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Grand-canonical like descriptions of many electron atomic and molecular open systems which are
characterized by a non-integer number of electrons are presented. Their associated reduced density
matrices (RDMs) are obtained by introducing the contracting mapping for this type of distributions.
It is shown that there is loss of information when connecting RDMs of different order by partial con-
tractions. The energy convexity property of these systems simplifies the description. Consequently,
this formulation opens the possibility to a new look for chemical descriptors such as chemical po-
tential and reactivity among others. Examples are presented to discuss the theoretical aspects of this
work. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4832495]

The rearrangement of electron distributions in molecular
systems under the influence of external perturbations, inter-
nal conversions, conformational changes, or reactive interac-
tions is closely related to chemical reactivity which is rele-
vant to understand the molecular structure.1–3 The chemical
units involved in these processes are physical domains like-
wise, atoms, functional groups, or moieties within the molec-
ular structure which exchange electrons between them, and
possess a non-integer number of electrons interpreted as a
time average in a quantum state of an open system.2 Their
description is performed not only by means of the funda-
mental magnitudes like the energy and electron density, but
also their derivatives1 which incorporate the changes in the
number of particles and are at the very basis of the descrip-
tor definitions.1 The states of such a systems can neither be
described by a pure state nor for a canonical ensemble but
by a statistical ensemble of pure states with different number
of electrons, i.e., a grand-canonical like ensemble (GC). The
density matrices (DMs) describing the quantum state contain
the complete information about the system, i.e., from which
all properties may be determined.4, 5 Hence, the natural sce-
nario for this description is that of the p-order reduced den-
sity matrices (p-RDMs)6–8 in the GC framework, which are
the quantum marginal distributions obtained from an average
procedure over a subset of the variables of the DM, known
as contraction mapping,8, 9 and are simpler objects than the
DM.8 The systems in which we are interested are atomic and
molecular systems which exhibit a convex structure for their
electronic energy2 and DM.10 In this Communication we in-
troduce the contraction mapping for the GC description of the
molecular open systems, and thus the p-RDMs and the energy
of these systems are obtained within this framework. Also we

a)Author to whom correspondence should be addressed. Electronic mail:
rboc@df.uba.ar

analyze their consequences and present some applicative ex-
amples to illustrate the theoretical results.

The density matrix D describing the state of a system
stands for a weighted sum of the complete set of all accessible
M-electron pure state density matrices8 MD�N

k
= |�M

k 〉〈�M
k |

in the mixture, where |�M
k 〉 is the kth quantum state func-

tion in the antisymmetric M-electron Hilbert space FM ,5, 11

being its carrier space the entire Fock space F = ⊕∞
M=0 FM ,

where the
⊕

symbol indicates direct sum.11 Therefore, D is
expressed by

D =
∑
M

∑
�M

k

ω�M
k

∣∣�M
k

〉〈
�M

k

∣∣;
(1)∑

M

∑
�M

k

ω�M
k

= 1; ω�M
k

≥ 0,

where ω�M
k

stands for the statistical weight, i.e., probability
of occurrence of the pure |�M

k 〉 state in the mixture. These
states admit particle number fluctuation and hence the sys-
tem may possess a non-integer number of particles. We will
refer to it as the GC distribution. D is a Hermitian, posi-
tive semi-definite (its eigenvalues are null or non-negative),
bounded (the module of its elements is bounded), and finite
trace (full real space integration) matrix, and because of its
probabilistic interpretation it may be normalized to unity, i.e.,
tr(D) = ∑

M

∑
�M

k
w�M

k
= 1.4, 5 Canonical distribution (C)

(all states in the mixture possess the same number of parti-
cles N), expressed by ND = ∑

�N
k

ω�N
k

|�N
k 〉〈�N

k | and the
microcanonical (MC) distribution (all weights vanish except
one), i.e., pure states ND�N

k
= |�N

k 〉〈�N
k | are particular cases

of the more general GC distribution.
The fundamental chemical concepts are the summary of

the physical information contained in the p-RDMs of an N-
electron molecular system (p < N) which are derived from
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the DM and represent marginal distributions.8 Most of the at-
tempts to describe the electron distribution in molecular sys-
tems have been concentrated on the 1-RDM (1D) and 2-RDM
(2D), which determine electron densities and the energy of
the system and provide intuitive interpretations of chemical
data.1, 3, 12–14 Let us first sketch the contracting mapping (CM)
for C and MC distributions as the basis to introduce this op-
eration for the GC case. The CM, L̂N

p , applied to ND8, 9 gives
rise to the p-RDM, i.e., pD, for both canonical and pure states.
It stands for an averaging process over the remaining N − p
variables15 defined by

