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Abstract. We study how helicity affects the spectrum of a passive scalar in rotating

turbulent flows, using numerical simulations of turbulent flows with or without

rotation, and with or without injection of helicity. Scaling laws for energy and

passive scalar spectra in the direction perpendicular to the rotation axis differ in

rotating helical flows from the ones found in the non-helical case, with the spectrum of

passive scalar variance in the former case being shallower than in the latter. A simple

phenomenological model that links the effects of helicity on the energy spectrum with

the passive scalar spectrum is presented.
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1. Introduction

Enhanced mixing and transport are some of the most important properties of turbulent

flows. These properties, sometimes characterized by a turbulent diffusivity, result in

rapid homogenization of any mixture of different fluids, are used for many applications

[1, 2], and are also relevant in many atmospheric and oceanic flows [3]. In many of these

flows rotation is important, and it is widely accepted that turbulent mixing is affected

by the presence of rotation [4, 5, 6].

Several studies consider the effect of rotation in the energy cascade. While the

energy still undergoes a direct cascade, there is evidence that at moderate rotation

rates a fraction of the energy can also undergo an inverse energy cascade, resulting in

accumulation of energy at scales larger than the energy injection scale [7, 8]. Nowadays,

it is also known that the presence of rotation sets a preferential direction for the transfer

of energy in spectral space, with the energy going towards modes with small parallel

wavenumber (where parallel is defined relative to the rotation axis), and resulting in a

quasi-bidimensionalization of the flow [7, 9, 10]. The energy flux is also reduced (when

compared with the homogeneous and isotropic case) per virtue of the extra resonance

(or quasi-resonance) condition that triads must fulfil for the coupling between modes

to be effective [7, 10]. This results in a steeper energy spectrum than the one expected

from Kolmogorov phenomenology. The effect of helicity in rotating turbulence has

received less attention, although it is known that helicity is relevant in many atmospheric

processes, such as convective thunderstorms [11, 12, 13], and it is also known to be

important in flows in blood vessels [2]. For this latter case, results in [14] indicate that

helicity affects the energy transfer to smaller scales, making the energy spectrum even

steeper than in the rotating non-helical case.

A paradigmatical way to study turbulent mixing is to consider the advection and

diffusion of a passive scalar by a turbulent velocity field. When the flow is turbulent,

mixing and transport of a scalar quantity (such as density of pollutants or aerosols)

is greatly enhanced. The turbulent diffusion of a passive scalar in two-point closures

is related to the amplitude of the velocity turbulent fluctuations [15], and therefore

it can be expected that changes in the scaling law followed by the energy spectrum

should affect the dynamics of the passive scalar. The scaling (including intermittency)

of passive scalars in isotropic and homogeneous turbulent flows was studied in [16], and

later in [1, 17, 18, 19]. The Kraichnan model [20] allowed computation of all scaling

exponents of the passive scalar for a random, delta-correlated in time velocity field.

The predictions are in good agreement in results from numerical simulations [18], which

obtained a joint cascade of energy and passive scalar variance following the same scaling

law given by the Kolmogorov spectrum [21], except for intermittency corrections.

Passive scalars in rotating turbulence have also been studied in numerical

simulations, showing that the transport is affected by rotation and anisotropy [22, 23].

Recent numerical studies or rotating turbulence [24] show that passive scalar variance

is transferred preferentially toward modes with small parallel wavenumbers (i.e.,



Passive scalar cascades in rotating helical and non-helical flows 3

quasi-bidimensional modes), following an inertial range scaling consistent with the

bidimentionalization of the flow. Furthermore, the results show that perpendicular

structure functions of the passive scalar have anomalous scaling consistent with the

Kraichnan model in a two dimensional (2D) space, again indicating strong anisotropic

mixing and transport of scalar quantities in rotating flows. Experimental evidence

of anomalous scaling of passive scalar structure functions in rotating flows was also

observed in [25].

Stochastic models and two-point closures indicate that two-particle dispersion in

rotating turbulent flows is highly anisotropic, with different dispersion in the direction

parallel and perpendicular to the rotation axis [4, 5, 26], which can be related to the

diffusion of passive scalars. Numerical simulations [6] also found that the turbulent

diffusivity becomes anisotropic with rotation, reducing horizontal transport to a much

lesser extend than vertical transport.

