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We study the population dynamics of a ring-shaped optical lattice with a high number of particles
per site and a low, below ten, number of wells. Using a localized on-site basis defined in terms of
stationary states, we were able to construct a multiple-mode model depending on relevant hopping
and on-site energy parameters. We show that in case of two wells, our model corresponds exactly
to the latest improvement of the two-mode model. We derive a formula for the self-trapping period,
which turns out to be chiefly ruled by the on-site interaction energy parameter. By comparing to
time dependent Gross-Pitaevskii simulations, we show that the multimode model results can be
enhanced in a remarkable way over all the regimes by only renormalizing such a parameter. Finally,
using a different approach which involves only the ground state density, we derive an effective
interaction energy parameter that shows to be in accordance with the renormalized one.
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I. INTRODUCTION

The two-mode model applied to double-well atomic Bose-Einstein condensates has been extensively studied in the
last years [1–9] Assuming that the order parameter can be described as a superposition of localized on-site wave
functions with time dependent coefficients, such a model predicts Josephson and self-trapping regimes [1, 2], which
have been experimentally observed by Albiez et al. [5].
The self-trapping (ST) phenomenon, which is also present in extended optical lattices [10], is a non linear effect

where an initially highly populated (over a critical value) site, remains with a larger number of particles than the
remaining sites over all the evolution. There is nowadays an active research on the self-trapping effect, which involves
different types of systems, including mixtures of atomic species [11].
The dynamics of ring-shaped optical lattices with three [12] and four wells [13], has been previously investigated

through multiple-mode (MM) models which utilized ad-hoc values for hopping and on-site energy parameters. In the
present article instead, we will extract such parameters from a mean-field approach using localized on-site functions.
We have shown in a previous work [14] that in a ring-shaped optical lattice, localized on-site (which we called
‘Wannier-like’ (WL)) functions can be obtained in terms of stationary states of the Gross-Pitaevskii (GP) equation
with different winding numbers. Here we will show that the above parameters yield the same type of corrections to
the MM model for large filling factors, as those obtained for the improved two-mode (TM) model for two-well systems
[3].
We will derive an approximate formula for the self-trapping period in terms of the on-site interaction energy

parameter. Using this formula and a single GP simulation results, a renormalizing on-site energy parameter that
substantially improves the MM model can be obtained, in what will be called the renormalized multiple-mode (RMM)
model. Taking into account the density deformation during the time evolution [15], it has been shown in a recent
work that for a double-well system an effective interaction energy parameter should be considered in the TM model
to properly describe the exact dynamics [9]. Here we will adapt the same approach to our multiple-well system, which
will allow us to obtain such an effective parameter only in terms of the ground state density. Finally, we will show
that both approaches give similar results.
This paper is organized as follows. In Sec. II we describe the system and in Sec. III we outline the method for

obtaining the WL functions, along with the properties required for building a reasonable multimode model dynamics.
There we also define the model parameters in terms of the WL functions. In Sec. IV we specialize to the case of two
wells, showing that our treatment through the WL functions turns out to be exactly the same as the latest two-mode
model formulation [3]. Next, by means of the formula derived for the ST period, we show that the two-mode model
can be enhanced in a remarkable way by only renormalizing the on-site interaction energy parameter. In Sec. V
we develop the multiple-mode model, which generalizes our finding of the previous section. Finally, based on the
method described in Ref. [9], in Sec. VI we derive an effective interaction energy parameter and compare it with the
renormalized one. To conclude, a summary of our work is presented in Sec. VII.

II. RING-SHAPED LATTICE AND CONDENSATE PARAMETERS

We consider a Bose-Einstein condensate of Rubidium atoms confined by an external trap Vtrap, consisting of a
superposition of a toroidal term Vtoro and a lattice potential VL(x, y) formed by radial barriers. Similarly to the trap
utilized in recent experiments [16, 17], the toroidal trapping potential in cylindrical coordinates reads,

Vtoro(r, z) =
m

2

[

ω2
rr

2 + ω2
zz

2
]