pD
i1,i2,...,ip
j1,j2,...,jp

=
(

N

p

)
L̂N

p {ND}

=
∑
�N

k

ω�N
k

pD
i1,i2,...,ip
j1,j2,...,jp

(
�N

k

)
, (2)

where pD
i1,i2,...,ip
j1,j2,...,jp

(�N
k ) = (N

p
) L̂N

p {ND�N
k
} represents the

p-RDM corresponding to the |�N
k 〉 accessible pure state of

the system and (N

p
) the combinatorial number for the Cole-

man normalization to the number of p-ons, i.e., number of
composite p-fermion particles,8 i.e., p = 1, 2, . . . stand for
the one-electron reduced density matrix 1D, the two-electron
reduced density matrix 2D, and so forth. The indices i,
j, . . . denote a set of orthonormal one-electron functions (spin-
orbitals) which represent the basis set. The p-RDMs are her-
mitian, positive semi-definite, and bounded.6–8 Other essen-
tial property is its representability defined as the constraints
that a given p-RDM must fulfill to be derivable from a DM
corresponding to GC, C, or MC system state (cf. Eq. (1)).8, 9

Let us remark that consequently for C and MC distributions
in which the number of particles is fixed for all states in the
distribution qD and pD (q < p) are connected by a contraction
operation.8, 9

The physical domains within the molecular structure
mentioned above possessing a non-integer number of par-
ticles N = N + ν with N ∈ N and ν ∈ R in the interval
ν ∈ (0, 1) (N and R fields of positive integer and real num-
bers, respectively) cannot be described either by a C or by
a MC. Therefore, the appropriate scenario for that goal is
the GC states (Eq. (1)), where the number of particles M
(M ∈ N) is not fixed4, 5 and then N may be considered as
an average.2 This distribution is expressed by the DM in Fock
space,5, 11 D ∈ F defined as D = ⊕∞

{�M
k } ω�M

k

MD�M
k

, where
MD�M

k
∈ FM , ω�M

k
≥ 0, and

∑∞
M≥0 ω�M

k
= 1. The introduc-

tion of the CM for GC states to obtain the p-RDMs is per-
formed by the application of the CM to D given by Eq. (1)
on the Fock space, hence it involves several states |�M

k 〉〈�M
k |,

whose number of particles fulfill the condition that M ≥ p,
i.e., the order of contraction p must be less than or equal to M.
Thus, several states in the mixture may contribute to a p-RDM
derived from a GC D, and all other states, whose M < p,
will not contribute to this distribution. Namely, the states with
M < p do not contribute because they are not able to support
p-distributions due to the number of particles they contain are
less than the required to form the composed p-particles in the
distribution, for instance, no pairs (p = 2) may be formed
from one particle systems, or 3-ons from two-particle sys-

tems, and so on. Therefore, the p-RDMs for this ensemble
may be defined by introducing the GC CM L̂p by

pD = L̂p{D} =
⊕

{�M
k ,M≥p}

ω�M
k

(
M

p

)
L̂M

p

{
MD�M

k

}
, (3)

where it was assumed that L̂M
p {MD�M

k
} = O f or M < p, and

L̂
p
p{pD�

p

k
} = I with I and O, the identity and null superop-

erators, respectively.16 These requirements complete the def-
inition for the CM in Fock space. Therefore, the p-RDM is
expressed by

pD =
⊕

{�M
k ,M≥p}

ω�M
k

pD�M
k
. (4)

The trace operation is calculated by Tr(pD) = ∑
{�M

k ,M≥p}
ω�M

k
(M

p
) = 〈(M

p
)〉, where 〈. . . 〉 indicates the average

number of p-ons. For instance, for p = 1, Tr(1D)
= ∑

{�M
k ,M≥1} ω�M

k
M = 〈M〉 is the average which can be

expressed by a non-integer number 〈M〉 = N + ν, as stated
above.

Some consequences arising from the reduced distribu-
tions in the GC framework are particularly interesting. In con-
trast with the C and MC states, in the GC distribution it is not
possible to obtain qD by contraction of a previously obtained
pD for q < p8 without losing some information, hence such
contraction may be performed only directly from D. It may
be noted by expressing qD as

qD =
⊕

{�M
k ,Mε[q,p)}

ω�M
k

qD�M
k

+
⊕

{�M
k ,M≥p}

ω�M
k

qD�M
k
, (5)

where the expression for qD has been split into two con-
tributions. The first term in Eq. (5) means that the num-
ber of particles of the |�M

k 〉 states belong to the half-open
interval q ≤ M < p, i.e., Mε[q, p), and the second term,
the contributions from those states with M ≥ p. This pro-
cess represents symbolically the direct contraction operation
D → qD. Let us consider a contraction process performed in
two steps with this previous one for comparison, i.e., to ob-
tain pD from D and then to obtain qD by pD contraction, in
symbols, D → pD → qD. It is clear that the difference be-
tween both contraction procedures to obtain qD is described
by the first term in Eq. (5). It is due to the fact that this term
would not be present in pD after D contraction. Hence, it
shows that the lost information distribution Iq,p, in perform-
ing the two step process, is Iq,p = ⊕