As for the case of the effect of helicity in the transport and mixing of passive scalars,

it was showed in [27] that helicity affects passive scalar diffusivity in a turbulent flow.

For isotropic and homogeneous turbulence, it is argued that the lack of reflectional

symmetry (related with a non zero value of the helicity) produces a turbulent skew-

diffusion perpendicular to the local mean scalar gradient. Later, it was shown in [15]

using renormalization groups that while anomalous scaling of the passive scalar is not

affected by helicity, the turbulent diffusion is. However, the effect of helicity in the

transport of scalar quantities in rotating helical flows has not been considered.

The aim of this paper is to study how helicity affects the spectrum of a passive

scalar in a rotating turbulent flow. The spectrum and flux are studied in numerical

simulations of turbulent flows with or without rotation, and with or without injection

of helicity, to identify spectral indices in the inertial range of the direct energy and

passive scalar cascades. The simulations are done with a parallel pseudospectral code

with periodic boundary conditions [28, 29], using a spatial resolution of 5123 grid points.

Forcing used for all fields is a superposition of random modes, delta-correlated in time,

with controllable helicity injection, which in the simulations presented here is either zero

or maximal.

Scaling laws for energy and passive scalar spectra in the direction perpendicular to

the rotation axis differ in rotating helical flows from the ones found in the non-helical

case. A phenomenological argument that links the effects of helicity on the energy

spectrum with the passive scalar spectrum is also presented.

2. Equations and numerical simulations

The data analized in the following section is obtained from direct numerical simulations

of the incompressible Navier-Stokes equations for the velocity field u together with the

equation for the passive scalar θ, given by

∂tu+ u · ∇u = −2Ω× u−∇p+ ν∇2u+ f , (1)
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∇ · u = 0, (2)

∂tθ + u · ∇θ = κ∇2θ + φ, (3)

where p is the pressure divided by the (uniform) mass density, ν is the kinematic

viscosity, and κ is the scalar diffusivity. Here, f is an external force that drives the

turbulence, φ is the source of the scalar field, and Ω = Ωẑ is the rotation.

The numerical code used to solve Eqs. (1)-(3) in a three dimensional domain of size

2π with periodic boundary conditions is a second-order in time pseudospectral code,

parallelized using the Message Passing Interface (MPI) library and OpenMP [28, 29, 30].

To solve the pressure, we take the divergence of Eq. (1), use the incompressibility

condition (2), and solve the resulting Poisson equation. To evolve in time a Runge-

Kutta method with low storage is used. The code uses the 2/3-rule for dealiasing,

and as a result the maximum resolved wave number is kmax = N/3, where N = 512

is the linear resolution. All simulations presented are well resolved, in the sense that

the dissipation wave numbers kν and kκ (respectively for the kinetic energy and for the

passive scalar) are smaller than the maximum wave number kmax at all times.

Dimensionless parameters used to control the simulations are the Reynolds Re, the

Peclet Pe, and the Rossby Ro numbers, respectively given by

Re =
UL

ν
, (4)

Pe =
UL

κ
, (5)

and

Ro =
U

2LΩ
, (6)

where U is the root mean square velocity, and L is the flow forcing scale defined as

L = 2π/kF with kF the forcing wave number. For most of the simulations shown in the

following section U ≈ 2, and all runs have ν = κ (i.e., Pe = Re). The forcing used for

the velocity field as well as for the passive scalar is a superposition of Fourier modes

with random phases, delta-correlated in time, and the amount of helicity injected is

controlled by correlating the velocity field components and the phases between Fourier

modes using the method described in [31].

Both the kinetic energy and the passive scalar variance were injected at the same

wave number kF . One set of runs (set A) has external forcing applied at k ∈ [1, 2]

(therefore kF ≈ 1, and the simulations have the largest possible separation of scales

between the forcing wavenumber and the largest resolved wavenumber). Another set of

runs (set B) has forcing at k ∈ [2, 3] (then kF ≈ 2). Finally, a third set of runs is forced at

kF = 3 (set C). For the last set of runs, the choice of kF = 3 results in a small separation

of scales between the box size and the forcing scale, allowing for some of the energy to be

transferred to larger scales in the presence of rotation (although the separation of scales

is not large enough to study the inverse cascade). This reduces the Reynolds number

and results in a narrower direct cascade inertial range, since the separation between the
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forcing and the dissipation scale is reduced. However, the incipient inverse transfer of

energy that develops is important for the development of a dominant direct cascade of

helicity when helicity is injected in the presence of rotation (see [14]). The three sets

of runs allow us to compare runs with similar Rossby numbers (albeit with different

Reynolds numbers) while varying the amount of helicity. While the flows in set B are

helical, the flows in sets A and C are non-helical (more details of the runs in sets A and

C can be found in [24]).

