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Abstract

Black holes are famous for their universal behavior. New thermodynamic relations have been

found recently for the product of gravitational entropies over all the horizons of a given stationary

black hole. This product has been found to be independent of the mass for all such solutions

of Einstein-Maxwell theory in d = 4, 5. We study the universality of this mass independence

by introducing a number of possible higher curvature corrections to the gravitational action.

We consider finite temperature black holes with both asymptotically flat and (A)dS boundary

conditions. Although we find examples for which mass independence of the horizon entropy

product continues to hold, we show that the universality of this property fails in general. We

also derive further thermodynamic properties of inner horizons, such as the first law and Smarr

relation, in the higher curvature theories under consideration, as well as a set of relations between

thermodynamic potentials on the inner and outer horizons that follow from the horizon entropy

product, whether or not it is mass independent.
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1 Introduction

A fascinating feature of black hole thermodynamics is its apparent universal scope beyond general

relativity. While the status of the second law in higher curvature theories remains unresolved,

the geometric expression for black hole entropy and its role in the first law in these theories are

well established [1, 2]. Moreover, in certain examples accessible via string theory a precision ac-

counting for the black hole entropy including higher curvature corrections can be made in terms

of microscopic degrees of freedom (see e.g. [3] for a review). Although our understanding of its

statistical underpinnings remains incomplete, it seems clear that the universal laws of black hole

thermodynamics reflect important features of the underlying quantum mechanical degrees of free-

dom. In classical general relativity, it has been observed that certain additional thermodynamic

relations also appear to be universal [4, 5, 6] and may provide further insight into the quantum

physics of black holes. Here we will test the universality of these new thermodynamic relations by

investigating to what extent they do, or do not, hold in higher curvature gravity theories of gravity.

These new relations are novel in the sense that they involve thermodynamic quantities defined

at different horizons, e.g. the inner and outer horizons of rotating and/or charged black holes. For
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example, it has been observed that for all known stationary solutions of Einstein-Maxwell theory

in d = 4, 5
∏

i

Ai = Q , (1.1)

where the Ai are the areas of all the Killing horizons and the quantity Q depends on conserved

charges such as the charge and angular momentum, but is remarkably independent of the black

hole mass. This implies, for example, that a non-extreme black hole will have the same value for

the horizon area product as the extreme black hole with the same charge and angular momentum.

Since we are dealing with solutions to Einstein gravity at this point, black hole entropy is simply

proportional to the horizon area and (1.1) may be equivalently written as

∏

i

(4GSi) = Q , (1.2)

and interpreted as relating thermodynamic quantities defined at the different horizons. It turns

out that these relations are highly robust in Einstein gravity, having been tested for a wide class

of solutions as we will review in section 2 below. Equation (1.2) has important implications for

the statistical interpretation of black hole entropy. In the asymptotically flat case, equation (1.2)

may be used in conjunction with the thermodynamic relations for the inner horizon to show that

the Bekenstein-Hawking entropy can always be written in terms of a Cardy-type formula [7, 8, 9].

This provides additional evidence for a CFT description of black hole microstates [10, 11, 12, 13].

However, so far no geometric proof has been found for equation (1.1), which makes the ultimate

significance of these observations uncertain.

In the absence of a geometric understanding, it makes sense to explore phenomenologically

whether a horizon area or entropy product relation holds universally in arbitrary gravity theories.

Towards this goal, we will consider a number of different higher curvature modifications of the

Einstein-Hilbert action. With such modifications, of course, the entropy will not generally be

proportional to the horizon area, and the product relations for the horizon areas and entropies will

no longer be equivalent. Since black hole entropy can be viewed as a Noether charge [1], it might

be more natural to expect that the entropy product formula (1.2), rather than the product of the

areas (1.1), would be the correct generalization for modifications to Einstein gravity1. However, our

results do not bear out this intuition. Although we will find examples in which an entropy product

formula holds, which we will consider “successes”, these are rather non-generic situations in which

the entropy remains proportional to the horizon area. It is straightforward to find “failures”, in

which the product of the horizon entropy depends on the mass. In all the examples we consider,

on the other hand, we find that the product of the horizon areas remains independent of the black

hole mass.