+ V0 exp(−2 r2/ λ20) (1)

where m is the atom mass and ωr and ωz denote the radial and axial frequencies, respectively. We have set ωz >> ωr

to suppress excitation in the z direction. In particular, we have chosen ωr/(2π) = 7.8 Hz and ωz/(2π) = 173 Hz,

while for the laser beam we have set V0 = 100 h̄ωr and λ0 = 6 lr, with lr =
√

h̄/(mωr). On the other hand, the
lattice potential is formed by Nc Gaussian barriers located at equally spaced angular positions θk = 2πk/Nc, where
−[[(Nc − 1)/2]] ≤ k ≤ [[Nc/2]] with [[.]] denoting the integer part,

VL(x, y) = Vb

[[Nc/2]]
∑

k=−[[(Nc−1)/2]]

exp

{

− [cos(θk) y − sin(θk)x]
2

λ2b

}

Θ[sin(θk)y + cos(θk)x], (2)

where Θ denotes the Heaviside function. For the numerical calculations we have fixed the width of the Gaussians to
λb = 0.5 lr and the barrier height to Vb = 80 h̄ωr. In the mean-field approximation, the stationary states are solutions
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of the GP equation [18]

[

− h̄2

2m
∇2 + Vtrap(r) + g N |ψn(r)|2

]

ψn(r) = µψn(r), (3)

where ψn(r) denotes a two-dimensional (2D) order parameter [19] normalized to unity with winding number n [20].
The vorticity is numerically imprinted following the procedure described in Ref. [21]. N and µ denote, respectively,
the number of particles and the chemical potential (N = 105 will be assumed over all the numerical calculations).

The effective 2D coupling constant g = g3D
√

mωz/2πh̄ is written in terms of the 3D coupling constant between the

atoms g3D = 4πah̄2/m, where a = 98.98 a0 denotes the s-wave scattering length of 87Rb, a0 being the Bohr radius.
Technical advances have been recently achieved, to obtain experimentally this type of condensates in ring-shaped
optical lattices with an arbitrary number of sites [22].

III. LOCALIZED STATES AND HOPPING AND ON-SITE ENERGY PARAMETERS

In this section we will summarize the results obtained in a previous work [14] that will be used to describe the
present dynamics. We are interested in studying the Josephson and ST regimes. Such a dynamics takes place when
the ground-state chemical potential becomes smaller than the minimum of the effective potential barrier dividing two
lattice sites [20].

A. Localized WL states

The stationary states ψn(r, θ) are obtained as the numerical solutions of Eq. (3) [20]. Assuming large barrier
heights [14], the winding number n will be restricted to the values −[[(Nc − 1)/2]] ≤ n ≤ [[Nc/2]] [20]. We have seen
in Ref. [14] that stationary states of different winding number must be orthogonal, and that the following definition
for the WL functions

wk(r, θ) =
1√
Nc

∑

n

ψn(r, θ) e
−inθk , (4)

corresponds indeed to well localized functions on each k-site. In addition, it has been shown in Ref. [14] that the above
orthogonality implies that the set of Nc WL functions (4) located at different k-sites, must also form an orthonormal
set. In Fig. 1 we have depicted the WL function density w2

0 for several values of Nc, where it becomes clear that
they are certainly well-localized functions. Here it is important to recall that the main difference between our WL
function and a ‘true’ Wannier function consists in that only the former depends on the filling factor, i.e. the number
of particles at each site, as seen in Ref. [14]. One may also write the above stationary states in terms of these localized
functions,

ψn(r) =
1√
Nc

∑

k

wk(r, θ) e
inθk , (5)

which will be useful to describe the dynamics we are interested in.

B. Hopping and on-site energy parameters

The Nc-mode dynamics will be described in terms of the following parameters,

ε =

∫

d2r w0(r, θ)

[

− h̄2

2m
∇2 + Vtrap(r)

]

w0(r, θ) (6)

J = −
∫

d2r w0(r, θ)

[

− h̄2

2m
∇2 + Vtrap(r)

]

w1(r, θ) (7)

J ′ = −2 g

∫

d2r w3
0(r, θ)w1(r, θ) (8)
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FIG. 1. Density isocontours of the ground-state wave function |ψ0|
2 for Nc = 8 (a), and of the WL function w2

0(r) for the
following numbers of sites Nc = 8 (b), Nc = 4 (c), and Nc = 2 (d).

U = g

∫

d2r w4
0(r, θ), (9)

which due to the symmetry of the lattice can be written without loss of generality only in terms of the k = 0 and k = 1
sites. We want to mention that these parameters can also be efficiently evaluated through the alternative formulae
given in Ref. [14].