The simulations were performed as follows: first a simulation of the Navier-Stokes

equation with Ω = 0 was done, until a turbulent steady state was reached (this requires

an integration for approximately ten turnover times). Then the passive scalar was

injected, and the run was continued for other ten turnover times until a steady state for

the passive scalar was reached (these runs correspond to runs A1, B1, and C1). Finally,

rotation was turned on. Different values of Ω were considered to have similar Rossby

numbers in all the runs with Ω 6= 0. All the runs with rotation in each set were started

using as initial conditions for the velocity and the passive scalar the latest output of

the runs without rotation in the same set (runs A1, B1, or C1 respectivelly). Each of

the runs with rotation was continued for over twenty turnover times. Parameters for all

runs are listed in Table 1.

Table 1. Parameters used in the simulations: kF is the forcing wavenumber, Ω is the rotation

angular velocity, Ro is the Rossby number, ν the kinematic viscosity, Re the Reynolds number,

U the r.m.s. velocity in the turbulent steady state, and H = 〈u · ∇ × u〉 is the total helicity

(averaged in time).

Run kF Ω Ro ν Re U H

A1 1 0 ∞ 6× 10−4 1000 2 0

A2 1 4 0.04 6× 10−4 1000 2 0

B1 2 0 ∞ 5× 10−4 600 2 3

B2 2 8 0.04 5× 10−4 600 2 6

B3 2 16 0.04 5× 10−4 600 4 11

C1 3 0 ∞ 6× 10−4 240 2 0

C2 3 12 0.04 6× 10−4 240 2 0

3. Numerical results

3.1. Effect of rotation

Figure 1 shows the isotropic energy E(k) and passive scalar variance V (k) spectra for

run A1 (without rotation and without helicity injection). An inertial range can be

identified, where energy and passive scalar follow a k−5/3 scaling law, as expected from

previous studies of passive scalar in isotropic and homogeneous turbulence [1, 17, 18].

Runs B1 and C1, also without rotation but forced at different wavenumbers (and in the

case of run B1, with helicity) show the same scaling.
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Figure 1. Isotropic energy (solid line) and passive scalar (dashed line) spectrum

for run A1 (without rotation and without helicity injection). Kolmogorov scaling is

indicated as a reference.

Figure 2. (a) Reduced perpendicular spectrum for the energy (solid line) and for the

passive scalar variance (dashed line) for (a) run A2 (Ω = 4), and (b) run C2 (Ω = 12).

Scaling laws ∼ k−2

⊥
and ∼ k

−3/2
⊥

are indicated as references.

.
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Figure 3. (a) Reduced perpendicular spectrum for the energy (solid line) and for the

passive scalar variance (dashed line) compensated respectivelly by −2 and −3/2 in run

A2. (b) The same for run C2.

.

In Fig. 2 we show the energy and passive scalar reduced perpendicular spectra,

respectively E(k⊥) and V (k⊥), for runs A2 and C2 (corresponding to flows with rotation

but without net helicity, see table 1). The reduced perpendicular spectrum is obtained

by summing over all wavenumbers in Fourier space in cylindrical shells with radius

k⊥ =
√

(k2
x + k2

y), to take into account the fact that the flows become anisotropic in the

presence of rotation (see [10, 32] for definitions and details of anisotropic spectra).