Constructing exact black hole solutions in higher derivative theories is itself a difficult task,

1We will return to this point in section 4.1.2. The argument is that if we view the additional higher curvature
terms as arising from an infinite series of higher derivative corrections, then the area of the black hole is not well
defined due to ambiguities in field redefinitions.
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and this makes testing the validity of product formulas for the black hole horizon entropy or area

challenging. In the following we will make some simplifications to alleviate our task, and they fall

into three broad classes2

1. Einstein manifolds: The simplest scenario is to consider corrections to the Einstein-Hilbert

action such that the additional higher curvature terms either do not affect Einstein’s equations

or the equations of motions still admit Einstein manifolds as solutions. This will be the case

for d = 4, where the higher curvature terms considered are the Gauss-Bonnet invariant and

the Weyl tensor squared.

2. Lovelock theories: Simplifications also occur if we include higher curvature terms such that

the equations of motion remain of second order. This is the defining feature of Lovelock

theories [14]. This simplification allows for the construction of static black holes with the

desired features to test the entropy and area product relations.

3. f(R) gravity: The higher derivative corrections involve only functions of the Ricci scalar. Even

though the equations of motion are of higher order, for those solutions that have constant

Ricci curvature, the equations can be solved in closed form. This resembles very closely the

effects of higher curvature corrections in AdS3 gravity, and hence our results mimic those of

the BTZ black hole.

One feature that is absent for each item in this list is a consistent treatment of higher derivative

corrections for the matter fields, in addition to the gravitational sector. Our explicit examples

of charged black holes will include only the Maxwell term in the action; there are no couplings

between higher curvature terms and matter fields. Hence our results do not connect with string

theory construction of BPS solutions in higher derivative theories.

The organization of the paper is as follows. In section 2 we will review what is known about

entropy product formulas for black holes in Einstein-Maxwell theory. In section 3 and 4 we study

certain thermodynamic properties of black holes in higher curvature gravity. Besides evaluating the

horizon entropy and area products, we will also discuss the thermodynamics of the Cauchy horizons,

including generalizations of the Smarr relations. The evident difference between our “successful”

examples in section 3 and the “failures” in section 4 is the scaling of the Wald entropy with the area

of the black hole. For our successes it is systematically the case that the entropy is proportional

to the area, where the higher derivative corrections are merely encoded in renormalizing Newton’s

constant. This is not a generic property of Wald entropy formula, and our failures illustrate this

explictly. In section 5 we will discuss further implications of the lack of universality we have

found for the entropy product relation (1.2) and also mention future directions for investigation.

In appendix A we collect definitions which are used throughout the paper. In appendix B we

2Throughout the text we will make a distinction between “higher derivative” and “higher curvature” corrections.
Higher derivative theories will denote modifications to the Einstein-Hilbert action that make the equations of motion
of higher order, i.e. involving third, or higher, derivatives of the metric. Higher curvature theories are modifications
to Einstein theory such that the equations of motion are not necessarily of higher order.
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generalize the discussion in section 4 to higher dimensions and (A)dS solutions in Lovelock gravity.

Finally, in appendix C we discuss the six dimensional Yang monopole solution as another bizarre

occurrence of (1.2).

2 Products of Areas in Einstein-Maxwell Gravity

It is remarkable that all known solutions in d = 4, 5 Einstein-Maxwell gravity satisfy the product

relation (1.2); this includes solutions that are either asymptotically flat, AdS or dS. There are as well

some similar observations in d = 3 –which we will review in section 3.1– and a few generalizations

to d ≥ 6.3 For the purposes of understanding the more sophisticated cases in higher derivative

gravity, it is instructive to review which ingredients go into these universal properties.

2.1 Asymptotically Flat Solutions

For a large class of black holes, it has been observed that the product A+A− is independent of

the mass of the black hole [15, 16, 11, 17, 18, 19, 5, 20]. Here A± are the areas inner and outer

horizons. While a robust property, we emphasize that there is no derivation that explains why the

product is protected.

An alternative phrasing of this observation is

S+S− = (Sext)
2 , (2.1)

where S± = A±/(4G), and where Sext is the entropy of the extremal (T = 0) black hole. The right

hand side of this expression is independent of any modulus, which hints at the fact the product

might be the result of a fixed point of an appropriate ODE. Further, it has been shown that for

those solutions supported by neutral scalar fields, the scalars satisfy a similar geometric mean

property [19]. This has an interesting resemblance with the attractor mechanism, which would be

interesting to sharpen, if possible.

