principal philosophy: given a set of observations in

the form of input and output data, the goal is to determine a model that can make accurate

output predictions given an arbitrary input. Examples of SL within materials modelling

include Gaussian Approximated Potentials (GAP)5–7 that use Gaussian random processes

to predict atomistic Potential Energy Surfaces (PES)8–10, Kriging regression11,12, which is

used in the geometrical optimization of molecules13 and PES prediction14–16, kernel-ridge

regression for the description of the multipole of a molecule17,18, and Neural Networks (NN)

that are also used to make predictions about the PES8–10 and predict the difference between

forces obtained from DFT and classical force fields19. In particular, NNs represent the one

most widely utilized techniques in materials modelling owing to their versatile and broad

applications; NNs have been applied to the parametrization of wave functions20 and quantum

density matrices21 as well as applications within Quantum Monte Carlo simulations22. Here

NNs are employed to model the quantum mechanical fluctuations of the electron density of

a charged solid surface that lead to polarization effects at solid-liquid interfaces.

In the investigation of solid-liquid interfaces by classical Molecular Dynamics (MD) sim-

ulations, the standard practice in all-atom approaches is to assign to each species a fixed

charge that is representative of its nuclear charge plus an attributable proportion of the

average shared electron density. Polarisation effects that give rise to stronger attractive or

repulsive interactions between non-bonded species may be treated in an average way through

a parameterized non-bonded Lennard-Jones interaction potential23,24. However, this treat-

ment neglects the dynamical aspect of the interface polarizability which can be important for

capturing the correct physisorprion and diffusion behaviour25,26. In strictly metallic systems,

the redistribution of the electronic density, and thence surface charge, can be modelled for

instance by the constant potential method27–29. In semiconducting and insulating materi-
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als polarizable force fields can be applied to surfaces, accounting for dynamical effects by

tethering a dummy charge to polarizable atoms via a harmonic spring, thereby allowing for

modulation of the atomic charge density in response to the environment.26,30,31 In the case

of graphene/electrolyte interfaces, in our previous work we observed that ions induce a long

ranged redistribution of surface electron densities that can only be accurately accounted for

by methods which compute directly the electronic surface density32. To this end we im-

plemented an iterative Quantum Mechanics/Molecular Dynamics (QM/MD) workflow, by

which the dynamics of surface-electrolyte interfaces can be modelled in a classical framework

all the while including a QM description of the polarization of the surface.

In the QM/MD scheme the state of the surface polarization evolves in response to the

local electrostatic potential arising from the relative positions of molecules in the liquid

phase. This could be for instance the water molecule dipole and/or charges associated with

a solute. At a given time-step, the specific configuration of surface charges are obtained

through Mulliken population analysis of the electronic charge density obtained at the Den-

sity Functional Tight Binding (DFTB) level of theory. In order to avoid very large-scale

quantum mechanical calculations, only the surface atoms are treated by DFTB, and the

specific arrangement of the electrolyte atoms enters into the calculation as a field of point

charges. The DFTB surface atom populations are translated to a set of atomic charges and

included as parameters in the classical MD force field (FF). Iteration of this procedure for

many time steps ensures that there is feedback between the classically determined positions

of the electrolyte atoms and the QM derived surface charges.

Within this framework, the need of the DFTB calculations represents the bottleneck

for the simulation time, and a trade-off between the accuracy and practical viability of

the simulation must be established for the feedback between the QM and classical model.

High frequency updates of the surface charge would improve the sampling of the electronic

potential energy surface and reduce the time lag between the QM and MD calculations, but

this comes at the cost of an enormous slow down in the simulation time. Supervised Learning

4



of the QM polarizability, in particular using NNs, represents a novel avenue by which we

can avoid the computationally expensive QM calculations, instead calling upon a trained

model in-situ to retain the dynamical description of the polarizability of the surface. Along

these lines, this work, introduces a NN model for the on-the-fly prediction of the surface

atomic partial charges, within a classical force field (FF), that accounts for the evolving

polarizability of the surface. The NN, which is trained over the QM calculations is then

fully integrated into the ML/MD workflow replacing the QM calculations, still effectively

reaching the same goal of obtaining an improved FF which is not constrained by fixed point

charges.

It is worth highlighting, our approach includes substantial deviations from the standard

application of NN models to MD, more specifically: (i) We propose a multi-output neural

network scheme33, where a single NN gives for each prediction the instantaneous value of the

charge on each atom of the surface, (ii) We introduce a formal constraint in the generation

of the NN model, to link the model to the physics of the system where the total surface

charge must be preserved. This, in turn, is done by modifying the Loss Function (LF) used

to train the model. Finally, (iii) we simplify the problem, from a standard regression one,

where the prediction involves real numbers, to a problem similar to classifications where we

are predicting (integer) classes instead. Although classification problems find use outside of

computational materials science, they received little attention within the community. Here

we show that they increase the flexibility and performances of the ML models particularly

for the problem at hand (i.e. simulating a solid/liquid interface). We validate the framework

simulating the interfacial properties of an electrified graphene/electrolyte interface.