IV. TWO-MODE DYNAMICAL EQUATIONS

When the trapping potential consists of a double well, the condensate dynamics may be simply described through
a pair of coupled equations, which corresponds to the two-mode model. Such a TM dynamics has been extensively
studied in recent years [2]. Particularly, an improved version of this model [3] has been also applied to particles
exhibiting a dipolar interaction, which generates self-induced Josephson junctions in a similar toroidal geometry [7].

A. Dynamical equations in terms of the coefficients of well-localized functions

The commonly used ansatz for the TM wave function reads

ψTM(r, θ, t) = bR(t)ψR(r, θ) + bL(t)ψL(r, θ), (10)
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where ψR(r, θ) and ψL(r, θ) are well-localized functions at the right and left well, respectively. Such wave functions
are easily identified with the WL functions, namely ψR(r, θ) = w0(r, θ) and ψL(r, θ) = w1(r, θ), since from Eq. (4) we
get for Nc = 2,

w0(r, θ) =
1√
2
(ψ0(r, θ) + ψ1(r, θ)) , (11)

w1(r, θ) =
1√
2
(ψ0(r, θ)− ψ1(r, θ)) , (12)

which turns out to be identical to the standard TM variational proposal [1].
Note that the first excited state is an odd function of x, as required by the TM model (antisymmetric solution).

This can be easily verified by noting that the stationary state with winding number n = 1 has uniform phases at the
right and left well with values φ = 0 and φ = π, respectively [20]. Here we may recall that this only occurs in the
regime of large barriers [14], where ψ1(r) = ψ−1(r) may be taken as a real function that does not carry any angular
momentum, and hence does not correspond to a ‘vortex’ state [20].
In order to obtain the TM equations, we may replace the following order parameter, which is written in terms of

the WL functions according to the ansatz (10),

ψTM(r, θ, t) = b0(t)w0(r, θ) + b1(t)w1(r, θ) , (13)

in the time dependent GP equation,

ih̄
∂ψTM(r, θ, t)

∂t
=

[

− h̄2

2m
∇2 + Vtrap(r, θ) + g N |ψTM(r, θ, t)|2

]

ψTM(r, θ, t) . (14)

Making use of the orthonormality of the WL functions and recalling the definitions of hopping and on-site energy
parameters (Eqs. (6) to (9)) one obtains,

ih̄
db0
dt

= εb0 − Jb1 + UN |b0|2b0 −
J ′

2
N [2Re(b∗0b1)b0 + b1], (15)

ih̄
db1
dt

= εb1 − Jb0 + UN |b1|2b1 −
J ′

2
N [2Re(b∗1b0)b1 + b0]. (16)

The above equations correspond to the improved TM model developed in Ref. [3] and applied in Refs. [6, 7]. Here it
is worth noticing that we have disregarded in our derivation terms of the order of the following integral

I = gN

∫

d2r w2
0(r, θ)w

2
1(r, θ), (17)

since the corresponding contributions have been shown to be negligible, as also been argued in Ref. [3] for high
barriers.

B. Dynamical equations in terms of the particle imbalance and phase difference

A more convenient set of variables is obtained by observing that bk(t) = |bk(t)|eiφk(t), where φk(t) is the uniform
phase of the k-site and nk = Nk(t)/N = |bk(t)|2 denotes the corresponding filling factor. Following the same procedure
of Ref. [7], the equations of motion for the conjugate coordinates, namely imbalance Z = n0−n1 and phase difference
ϕ = φ1 − φ0 read,

dZ

dt
= −

√

1− Z2 sinϕ (18)

dϕ

dt
= ΛeffZ +

[

Z√
1− Z2

]

cosϕ, (19)
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where the time t (in the derivatives) has been expressed in units of h̄/2Jeff and we have defined Λeff = UN
2Jeff

, being

Jeff = J + J′

2 N . Note that the above equations possess the same structure as the standard TM ones, except that the
bare J has been replaced by an effective hopping parameter Jeff , which takes into account the interaction between
particles. It is interesting to recall that J may be negative, as occurs in the present calculations, while Jeff remains
always positive [14].