To be clear about the scope of the relation (2.1), let us review what are the precise properties

shared by the solutions:4

1. These are solutions to Einstein-Maxwell theory, and its supergravity generalizations. Further,

there is no classical hair in these theories.

2. The black hole is at finite temperature (non-extremal) and has a smooth extremal limit where

S+ = S−. Notice that, for instance, Schwarzschild solution does not fall into this category.

3. The only two Killing horizons are the inner and outer horizon. This is the case for all

solutions considered in d = 4, 5. For solutions in d > 5, equation (2.1) has to be modified to

accommodate additional Killing horizons.

3Classical solutions in d ≥ 6 are less well explored and hence a complete classification is lacking. It is known that
“no-hair” theorems are not valid, and therefore we do not expect universal properties for these theories.

4It is assumed as well that the solution is stationary. For a discussion on time dependent backgrounds see [21].
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4. The black hole is single centered.5

5. The topology of the horizon for known solutions is irrelevant. In particular, the relation (2.1)

applies to black rings and strings [19, 5] in addition to spherical black holes. Whether this

is a universal feature or not is also something that can be investigated by considering higher

curvature black holes.

In the following sections we will consider examples which satisfy the above properties with the

obvious exception that they will not be solutions to Einstein-Maxwell theory.

2.2 Asymptotically (A)dS Solutions

For either asymptotically AdS or dS black holes, (2.1) has to be modified. The observation made in

[4] is that the product of the areas of all possible poles of the radial metric function is independent

of the mass of the black holes. These poles must generate a Killing horizon with finite area; however

the roots are not necessarily physical since the prescription given in [4] requires including virtual

horizons where the area can be a complex number.

Following (2.1) we will rewrite (1.2) as

n
∏

i=1

Si =

n
∏

i=1

S(i,ext) , (2.2)

where S(i,ext) is the entropy of each virtual horizon at zero Hawking temperature.6 We are merely

emphasizing in (2.1) and (2.2) that having the product of entropies being independent of the

mass is equivalent to the statement of it being independent of the temperature of the black hole.

This product relation has been tested for a wide class of solutions [22, 23, 24, 25]. All of these

configurations share the following properties:

1. These are solutions to Einstein-Maxwell gravity including a cosmological constant, and its

gauged supergravity generalizations.

2. The product involves all possible bifurcate horizons, i.e. all roots of the appropriate radial

direction. Generically, this involves complex roots, and hence unphysical horizons.

3. The black hole has a smooth extremal limit when two (or more) roots coincide.

4. The black hole is single centered.

(A)dS-Schwarzschild does fall into this category in the sense that the geometric mean of entropies

satisfies (2.2). However, for (A)dS-Schwarzschild the extremal entropy Sext—which is the Narai

limit—depends on the mass of the black. This resembles closely the case discussed in appendix C

for the six dimensional Yang monopole.

5There might be interesting generalizations to multi-centered black holes. The difficulty of course is to find multi
centered configurations that satisfy the above requirements.

6Actually any extremal limit that the solution admits—where two poles coincide and hence the surface gravity of
the resulting horizon vanishes—will be consistent with (2.2).
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3 Universal but Limited “Success”

In this section, we will begin our discussion of horizon entropy products in higher derivative theories

on a positive note by focussing on examples that do work, i.e. in which the horizon product is

independent of the mass as in Einstein gravity. We will see that such examples have a universal

character, in that they arise in a wide class of theories. However, this universality is limited by a

key non-generic feature shared by all the examples. Namely, that all higher derivative corrections

to the entropy are proportional to the horizon area.

3.1 BTZ in Higher Derivative Gravity

BTZ black holes [26, 27] considered as solutions to higher derivative theories in three dimensions

provide important examples. In Einstein gravity, a general argument based on representations

of the asymptotic symmetry group [28, 10] (not depending on supersymmetry or string theory)

provides an accounting of the BTZ black hole entropy in terms of quantum mechanical microstates.

The mass independence of the horizon entropy product for BTZ black holes consequently has a

clear interpretation in terms of quantized degrees of freedom.