The system considered here is a charged semi-infinite graphene electrode in contact with

a 1M NaCl electrolyte solution. The electrode is comprised of NC = 336 carbon atoms and

carries an excess charge of 4 e. The electrolyte solution has 2065 water molecules and 90

and 86 fully dissociated Na+ and Cl− ions respectively. A sketch of this system is presented

in fig. 1. It should be noted that the excess of Na ions balances the charge of the electrode,
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preventing problems with the computation of long-ranged electrostatic interactions in the

MD step. For a detailed description of the system and the model we refer to the Supporting

Information (SI) (see Sec. S1 of the SI) and32. In our previous work, (see32) we observed

that there exist a finite amount of charge for which any two charges differing by this value are

not seen as different by the system. This observation, which will be made more quantitative

in the next section, will be essential for the work developed here.

Network Structure

The first important novelty added in this work is that we can simplify the problem by not

considering a pure regression. If the difference between two carbon partial charges is below

a certain threshold, quantified as ε = 0.015 e32, the classical system is not able to distinguish

between the different charges. By looking at the distribution of the charges, dividing them

into bins of finite size and assigning a label to each of them, we can ask our NN to predict

the bin in which the particular charge falls. That means that we translated a pure regression

problem into a labelling (classification) problem, even though a standard regression seems

a natural choice given the continuity of the value of the charge. The problem becomes to

find the correct label for each surface carbon atom (i.e. correct class in the distribution of

charges) given a specific electrolyte configuration, which in this case represents the input of

our NN. Once the label is obtained, it can be mapped back to the corresponding charge.

When a given charge is assigned to one of the bins it is replaced by the median value of

that bin. Therefore, the size of the bin, b, must be chosen smaller than ε. However, we

require a stricter condition on b, in particular we require that b < ε/2. The reason lies in

the discretization performed when we assign each charge to the bins, which is explained in

detail in the SI (see Sec. S.2.1). If b < ε/2 then a label prediction which is close enough

to the real one can be still considered correct, as will be shown in the next section. In this

work we use a value of b = 0.007 e.
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The basic architecture of a NN, ( see fig. 1) is represented by a set on neurons in several

layers; each neuron within a layer is connected to all of the neurons in the subsequent layer.

The first and last layers are special ones, the first layer represents the input layer, and the

number on neurons here is equal to the number of features of the problem. The last layer is

the output layer and in our case is composed of several outputs34.

Figure 1: Sketch of the loop for NN/MD calculations which shows the sequence of operations
included. We highlighted the Multi-output Neural Network step with M inputs and NC

outputs, along with the definitions of the inputs extracted from the MD simulation (the
position of the ions) and outputs entering into the MD simulation (i.e. the charge on the
carbons). For more details see Sec. S.1 and Sec. S.3 of the SI.

The output of the j-th neuron in the k-th layer, y
(k)
j , depends on the output of the

previous layer k − 1 and can be written as:

y
(k)
j = f

b(k−1) +
m(k−1)∑
i=1

wk
i,jy

(k−1)
i

 (1)
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where the superscript (k − 1) refers to objects in the k − 1-th layer, m(k−1) is the number

of neurons in the layer, wk
i,j is the weight associated to the i-th neuron, b(k−1) is the bias

and f is the activation function. If y
(k)
j is the output of the last layer k runs over all the

different outputs. Here, we considered as activation function, f , the Rectified Linear Unit,

ReLU which represents a good compromise between speed and robustness of the model.

In order to obtain a NN model, the weights wk
i,j must be optimized for each neuron in

each layer, in practice this means minimising a certain Loss Function (LF), L(y
(out)
i , ŷi),

which measures the “distance” between prediction and true value of the property:

wopt = argmin
w
L(y(out), ŷ) (2)

where y(out) and ŷ are the NC-dimensional vector of the respectively true and the predicted

label attached to, in the present case, the NC carbons within the graphene layer.

By definition, the true charges computed in the QM step sum to the charge applied to

the electrode. In order to enforce this constraint we include it as an extra term into the loss

function appearing in eq. (2). Our new loss function reads as:

L(y(out), ŷ) =
1

Nc

[
NC∑
i=1

∣∣y(out),ji − ŷi
∣∣+
∣∣ NC∑
i=1

y(out) · 1−
NC∑
i=1

ŷ · 1
∣∣] (3)

where 1 is the NC-dimensional vector of ones, and (·) is a scalar product. The first absolute

value is the Mean Absolute Error (MAE) loss function optimized during the NN training,

and represents the magnitude of error committed on the predictions. The second absolute

value represents the penalty over the predictions calculated as the difference between the

sum of the total predicted charges and that of the true total charge.