The TM equations (18) and (19) can also be derived from the following ‘classical’ Hamiltonian,

H(Z,ϕ) =
1

2
ΛeffZ

2 −
√

1− Z2 cosϕ , (20)

since we have

dZ

dt
= −∂H

∂ϕ

dϕ

dt
=
∂H

∂Z
. (21)

For low Λeff values the Hamiltonian exhibits only a minimum at (Z,ϕ) = (0, 0) and the dynamics becomes restricted
to Josephson type oscillations. For Λeff > 1 a maximum appears at ϕ = π and

ZM =

√

1− 1

Λ2
eff

, (22)

which gives rise to a self-trapping regime. Around this maximum the orbits are restricted to only one sign of the
imbalance. In other words, if one starts with a positive imbalance it always remains positive. A ST running-phase
mode [1] arises for Λeff > 2, which is characterized by an unbounded ϕ value. To find the value Zc above which the
dynamics becomes ST for ϕ(t = 0) = 0, we need to impose the condition H(Zc, 0) = H(0, π), which yields

Zc = 2

√
Λeff − 1

Λeff
. (23)

In this work we are interested in the range Λeff >> 1 and thus a small Zc value is attained. In fact, we have
calculated the values of on-site energy and hopping parameters, U = 6.73 × 10−4 h̄ωr, J = −3.66 × 10−4h̄ωr, and
J′

2 N = 5.05× 10−4 h̄ωr, from which we obtained the TM parameters, Jeff = 1.39× 10−4 h̄ωr and Λeff = 2.42× 105.

In addition, we have found I = 6.05 × 10−7 h̄ωr (Eq. (17)), which justifies having neglected terms proportional to
such a parameter in the equations.

In Fig. 2 we show the phase diagram (Z,ϕ) for |Z| < 0.012, since for larger values of |Z| the orbits are almost
horizontal. The thicker (green) lines correspond to exact numerical evolutions for the initial conditions: (|Z|, ϕ) =
(0.001, 0) (Josephson) and (|Z|, ϕ) = (0.006, 0) (ST). To obtain such simulations, we have solved the time dependent
GP equation with an initial wave function which reproduces the same initial condition assumed for the TM model
evolution. In order to compare the phase differences of both results, we have averaged the GP phase in each k-well
according to,

φk =

∫

d2r w2
k(r)φ(r) , (24)

where φ(r) denotes the phase of the GP wave function. We want to note that the Bloch states of Ref. [20] correspond
to equally populated wells with different winding numbers. In the double-well potential these states are represented
by the stationary points located at Z = 0 in Fig. 2. The minimum at ϕ = 0 corresponds to a vanishing winding
number, while the saddle point at |ϕ| = π corresponds to winding numbers with |n| = 1. The latter, however, does
not correspond to a vortex state, since it possesses zero angular momentum, as discussed in Ref. [20].

Typical time evolutions of Josephson oscillations and ST orbits are shown in Figs. 3 and 4, respectively. In Fig. 3
we depict Z and ϕ as functions of time for the GP simulations (solid line), together with the results arising from the
TM model (dot-dashed (blue) line). On the other hand, Fig. 4 shows the same evolutions for a larger initial imbalance,
where we clearly observe a self-trapping behavior. In both cases we may see that the TM model predicts a faster
dynamics than the GP simulation. As we will show in the next subsection, such a discrepancy can be substantially
reduced when using a renormalized on-site interaction energy parameter (dashed (red) line).
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FIG. 2. (Color online) Phase diagram of the improved TM model for imbalance Z and phase difference ϕ. The circle and
square points respectively indicate the positions of the minimum and saddle points of the Hamiltonian (20), while the star
points correspond to the critical value |Zc| (23). We have also depicted as thicker (green) solid lines the results of the GP
simulation for the initial conditions (|Z|, ϕ) = (0.001, 0) and (|Z|, ϕ) = (0.006, 0).

C. Characteristic times

In this subsection we will derive a formula for the period of ST oscillations. Before this, we recall that the Josephson
period in the limit of small oscillations reads [1, 6],

Tso =
πh̄

Jeff
√
Λeff + 1

. (25)

Replacing in the above equation the values of Sec. IVB, we obtain Tso = 46.0 ω−1
r . This is a rather good estimate

of the TM period in Fig. 3 ( TTM = 46.68 ω−1
r ), but it clearly underestimates the corresponding GP period (TGP ≃

53, 09 ω−1
r ).