{�M
k ,Mε[q,p)} ω�M

k

qD�M
k

which indicates that the right marginal distributions within
the GC distribution must be obtained applying the CM
on D matrix in a one step process. Nevertheless, for
an interacting electron atomic or open molecular system
driven by a 2-particle Coulombic potential with Hamiltonian,
H = ∑

i,j hij c
†
i cj + 1

2

∑
i,j,k,l 〈ij |kl〉c†i c†j clck with c

†
i and

cj the standard creation/annihilation fermion operators, re-
spectively, hij the matrix elements of the mono-electronic
terms h, and 〈ij|kl〉 those of the Coulomb bi-electronic terms
of the Hamiltonian,17 the GC ground state DM possesses a
convex structure10 expressed by

D = (1 − ν) ND0 + ν N+1D0, (6)
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where ND0 and N+1D0 stand for the N and N + 1 particle
system DMs of a non-degenerate or removable degenerate
ground state, respectively.18 Therefore, it is straightforward
to see from Eqs. (5) and (6) that for this case there is no in-
formation loss, except for q = N and p = N + 1, i.e., for
q < N, the qD0 distribution can be equivalently obtained from
D or pD0 (q < p). Let us see some interesting consequences
from these results. The energy for a M-particle system may be
expressed by19

EM
0 = Tr

(
1DM

o h
) + Tr

(
2DM

o v
) = Tr

(
2DM

o
2KM

)
, (7)

where 1DM
o and 2DM

o are the ground state 1- and 2-RDMs
of the M-particle system as indicated by the supraindex
M, or equivalently, by virtue of the reduced Hamiltonian
2KM ,8, 18 EM

0 = Tr(2DM
o

2KM ) where its matrix elements are
(2KM )ijkl = 1

M−1 (hikδjl + hjlδik) + 〈ij |kl〉. Note that this
operator depends on the number of particles. Before in-
specting the form of the electronic energy of a non-integer
number of particle systems let us introduce the extension
of the uniqueness Rosina’s theorem.18 For an interacting
system this theorem establishes that the 2-RDM of a non-
degenerate or removably degenerate ground state of an M-
particle Hamiltonian with at most 2-particle interactions has a
unique preimage.18 Then if each one of the elements of the set
of ground states {|�M

o 〉, M = 1 . . . ∞} or equivalently their
DMs {MD�M

o
, M = 1 . . . ∞} are non-degenerate or remov-

ably degenerate states their associated 2-RDMs have a unique
preimage, and therefore the corresponding one for the GC
ensemble (cf. Eq. (4)) 2D = ⊕

{�M
o ,M≥2} ω�M

o

2D�M
o

is also
unique. In particular, in atomic or molecular systems, contrac-
tion of D in Eq. (6) leads to 2D = (1 − ν) 2DN

o + ν 2DN+1
o

and then the energy becomes

EN+ν
0 = Tr

(
N+1∑
M=N

ωM
2DM

o
2KM

)
= ν Tr

(2DN+1
o

2KN+1
)

+ (1 − ν) Tr
(

2DN
o

2KN

)
(8)

or equivalently EN+ν
0 = Tr(1DN+ν

0 h) + Tr(2DN+ν
0 v) which

means that the energy is a functional F of 2DM
o ,

2DM+1
o , and the fractional population number ν, i.e., EN+ν

0
= F(2DN+1

o , 2DN
o , ν).

We will present at this point some descriptive examples
to illustrate the potentialities of the above theory. Let us begin
at first considering a system in its ground state described at
the Hartree-Fock level of approximation, whose GC DM (cf.
Eq. (6)) reads

D = (1 − ν) |χ1 . . . χN 〉〈χ1 . . . χN |
+ ν |χ1 . . . χNχN+1〉〈χ1 . . . χNχN+1|, (9)

where {|χi 〉, i = 1, 2, . . . } stands for the set of spin-orbitals
in the Slater determinant states |χ1χ2 . . . 〉 of the N and
N + 1 electron systems assuming the frozen approximation.
Then, performing the CM operation for p = 1 (Eqs. (3) and