As can be seen in Figs. 2(a) and 2(b), inertial range scaling can be identified for

both the energy and the passive scalar variance, although with different power laws. The

reduced perpendicular energy spectrum follows a ∼ k−2
⊥ scaling. This power law has

been already reported in numerical simulations and experiments of rotating turbulence

(see, e.g., [33, 14]), and is consistent with simple phenomenological models based on

a slow down of the energy transfer associated with the interaction between waves and

eddies [34, 33, 14], as well as with more detailed two-point closures [9, 10]. The passive

scalar inertial range displays a scaling compatible with ∼ k
−3/2
⊥ scaling, as also reported

in [24]. These power laws can be further confirmed when the spectra are compensated

(see Figs. 3(a) and 3(b)). Unlike the case of isotropic and homogeneous turbulence, in

the presence of rotation the kinetic energy and the passive scalar show different power
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Figure 4. (a) Energy flux Π(k) (solid line) and passive scalar flux σ(k) (dashed line) for

the run without rotation C1. (b) Perpendicular energy flux Π(k⊥) and perpendicular

passive scalar flux σ(k⊥) for the run with rotation C2.

laws in the inertial range.

The inertial ranges indicated in Figs. 2 and 3 correspond to direct cascades of energy

and scalar variance. This can be confirmed from the energy and passive scalar spectral

fluxes shown in Fig. 4 for runs C1 and C2 (respectively without and with rotation). In

the non-rotating case, energy shows a range of approximately constant (and positive)

flux, indicating energy is transferred toward smaller scales, while the energy flux is

negligible for wave numbers smaller than the forcing wave number (k < kF = 3).

The passive scalar variance also direct cascades to smaller scales with a range of wave

numbers with approximately constant flux. When rotation is present, the energy

flux becomes negative for k < kF (indicating a fraction of the energy is transferred

towards scales larger than the forcing scale, although without enough scale separation

to develop an inverse cascade), while the energy flux towards smaller scales remains

positive although it decreases when compared with run C1. For the passive scalar,

no significative flux toward larger scales is observed, and the cascade remains direct

with also a small decrease of the positive (direct) flux for k > kF when compared with

non-rotating case.
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Figure 5. (a) Reduced perpendicular helicity spectrum, (b) energy spectrum, and (c)

passive scalar spectrum for run B2 (helical turbulent flow with Ω = 8). In all cases

slopes are indicated as references.

3.2. Effect of helicity

Now we analyze the runs with rotation and with maximal helicity injection, resulting

in anisotropic helical turbulent flows. Figures 5 and 6 show the helicity, energy, and

passive scalar reduced perpendicular spectra for runs B2 and B3. Slopes with reference

values for the scaling in the inertial range are also indicated. While without rotation

helicity does not change the scaling of the passive scalar spectrum, in the rotating case
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Figure 6. (a) Reduced perpendicular helicity spectrum, (b) energy spectrum, and (c)

passive scalar spectrum for run B3 (helical turbulent flow with Ω = 16). In all cases

slopes are indicated as references.

a difference is observed. A careful analysis of the spectrum indicates that the passive

scalar is close to a∼ k−1.4
⊥ power law, a spectrum slightly shallower than the one observed

in runs A2 and C2. The shallower spectrum observed for V (k⊥) is associated with a

change in the energy spectrum when helicity is present.

The energy spectrum in (helical) runs B2 and B3 is steeper than in the (non-

helical) runs A2 and C2, as can be also seen in Figs. 5 and 6. The inertial ranges

are compatible with a ∼ k−2.2
⊥ power law. This result is compatible with the results
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Figure 7. Reduced perpendicular spectra for the helicity (dash-dotted line), energy

(solid line), and passive scalar (dashed line) compensated respectively by k−1.8
⊥

, k−2.2
⊥

,

and k−1.4
⊥

, in helical runs (a) B2 and (b) B3.

reported in [14], where numerical simulations were presented showing that in rotating

helical flows the direct flux of helicity dominates over the direct flux of energy, affecting

the scaling law for the energy in the direct cascade range. A phenomenological argument

was also presented, which assuming the direct cascade of helicity is dominant, results

in a spectrum E(k⊥)H(k⊥) ∼ k−4
⊥ . In other words, if the energy spectrum satisfies

E(k) ∼ k−n, then the helicity should scale as H(k) ∼ k4−n; n becomes larger (and the

energy spectrum steeper) as the flow becomes more helical, with the limit n = 2.5 for

the case of a maximally helical turbulent flow (in practice, this limit cannot be obtained,

as a flow with maximal helicity has the non-linear term in the Navier-Stokes equation

equal to zero, and therefore no transfer can take place).