On the other hand, the phase difference increases almost linearly with time for small imbalance oscillations in the
ST regime,

ϕ(t) ≃ 2π

TST
t , (26)

as seen in Fig. 4. Now, to be consistent with this approximation, we first rewrite Eq. (19) without the adimensionalized
time, and next approximate such an expression for Λeff = UN

2Jeff
>> 1 and |Z| << 1 as follows,

dϕ

dt
=
NU

h̄
Z +

2Jeff
h̄

[

Z√
1− Z2

]

cosϕ ≃ NU

h̄
Z ≃ NU

h̄
Z0, (27)

where Z0 = Z(t) denotes the mean value of the time dependent imbalance. Note in Fig. 4 that the maximum
departure of Z(t) from such a mean value lies within a 20 percent. Therefore, from (26) and (27) we may estimate
the ST period as,

TST =
2πh̄

U∆N
, (28)

where ∆N = Z0N denotes the time average of the particle number difference between sites. If we calculate such an
average from the TM model of Fig. 4, we obtain ∆N ≃ 520, from which Eq. (28) yields TST = 17.94 ω−1

r , that is a
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FIG. 3. (Color online) Josephson oscillation in the double-well system with an initial imbalance Z = 10−3. Imbalance (top
panel) and phase difference (bottom panel) are depicted as functions of time. The solid line corresponds to the GP simulation,
while the dot-dashed (blue) and dashed (red) lines correspond to TM evolutions with U = 6.73× 10−4 h̄ωr and a renormalized
on-site energy parameter UR = 5.28× 10−4 h̄ωr, respectively.

good estimate of the TM period of 18.04 ω−1
r in Fig. 4. Now, given that the TM dynamics turns out to be noticeably

faster than the GP evolution, while conserving the shape, it suggests that a renormalized value of U in (28) could
heal this mismatch. In fact, being TGP = 24.1 ω−1

r and ∆NGP = 494, we may propose to replace U in Eq. (28) by
the following renormalized on-site interaction energy parameter:

UR =
2πh̄

TGP∆NGP

= 5.28× 10−4 h̄ωr . (29)

Thus, we have repeated the numerical calculations of the TM model with the above parameter, finding an excellent
agreement with the GP results, as clearly observed in Figs. 3 and 4. It is also remarkable that the period for
small Josephson oscillations (25), gets now closer to the GP value when using the renormalized parameter (29)
(Tso = 51.5ω−1

r ). Therefore, a more accurate Hamiltonian (20) can be constructed by replacing U by UR in Λeff .

V. MULTIPLE-MODE DYNAMICAL EQUATIONS

The two-mode equations describing the boson Josephson junction dynamics of two weakly coupled Bose-Einstein
condensates [2], along with their recent improvements for high particle numbers [3, 4], can be generalized to multiple-
mode (MM) dynamical equations for Nc Bose-Einstein condensates forming a ring. In fact, we look for a solution of
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FIG. 4. (Color online) Same as Fig. 3 for a self-trapping evolution with an initial imbalance Z = 6× 10−3.

the time-dependent GP equation

ih̄
∂ψMM(r, θ, t)

∂t
=

[

− h̄2

2m
∇2 + Vtrap(r, θ) + g N |ψMM(r, θ, t)|2

]

ψMM(r, θ, t) (30)

within the variational ansatz

ψMM(r, θ, t) =

Nc−1
∑

k=0

bk(t) wk(r, θ), (31)

where the phase of the time-dependent complex amplitude bk corresponds to the uniform phase of the order param-
eter at the k-th site, while N |bk|2 yields the site population. Then, replacing (31) in (30) and making use of the
orthonormality of the set of WL functions, we may extract the following system of Nc nonlinear equations,

ih̄
dbk
dt

= εbk − J(bk−1 + bk+1) + UN |bk|2bk −
J ′

2
N{2Re[b∗k(bk−1 + bk+1)]bk

+ (|bk|2 + |bk−1|2)bk−1 + (|bk|2 + |bk+1|2)bk+1}. (32)