An important part of the creation of a ML model is the selection of the inputs, or features.

In our system, the distribution of charges on the graphene sheet depends on the configuration

of the water molecules and ions in the electrolyte solution. However, the correlation among

the positions of the water molecules and the ions during the simulation, strongly implies that
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we do not need to include all the molecules in the creation of the features. In this work, we

show that using the ions configurations is enough to obtain good descriptors for the training

of the NN. This last fact represents a key observation for the generation of NN models for

MD simulations and here we argue that the amount of information needed to create good

ML models can be reduced with respect to the naive choice of considering everything within

the system. The number of feature we consider is M = 704 calculated as: number of Cl− +

number of Na+ times four, i.e. the three spatial coordinates and the charge of each ion.

Now, we need to explicitly describe the features to be used in the NN model. Cartesian

coordinates are not considered good candidates for ML models in MD. The fact that they

lack some essential symmetries, i.e. they are not translational and rotational invariant as

well as invariant to exchange of atoms, is generally a problem for ML model generation. The

issue originates from the fact that NNs consider two input geometries which differ only by a

rotation or translation of the system as being unique. In literature, different methods have

been proposed to take into account these symmetries35–39.

In the present case, the use of absolute cartesian coordinates as input does not suffer

of the problems mentioned above. In our work, the graphene carbons are fixed in space

throughout the simulation. If two configurations differ by a translation of any ion within the

simulation box, they are different with respect to the fixed graphene interface. Therefore,

they effectively represents different configurations 1.

We report all the details of the creation of the training set, the NN network and simula-

tions in the Supporting Information (see Sec. S.2 of the SI). The NN are created by using

the Tensorflow/Keras library v. 2.3.140.

The set up for the inclusion of the NN into the MD calculations is similar to the one

reported in Sec. S.1 of the SI (see also32 ) with the only difference being the replacement of

the DFTB calculations with the prediction of the charges using the NN models.

Every 5 ps the ions coordinate are extracted from the trajectory and transformed into

1A translation symmetry along the direction perpendicular to the plane of the electrode exists but it’s
not considered here since all the configurations are obtained with respect the same position of the electrode.
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the input configuration for the NN model, from which the new charges are predicted. A

sketch of the loop of the NN/MD calculation is reported in fig. 1.

In practice, this functionality is implemented as a set of drivers which couples Tensor-

Flow40 with Gromacs41. Whilst external drivers slow the simulation time, they ensure that

the developed models are fully transferable between different Classical molecular dynamics

software packages. The fact that these scripts are not integrated directly within the code

reduces the performances of the NN model which, however, remains well above the QM/MD

ones in terms of computational time.

Results

In this section we will start by showing the performances of the NN model on a prediction

set composed of 3000 electrolyte configurations and the resultant carbon charges computed

by DFTB simulations (to which we will refer as the “real” charges). We then conclude

by reporting the results of the fully integrated NN/MD simulation and comparing various

properties with those obtained from an analogous QM/MD trajectory.

In Figure 2 we plot histograms that compare the distributions of the real and predicted

charges. Leveraging that i) the differences in the charges which are smaller than ε are not

seen as different and ii) the size of the bin, b, is such that b < ε/2, it follows that if the NN

predicts a label for a charge which is ±1 away from its correct one, it can be assigned back

to its correct label. By filtering out the results in fig. 2a, which represents the distribution

as obtained by the NN model, using this consideration, we obtain the histogram shown

in fig. 2b. Our model is able to correctly capture the behaviour of the system in terms of

identification of the most important classes, which in turn, represent the most likely observed

charges. However, our model yields a lower likelihood that charges on the left tail of the

distribution will be observed. These charges are those appearing with the least frequency

during the time evolution of the electrolyte configurations, which are therefore likely to be
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under-represented using the random sampling we employed to construct the training set. An

improved sampling of the training set may help in reducing this effect (e.g.42), but as we

will show next, under representation of these labels does not have a noticeable effect on the

NN/ML simulation results.

(a) (b)

Figure 2: Histogram of the true charges as calculated by the DFTB (in red) and comparison
with their NN predicted values (in green). On the left panel we reported the charges as
they are predicted from the NN, on the right panel we report the filtered charges using the
threshold defined in the main text.