BTZ black holes are locally identical to AdS spacetimes. It follows that any higher derivative

theory having a constant negative curvature vacuum also has BTZ black hole solutions. Equal-

ity of the geometrical and quantum statistical entropies for BTZ black holes in higher derivative

theories was established in [29]. Further, the geometrical entropy remains proportional to the one-

dimensional area (length) of the horizon cross-section, but rescaled by a factor that depends on the

couplings of the higher derivative terms in the gravitational action [30, 31]. The argument is rather

simple and it goes as follows. The Wald entropy is given by

S+ = 2π

∫

Σ+

dφ
√
gφφ

∂L3

∂Rµνλρ
ǫµνǫλρ . (3.1)

The Riemann tensor can always be expressed in terms of the Ricci tensor in d = 3, which allows

us to write L3 = L3(gµν , Rµν). This simplifies the Wald entropy to

S+ = 2π

∫

Σ+

dφ
√
gφφ

∂L3

∂Rµν
gαβǫµβǫνα . (3.2)

Since BTZ is locally equivalent to AdS3, the local variations in the integrand are insensitive to the

black hole, and hence we can write

S+ =
A+

4Geff
,

1

Geff
=

16π

3
gµν

∂L3

∂Rµν
. (3.3)

The same argument holds at the inner horizon. We emphasize that Geff is a function of the AdS3

radius and the couplings of the theory, but insensitive to the black hole parameters. Therefore, if

there is no diffeomorphism anomaly, the horizon entropy product remains independent of the mass

[6]. BTZ solutions of such higher derivative theories thus provide a wide class of examples in which
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equation (1.2) holds.

It is worth noting, however, that higher derivative theories in three dimensions may possibly

have additional, non-BTZ black hole solutions as well. It has not been established whether, or not,

equation (1.2) will hold for all black holes in these theories. In the specific case of New Massive

Gravity (NMG) [32, 33], which includes certain curvature squared terms in the action, equation

(1.2) has been shown to hold for warped AdS3 black holes in NMG as well [6].

3.2 Charged Black Holes in f(R) Gravity

One might imagine that the combined simplifications of three dimensional geometry and the con-

stant curvature nature of BTZ black holes, would make the broad class of examples of the last

section unique. However, a similar degree of simplification arises for certain solutions of so-called

f(R) theories in which the gravitational Lagrangian depends only on the scalar curvature. Our

discussion here follows [34] (see also [35, 36]). Explicitly, let us consider an action of the form

S =
1

16πG

∫

d4x
√−g (R+ f(R)− FµνF

µν) , (3.4)

where f(R) is an arbitrary function of the scalar curvature, and we introduce the notation f ′(R) =

∂f(R)/∂R. These theories can be alternatively written as

S =
1

16πG

∫

d4x
√−g (ΦR+ V (Φ)− FµνF

µν) , (3.5)

where we introduced an auxiliary field Φ. The equations of motion derived from (3.5) are equivalent

to those in (3.4), were one identifies Φ = 1 + f ′(R). Further, integrating out Φ reproduces again

(3.4). Several of the properties we will encounter below are simple due to the fact that f(R) gravity

is equivalent to Einstein gravity coupled to matter.

A simple class of static, spherically symmetric solutions can be obtained if the theory admits

a constant curvature vacuum [36]. If we denote the constant scalar curvature by R = R0 then the

solution is given by

ds2 = −N(r)dt2 +
dr2

N(r)
+ r2dΩ2

2 , Ftr =
q

r2
, (3.6)

with the metric function

N(r) = 1− 2µ

r
+

q2

r2
1

(1 + f ′(R0))
− R0

12
r2 = − R0

12r2

4
∏

i=1

(r − ri) . (3.7)

These solutions are clearly very similar to RN(A)dS spacetimes and represent, for a given value

of R0, asymptotically (A)dS black holes over a range of the (µ, q) parameter space. We will refer

to the four roots ri of the equation N(r) = 0 as horizons, independent of whether, or not, they

represent physical black hole or Cauchy horizons. There are generalizations of these solutions,

involving modifications to the matter action as well, in dimensions d = 4k where k = 1, 2, . . . [34].
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However, for our purposes it is sufficient to focus on d = 4. Our results extend straightforwardly

to the higher dimensional cases.