Note that the above expression assumes that each site k is surrounded by two different neighbors k− 1 and k+1, for
that reason the Nc = 2 case has been treated separately. In addition, the site denoted by k = Nc (k = −1) must be
identified with that of k = 0 (k = Nc − 1). If we use bk = |bk|eiφk , the time derivative in (32) reads

ih̄
dbk
dt

= h̄ (i
d|bk|
dt

− |bk|
dφk
dt

)eiφk . (33)
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Next, replacing (33) in (32), multiplying this equation by e−iφk and separating the real and imaginary parts, one
can, after some algebra, decouple Eq. (32) into the following 2Nc real equations, written in terms of population
nk = |bk|2 = Nk/N and phase difference ϕk = φk − φk−1,

h̄
dnk

dt
= −2J [

√
nk nk+1 sinϕk+1 −

√
nk nk−1 sinϕk]

− J ′N [
√
nk nk+1(nk + nk+1) sinϕk+1 −

√
nk nk−1(nk + nk−1) sinϕk] (34)

h̄
dϕk

dt
= UN(nk−1 − nk)

− J

[(
√

nk

nk−1
−
√

nk−1

nk

)

cosϕk +

√

nk−2

nk−1
cosϕk−1 −

√

nk+1

nk
cosϕk+1

]

− J ′N

2

[(

nk

√

nk

nk−1
− nk−1

√

nk−1

nk

)

cosϕk +

(

3
√
nk−2 nk−1 + nk−2

√

nk−2

nk−1

)

cosϕk−1

−
(

3
√
nk+1 nk + nk+1

√

nk+1

nk

)

cosϕk+1

]

. (35)

The above MM dynamical equations constitute the generalization of the TM pair of equations (18) and (19) for
Nc > 2. Note that similarly to the TM case, only 2Nc − 2 of the above equations are independent since the variables
must fulfill

∑

k nk = 1 and
∑

k ϕk = 0.

A. Four-well ring lattice

In order to compare the MM dynamics with the results of GP simulations, we have numerically integrated the
system (34)-(35) for Nc = 4 and two initial configurations. The model parameters utilized in this case were U =
1.38× 10−3 h̄ωr, J = −4.98× 10−4 h̄ωr and J ′ = 2.76× 10−8 h̄ωr.

1. Symmetric case

Here we consider initial conditions which are symmetric with respect to the right and left from the k = 0 well,
as also studied by De Liberato and Foot in Ref. [13]. Particularly, in Fig. 5 we have chosen the following initial
condition: N0 −M = 75 and Nk −M = −25 for the remaining sites, where M = N/Nc = 25000 denotes the mean
number of particles per site in the ground state. We may observe in the top panel that the population oscillates
around the mean value M without any periodicity, at least for the times involved in our numerical simulations. A
similar behavior for the phase difference has been depicted in the bottom panel of Fig. 5. Note that the MM model
again reproduces the shape of the GP evolution in a faster dynamics, as already observed for the TM model. Figure
6 shows the time evolution for the same symmetric initial configuration, but with a higher population in the k = 0
well (N0 −M = 300, Nk −M = −100 for k = 1, 2, 3). We observe in this case a clear ST regime, with the population
N0 −M , which keeps positive during the oscillations performed around N0 − 25000 ≃ 240, and an unbounded phase
that increases almost linearly with time.
Now we will generalize the treatment of Sec. IVC, to estimate the ST period in order to derive a renormalized

on-site energy parameter. First, according to the bottom panel of Fig. 6 we may approximate (cf Eq. (26))

ϕ1(t) ≃
2π

TST
t, (36)

and next, consistent with this approximation (cf Eq. (27)), we approximate Eq. (35) as,

dϕ1

dt
≃ UN(n0 − n1)

h̄
≃ U(N0 −N1)

h̄
, (37)

where the upper bar again denotes time average. Therefore, from (36) and (37) we may estimate the ST period as,

TST ≃ 2πh̄

U(N0 −N1)
(38)
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FIG. 5. (Color online) Time evolution of population N0 −M (top panel) and phase difference φ1 − φ0 (bottom panel), for the
four-well system and an initial condition N0 −M = 75, Nk −M = −25 (k = 1, 2, 3) with an uniformly vanishing phase. The
solid line corresponds to the GP simulation, while the dot-dashed (blue) and dashed (red) lines correspond to the MM and
RMM models, with on-site interaction energy parameters U = 1.38× 10−3 h̄ωr and UR = 1.08× 10−3 h̄ωr, respectively.