(6)), it yields

1D
N+ν = L̂1{D} = ν

(
N + 1

1

)
L̂N+1

1

(
N+1D0

)

+ (1 − ν)

(
N

1

)
L̂N

1

(
ND0

)
, (10)

where (N+1
1 )L̂N+1

1 (N+1D0) = 1D
N+1
0 and (N

1 )L̂N
1 (ND0)

= 1D
N

0 . Hence, 1D
N+ν = ν1D

N+1
0 + (1 − ν)1D

N

0 stands for
the 1-RDM of the N + ν particles system and introducing the
structure of each 1D

M

0
7 in Eq. (10) it follows

1D
N+ν

0 =
N∑

i=1

|χi 〉〈χi | + ν |χN+1〉〈χN+1|, (11)

where the first term of the r.h.s. stands for the 1D
N

0 and the
remaining term, ν|χN+1〉〈χN+1|, is the single occupied spin-
orbital contribution from state of the N + 1 system which is
the fraction of the density difference between the states of
N + 1 and N systems. Hence, it is immediate to obtain the
energy for this system from Eq. (7) as

EN+ν
0 = EN

0 + ν εN+1, (12)

where EN+ν
0 and EN

0 are the Hartree-Fock energies of the N
+ ν- and N-particle systems, respectively, and εN + 1 stands
for (N + 1)th orbital energy.19 The same procedure may
be followed for the case N − ν which yields EN−ν

0 = EN
0

− ν εN . Thus, the energy is that of the N-particle system plus
the ν fraction of the single occupied spin-orbital.

Other applications of importance are the determination
of the first derivatives of the energy and the electron den-
sity with respect to the number of particles N at fixed ex-
ternal field v. These magnitudes are at the basis of the def-
initions of two fundamental chemical descriptors defined
from the conceptual density functional theory:1, 3 the chem-
ical potential and the Fukui functions (reactivity indices),
respectively.1, 3

The chemical potential becomes defined by

μ =
(

∂EN
o

∂N

)
v

(13)

regarding that the ground state energy of these open systems
may be expressed by2, 10

EN±ν
0 = (1 − ν) EN

0 + νEN±1
0 , (14)

with EN±ν
0 , EN

0 , and EN±1
0 the energy of the systems with

N ± ν, N, and N ± 1 electrons, respectively, and because
∂N = ±∂ν (N = constant), this derivative becomes

μ± = ±
(

∂EN
o

∂ν

)
v

= ± (
EN±1

0 − EN
0

)
(15)

showing its discontinuity2 which yields

μ+ = EN+1
0 − EN

0 = −EA,
(16)

μ− = EN
0 − EN−1

0 = −IP,

where EA and IP stand for the electron affinity and the ion-
ization potential, respectively.19 Therefore, the generalization
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of these formulae using Eq. (16) is obtained as (EN+ν
o − EN

o )
+ (EN−ν

o − EN
o ) = IP N−ν − EAN+ν = ν(IP − EA). Fur-

thermore, the form of the Hartree-Fock energy (Eq. (12))
tempts to equate

IP ν = ν IP and EAν = ν EA (17)

where their physical meaning is based on the idea that on av-
erage ν electrons are removed or attached to the system, re-
spectively.

The other important example is the first derivative of the
electron density ρ(r) at point r in space with respect to the
number of particles at constant external field v 1, 3 defined by
f ±(r) = ( ∂ρ(r)

∂N )±v . They are known as Fukui functions or reac-
tivities. Following the same procedure as in the case of the en-
ergy, two derivatives arise regarding if N increases/decreases
from N to N ± ν, respectively, leading to f ±(r) = ±( ∂ρ(r)

∂ν
)±v .

Therefore, as ρ(r) is the diagonal element of 1D in the co-
ordinate representation,8 these functions can be generalized
to matrix form by F±(r|r′) = ±( ∂

∂ν
1D

N±ν
(r|r′))v and intro-

ducing 1D
N±ν

it follows

F±(r|r′) = ± (1D
N±1

(r|r′) − 1D
N

(r|r′)). (18)

This result represents a rigorous justification to the trial forms
used to build accurate Fukui functions.20 In conclusion, the
GC states to describe open molecular domains permit to in-
troduce statistical concepts to describe electron distributions
in the molecular structure even if they are few body systems.
The first derivatives of the energy and electron density ob-
tained from the GC states as fundamental chemical descrip-
tors extend their definitions out of the density functional the-
ory framework and thus these results are valid for any type of
state functions, i.e., independent as well as correlated mod-
els. Note that following the same arguments as those ap-
plied in Ref. 21, it is possible to obtain representations of D

with more than two terms but these are not states of minimal
energy.10
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