The behavior of the helicity spectrum in runs B2 and B3 is consistent with the

phenomenological argument described above. In Figs. 5 and 6, a scaling ∼ k−1.8
⊥

is indicated as a reference, which seems compatible with the behavior of H(k⊥).

Compensated spectra for the energy, the helicity, and the passive scalar for runs B2

and B3 are shown in Fig. 7. A good agreement between the reference slopes and the

numerical data is apparent.

Following the phenomenological argument mentioned above for the energy
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spectrum, we can put forward a simple argument to explain the difference observed

in the scaling of the passive scalar in rotating helical and non-helical turbulent flows.

From Eq. (3), it can be seen on dimensional grounds that for scales in the inertial range,

the passive scalar flux across the scale l⊥ (equal to the passive scalar injection rate)

σ = ∂t 〈θ
2〉 must be

σ ∼
θ2l⊥ul⊥

l⊥
, (7)

where θl⊥ is the characteristic concentration of the passive scalar at the scale l⊥, and

ul⊥ the characteristic velocity (since the flow becomes anisotropic in the presence of

rotation, we are assuming most of the fluctuations are concentrated in structures with

weak variation in the direction along the axis of rotation). If σ is constant in the inertial

range, we can estimate the passive scalar spectrum V (k⊥) ∼ θ2l⊥/k⊥ from Eq. (7) as

V (k⊥) ∼
σl2⊥
ul⊥

. (8)

If the energy spectrum is E(k⊥) ∼ k−n
⊥ , and therefore the characteristic velocity at a

scale l⊥ is ul⊥ ∼ l1−n
⊥ , the passive scalar spectrum results

V (k⊥) ∼ σl
5−n

2

⊥ ∼ σk
− 5−n

2

⊥ . (9)

Therefore, the spectral index for the passive scalar is given by nθ = (5 − n)/2. This

result is also valid in the isotropic case, provided l⊥ is replaced by l.

The numerical results are in good agreement with this simple phenomenological

argument. If n ≈ 2 (runs with rotation but without helicity), then nθ ≈ 3/2. On the

other hand, if n ≈ 2.2 (compatible with the spectrum observed in the runs with rotation

and helicity), then nθ ≈ 1.4.

That the fluxes are still positive (i.e., the cascades direct) and approximately

constant (within the limitations imposed by the spatial resolution and the moderate

Reynolds numbers considered) in rotating helical flows can be confirmed from the

helicity, energy, and passive scalar fluxes shown in Fig. 8 for runs B2 and B3 (the

helicity flux in the figure is divided by kF to compare all fluxes with the same units). As

in the runs without helicity, the energy flux shows some inverse transfer towards larger

scales for k < kF , while all other fluxes are positive everywhere indicating quantities are

not transferred towards larger scales. An excess of helicity flux (when compared with

the energy flux) can be observed, in agreement with the arguments of dominance of the

helicity cascade in [14].

We finish the analysis of the runs by quantifying the degree of anisotropy in the

velocity field and in the passive scalar distribution. As already mentioned, the presence

of rotation results in a preferred transfer of energy towards two-dimensional modes. This

motivated our study of the energy and passive scalar spectral scaling using the reduced

perpendicular spectrum instead of the usual isotropic spectrum. We now quantify how

much energy and passive scalar variance is in two-dimensional modes in each of the

runs. Several anisotropy measures can be used to this end [9, 10, 35]. As an example,
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Figure 8. Perpendicular helicity flux Σ(k⊥)/kF (dash-dotted line), energy flux Π(k⊥)

(solid line), and passive scalar flux σ(k) (dashed) for runs (a) B2 and (b) B3.

the ratio of energy in all modes with k‖ = 0 to the total energy, i.e., E(k‖ = 0)/E, can

be used to characterize large scale anisotropy [14]. For a purely two-dimensional flow,

this ratio is equal to one. For the passive scalar, the equivalent quantity V (k‖ = 0)/V

can also be used. Finally, in helical flows we can also compute H(k‖ = 0)/H to quantify

large scale anisotropy of the helicity.