Figure 3 reports the sum of the charges, for each frame, of the predicted set, with and

without the constraint applied in the loss function. This serves to highlight the importance

of the constraint since without it the sum of the predicted charges has a mean value different

from the one set in the classical step (4.0 e for the system considered here). If the NN does

not conserve the electrode charge, then firstly, the modelled system is fundamentally different

from the real system and secondly, on a more technical note this can lead to instabilities

in the evaluation of the Ewald summation during the classical MD step, where the overall

electrolyte charge no longer counter balances the electrode. In fact, our results suggest that

the inclusion of a physically motivated terms within the loss function can lead to better

models generally.

We have shown in fig. 2 and fig. 3 the performance of the predictions in terms of the
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Figure 3: Sum of charges for the test configurations

relative frequency of the charges compared with the real ones.

On top of their histograms, we can also consider the real space distributions of the pre-

dicted labels in comparison with the true charges, since this will give rise to the dynamical

feedback with the electrolyte during the NN/MD loop. In particular, this difference be-

tween the QM and NN charges should be minimal in order to avoid nonphysical charge

(de)localization.

The comparison between the true and predicted charges has been carried out on the test

set (see Sec. S.2 of the SI) by calculating the difference between the value of the real charges

and the prediction of the NN model on the same configuration, which we report in fig. 4. If

the error on the charge is smaller than the threshold of 0.015 than an error of zero is assigned

to that particular carbon. We observe that given this constraint the difference between the

real and predicted charges is zero for the majority of C atoms across all frames. Moreover,

where individual C atoms take a value different from zero, the prediction appears to be in

isolated in space and across different frames. As a consequence, the resultant polarization

of the sheet is not affected and the contribution of these larger deviations is averaged out

over the course of even several tens of ps. As observed for fig. 2, the NN has a slight bias

towards highest labels which can be possibly mitigated by a more accurate selection of the

training set points, but overall the qualitative behavior is similar to the one observed in QM
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Figure 4: A two dimensional plot of the difference between the QM and NN distribution
of charges on the Carbon atoms in the graphene sheet for a randomly selected snapshot, a
movie over the trajectory is available as part of the SI. The legend is given in units of the
threshold ε.

calculations with regions with a larger (negative) charge, regions mostly neutral and very

few positive charges.

The distribution of the predicted charged gives the overall behaviour of the predictions,

but does not give any indication on the error committed in each prediction. The most

straightforward evaluation of the performances of any NN is the prediction error with respect

the charges on the prediction set. As shown in fig. 5, where we report an S-curve showing the

percentile on the y-axis and the absolute error on the x-axis. Each point gives on the y-axis

the percentage of the carbons in the predictions set with error lower than the one marked

by the x position. The error is given in terms of the distance of the predicted label from

the true one. A distance of zero means the label was correctly predicted. The S-curve for

the predictions on the charges on the graphene layer is plotted in fig. 5. Even though each

prediction gives all the charges on the graphene layer at the same time, we consider for fig. 5

each charges separately, i.e. the picture is showing the errors committed on a single charge.

In this figure we also included a black vertical line at 0.015 e. From fig. 5 it results that with

the 0.015 e threshold we can consider correct almost 87% of the charges predicted. Naturally,

the threshold we used has still to be tested in a simulation, where we can confirm that such
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Figure 5: S curves showing the distance of the predicted bin with respect the correct value.
The vertical black dashed line represents the threshold ε.

an approximation is enough to obtain reliable results from the MD simulations. Figure 6

shows the normalized density of water, Na+and Cl− across the simulation box as function

of the distance from the graphene layer (which, in our configuration is perpendicular to the

z-direction and is located at z = 0). As expected, the density of the Cl− ion is smaller than

the Na+near the surface since the graphene layer is negatively charged. One thing we can

notice from fig. 6 by comparing the relative height of the first peaks for water and sodium

(comparable to the first solvation shell for the graphene layer) is that the relative height of

the peaks is preserved in NN/MD. The distribution of the chlorine shows a better agreement

with QM/MD calculations than the sodium. This fact could be due to the fact that chlorine

being, on average, repelled from the interface is less sensitive to the small differences between

the QM and NN description of the graphene layer.

These results show the potential of this different paradigm for NN for MD simulations. In

particular, we showed how the classification problem can be used in the generation of NN for

MD calculations instead of the more complicate regression one. We showed that Cartesian

coordinates can be used as features, giving good results, even though other feature selection

may improve the predictions as well as a more clever choice of the training set geometries.

In terms of speed-up of the calculations, the time needed for a NN/MD simulation is of
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Figure 6: From top to bottom: normalized density of water, Na+ and Cl− as function of the
distance from the graphene layer for QM/MD, NN/MD calculations.

the same order of magnitude of a standard MD simulation, which is a huge computational

advantage compared with any other procedure to include surface polarizability. However,

the model presented here suffers of a not fully integration with the MD code (see Sec. S.3

of the SI), which surely represents the next step in the development of NN/MD models.
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