which, taking into account the value (N0 −N1) = 345 extracted from the MM results, yields TST ≃ 13 ω−1
r , in

accordance with the period of the MM model in Fig. 6 (dot-dashed (blue) lines). Then, we may repeat the procedure
of Sec. IVC and extract a renormalized on-site interaction energy parameter,

UR =
2πh̄

TGP(N0 −N1)GP

, (39)

where the values (N0 −N1)GP = 323 and TGP ≃ 18 ω−1
r , arising from the GP simulation results, yield UR =

1.08× 10−3 h̄ωr. The use of this renormalized U parameter in the MM calculations leads to a much better agreement
with the GP results, as clearly shown in Figs. 5 and 6. We will call this improved MM model as the renormalized
multiple-mode (RMM) model.

2. Non symmetric case

To test the quality of the above RMM model, we will analyze the time evolution of two non symmetric initial
configurations utilizing the same value for UR extracted in the previous section. In Figs. 7 and 8, we have plotted
the population and phase differences between adjacent sites, respectively, for an initial condition N0 −M = 600,
N1 −M = −300, N2 −M = −200, and N3 −M = −100. We may observe that the RMM model fits much more
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FIG. 6. (Color online) Same as Fig. 5 for an initial condition N0 −M = 300 and Nk −M = −100 (k = 1, 2, 3).

accurately the GP simulation results than the original MM model. A similar improvement may be observed in Figs. 9
and 10 for the second initial condition, N0−M = 300, N1−M = −300, and Nk−M = 0 for k = 2, 3. As inferred from
Figs. 7 and 8, such a configuration presents self-trapping in the k = 0 site, while for the second initial condition, this
system exhibits self-trapping in the k = 0 site, self-depletion in the k = 1 site, and an irregular oscillatory dynamics
around the mean number of particles on the remaining wells, as seen from Figs. 9 and 10. The latter configuration
had been previously described by means of a standard MM model by De Liberato and Foot [13].

B. Eight-well ring lattice

To conclude we will explore a ring lattice consisting of a larger number of wells, Nc = 8. The corresponding MM
parameters are as follows, U = 2.918× 10−3 h̄ωr, J = −1.898× 10−3 h̄ωr, and J

′ = 2.118× 10−7 h̄ωr. In Fig. 11, we
have depicted the population of the site k = 0 and the phase difference between the k = 1 and k = 0 sites, for three
different initial conditions. Then, we may obtain as before a renormalized on-site energy parameter UR from the GP
results of the ST regime depicted on the right panels of Fig. 11. In fact, replacing the ST period TGP ≃ 8.4 ω−1

r and
the average difference (N0 −N1)GP ≃ 335 in Eq. (39), we obtain a RMM model parameter UR = 2.2 × 10−3, which
yields a sizable improvement to the MM results, as seen in Fig. 11.
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FIG. 7. (Color online) Particle number differences between neighboring sites for Nc = 4 and the initial condition N0−M = 600,
N1 −M = −300, N2 −M = −200, and N3 −M = −100. The solid line corresponds to the GP simulation, while the dot-
dashed (blue) and dashed (red) lines correspond to the MM and RMM models, with on-site interaction energy parameters
U = 1.38× 10−3 h̄ωr and UR = 1.08× 10−3 h̄ωr, respectively.

VI. CALCULATION OF THE EFFECTIVE INTERACTION ENERGY PARAMETER USING THE

GROUND-STATE DENSITY

Recently it has been demonstrated [9] that for a double-well system, the on-site interaction energy dependence on
the imbalance should be taken into account in the two-mode model, in order to accurately describe the exact dynamics.
There, using a Thomas-Fermi density, a linear dependence with the imbalance has been analytically encountered, and
this has been shown to give rise to an effective interaction energy parameter in the two-mode equations of motion.
Here we generalize, beyond the Thomas-Fermi approximation, that result to the case of multiple-well configurations.
Following the procedure of Ref. [9] adapted to Nc wells and using numerically obtained densities, we have to evaluate
the quotient

Uk

U
≃

∫

d2r ρN (r) ρN+∆N (r)
∫

d2r ρ2N (r)
, (40)

where we have further assumed in (40) that instead of localized on-site densities, we may use the ground-state
densities ρN (r) and ρN+∆N(r) normalized to unity of systems with N and N + ∆N particles, respectively, being
∆N = Nc∆Nk = NcNk −N .
Numerical calculations of the r.h.s. of (40) are depicted in Fig. 12, where we may observe a linear behavior with

Nc∆Nk/N for different numbers of lattice sites. Note that the apparent counterintuitive decrease of this function
with the site population is related to the fact that the densities must be normalized to unity.
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FIG. 8. (Color online) Same as Fig. 7 for the phase differences between neighboring sites.