Table 2. Anisotropy in helical and non-helical runs with rotation. E(k‖ = 0)/E is the ratio

of energy in all modes with k‖ = 0 to the total energy, V (k‖ = 0)/V is the ratio of scalar

variance in modes with k‖ = 0 to the total scalar variance, and H(k‖ = 0)/H is the ratio of

helicity in k‖ = 0 modes to the total helicity. The angles αu, αθ, and αH are respectively the

Shebalin angles for the velocity, the passive scalar, and the helicity.

Run E(k‖)/E(k) V (k‖)/V (k) H(k‖)/H(k) tan2αu tan2αθ tan2αH

A2 0.5 0.4 − 13 20 −

B2 0.6 0.25 0.27 17 37 14

B3 0.4 0.24 0.17 18 76 20

C2 0.2 0.1 − 14 50 −

As can be seen in Table 2, in all runs a substantial fraction of the energy, the

passive scalar variance, and (to a lesser extent) the helicity, is in two-dimensional modes.

Helicity does not seem to affect the large-scale anisotropy. Independently of the helicity
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in the flow the energy is more anisotropic at large scales than the passive scalar, as

already found for non-helical rotating flows in [24].

To characterize small scale anisotropy, the Shebalin angles can be used [36, 37]. For

the velocity field, the Shebalin angle is defined as

tan2(αu) = 2 lim
l→0

S2(l⊥)

S2(l‖)
= 2

∑

k⊥

k2
⊥E(k⊥)/

∑

k‖

k2
‖E(k‖), (10)

where S2(l‖) and S2(l⊥) are the second order longitudinal structure functions of the

velocity, respectively with spatial increments in the direction parallel and perpendicular

to the axis of rotation. The angle αu gives a global measure of small scale anisotropy,

with a value of tan2(αu) = 2 corresponding to an isotropic flow, and larger values

corresponding to more anisotropic flows. The definition is easily extended to the cases

of the passive scalar and the helicity. Table 2 shows the square tangent of the Shebalin

angles for the velocity field (tan2(αu)), for the passive scalar (tan2(αθ)), and for the

helicity (tan2(αH)). At the small scales, the flows with helicity seem to develop stronger

anisotropies for the passive scalar.

These quantities give information only on the global anisotropy of the velocity field

and of the passive scalar. There are other ways to quantify spectral anisotropy, that give

detailed information of the distribution of energy in spectral space, and of the degree of

anisotropy at different scales, as the axisymmetric spectrum e(k⊥, k‖) [10]. A detailed

study of spectral anisotropy is left for future work.

4. Concluding remarks

We presented preliminary results of numerical simulations of passive scalar advection

and diffusion in rotating turbulent flows with and without helicity, in grids of 5123

points.

While in isotropic and homogeneous turbulence at moderate Reynolds number the

energy and the passive scalar variance follow Kolmogorov scaling ∼ k−5/3 except for

intermittency corrections, in the presence of rotation non-helical flows display a reduced

perpendicular energy spectrum E(k⊥) ∼ k−2
⊥ and a shallower reduced perpendicular

spectrum V (k⊥) ∼ k
−3/2
⊥ for the passive scalar.

In the absence of rotation, the scaling of the energy and of the passive scalar remains

the same independently of the level of helicity in the flow. In helical rotating flows, our

simulations display a steeper energy spectrum compatible with E(k⊥) ∼ k−2.2
⊥ , and a

shallower passive scalar spectrum compatible with V (k⊥) ∼ k−1.4
⊥ . These numerical

results are consistent with a simple phenomenological model that predicts that if the

energy spectrum has an inertial range of the form E(k⊥) ∼ k−n
⊥ , then the passive scalar

spectrum follows a power law V (k⊥) ∼ k−nθ

⊥ with spectral index nθ = (5− n)/2.

Finally, analysis of global measures of anisotropy indicate that the distribution of

the passive scalar at small scales becomes more anisotropic in helical rotating flows (in
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comparison with the results in non-helical rotating flows) but it is largely unaffected at

large scales.

The results open new questions that will be addressed in future works. In particular,

and as the spectral scaling of the passive scalar in rotating flows seems to be affected

by helicity, one may ask: Is intermittency and anomalous scaling of the passive scalar

changed by helicity? And how is the transport and mixing of the passive scalar affected?

While the former question can be answered by computing scaling exponents for rotating

flows with and without helicity, the latter may require quantification of the turbulent

transport in directions parallel and perpendicular to the axis of rotation.
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