Taking into account this linear dependence of the on-site energy parameter we may write

Uk

U
≃ 1− α

Nc∆Nk

N
, (41)

where the values of α in Table I correspond to the linear fits of the points in Fig. 12. To include this correction in
the MM model we must evaluate [9],

Uk−1

U
Nk−1 −

Uk

U
Nk =

(

1− α
Nc∆Nk−1

N

)(

∆Nk−1 +
N

Nc

)

−
(

1− α
Nc∆Nk

N

)(

∆Nk +
N

Nc

)

(42)

which yields,

Uk−1

U
Nk−1 −

Uk

U
Nk = (1− α)(Nk−1 −Nk)− α(Nk−1 −Nk)[

Nc(Nk−1 +Nk)

N
− 2]. (43)

And finally replace the last result in the first term of the r.h.s. of Eqs. (19) and (35). By analyzing the term

α(Nk−1 −Nk)[
Nc(Nk−1 +Nk)

N
− 2] = α(Nk−1 −Nk)

Nc(∆Nk−1 +∆Nk)

N
, (44)

we first note that in the double well case it is identically zero, while for other studied cases Nc(∆Nk−1+∆Nk)
N << 1

(cf. the range of Nc∆Nk/N in Fig. 12). Thus, disregarding such a term, we in fact obtain a correction that can be

regarded as a reduced effective interaction parameter Ũ = (1 − α)U . Note that this result is in accordance with our
previous analysis which yielded the renormalized parameter UR using characteristic times, while the corresponding
quantitative agreement is shown in Table I.
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FIG. 9. (Color online) Same as Fig. 7 for an initial condition N0 −M = 300, N1 −M = −300, Nk −M = 0 (k = 2, 3).

TABLE I. Linear correction coefficient α of the on-site interaction energy parameter of the k-site (Eq. (41)), and effective Ũ ,
renormalized UR, and bare U interaction energy parameters, for three numbers of wells Nc. The interaction energy parameters
are given in units of h̄ωr.

Nc α Ũ UR U

2 0.208 5.33× 10−4 5.28 × 10−4 6.73× 10−4

4 0.214 1.09× 10−3 1.08 × 10−3 1.38× 10−3

8 0.228 2.25× 10−3 2.22 × 10−3 2.92× 10−3

VII. SUMMARY AND CONCLUDING REMARKS

We have investigated the dynamics of ring-shaped optical lattices with a high number of particles per site. To this
aim, we have derived the equations of motion for population and phase differences between neighboring sites of a
generalized multimode model that utilizes a localized on-site Wannier-like basis. We have shown that in case of a
double-well system, this approach coincides with the latest improved two-mode model [3].

To test the quality of our model, we have numerically solved the time dependent GP equation for different numbers
of wells, particularly 2, 4, and 8. By realizing that the self-trapping time period turns out to be chiefly ruled by the
on-site interaction energy parameter, and utilizing the output of a single GP simulation, we were able to renormalize
such a parameter. The use of this renormalized parameter in the multimode equations strikingly led to a much better
agreement with the GP results for all investigated initial conditions, of which only a few representative were included
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FIG. 10. (Color online) Same as Fig. 9 for the phase differences between neighboring sites.

in this report. Finally, we have shown that the effective interaction energy parameter, which takes into account the
deformation of the density during the time evolution, yields results that are in good agreement with the previously
obtained for the renormalized parameter.
To conclude, we wish to emphasize that the two-mode model has predicted, even in its improved version [3], a

sizable faster evolution than our GP simulation results, as discussed in Sec. IVC. The same behavior is observed
in previous experimental and theoretical works dealing with other type of double-well systems (see, e.g., [6, 23] and
references therein). We believe that also in these systems as in our case, the TM model with an effective reduction
of the on-site interaction energy parameter numerically calculated as here proposed, should provide a more accurate
dynamics.
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