The mass and electric charge of these constant curvature solutions to f(R) gravity are given by

M =
µ

G
(1 + f ′(R0)) , Q =

1√
2G

q
√

1 + f ′(R0)
, (3.8)

where the normalizations have been fixed such that in the limiting case of vanishing scalar curvature,

f ′(R0) = 0, the conventions used in section 4.1 are recovered. Following the definitions (A.2) and

(A.4), the temperature and chemical potential of each horizon ri (either real or complex) is given

by

Ti =
1

4πri

(

1− q2

r2i

1

(1 + f ′(R0))
− R0

4
r2i

)

, Φi =

√

2

G

q

ri

√

1 + f ′(R0)) , (3.9)

while the Wald entropy [1] is given by

Si =
Ai

4G
(1 + f ′(R0)). (3.10)

The fact that, like the BTZ black holes considered in section (3.1), the entropy for these black holes

including higher derivative corrections is proportional to the horizon area is a key feature.

Given the expressions above, it is straightforward to check that the first law and Smarr relation

dM = TidSi +ΦidQ , (3.11)

M = 2TiSi +ΦiQ+
R0

12G
(1 + f ′(R0))r

3
i , (3.12)

are satisfied for each horizon. We speculate that in the asymptotically AdS case, the final term

in (3.12) should be the Casimir energy of the boundary CFT. It would also be of interest to see

whether this term follows via an overall scaling from an extended first law including variations in the

gravitational couplings, as do analogous terms in the Smarr formulas for Einstein gravity with Λ 6= 0

[37] and Lovelock gravity [38], and whether this term may be interpreted as the thermodynamic

volume of the black hole as in [39, 40].

It follows directly from equation (3.7) that the product of horizon areas for charged f(R) black

holes is given by
∏4

i=1Ai =
(

24G
R0

)2
(4πQ)4 which is clearly independent of the mass. Similarly,

because the entropy in (3.10) is proportional to the horizon area, the product of the entropies is

also independent of the mass,

4
∏

i=1

Si =

(

24

GR0

)2
(

(1 + f ′(R0))πQ
)4

. (3.13)

If we consider the limit of R0 = 0 while keeping f ′(R0) 6= 0, then the solution is asymptotically flat

8



and there are only two roots (r±). The product of the entropies gives

S+S− = 4π2Q4(1 + f ′(R0))
2 = (Sext)

2 , (3.14)

where Sext is the entropy of the extremal black hole.

The class of charged f(R) black holes with constant scalar curvature satisfies the product

relation (1.2). The origin of this success is clear. The entropy (3.10) is corrected only by a

multiplicative factor that is independent of the horizon geometry and could, in fact, be absorbed

into a correction to Newton’s constant

G → Geff ≡ G

1 + f ′(R0)
. (3.15)

As in the three dimensional case above, it should be noted that there may also be additional

black hole solutions to f(R) gravity (e.g. without constant scalar curvature) that do not satisfy

(1.2). The situation in f(R) gravity will be contrasted below with the examples of charged black

holes in Gauss-Bonnet and more general Lovelock gravity theories, for which the higher curvature

corrections to the entropy cannot be absorbed in a renormalization of the Newton’s constant.

4 Limited but Universal “Failure”

In this section we will construct, in very simple setups, counterexamples to the entropy product

relation (1.2). For simplicity we will focus only on Lovelock theories in d = 4, 5 and the corre-

sponding asymptotically flat black holes; generalizations to higher dimensions and inclusion of a

cosmological constant can be found in appendix B.

With respect to the assumptions listed in section 2.1, the only modification is to the gravi-

tational Lagrangian. In particular, the analytic properties of the black holes are unchanged, and

the extremal limits are well defined. Still, we will see explicitly that the universal features of

Einstein-Hilbert action breakdown quickly after minor modifications of the action.

4.1 Two Four Dimensional Counterexamples

We begin by considering two simple examples of higher derivative theories in d = 4, which share

the feature that solutions to the vacuum Einstein equations are solutions to the full theory. Take

the action to have the general form

S =
1

16πG

∫

d4x
√−g (L1 + L2) +

∫

d4x
√−gLmatter , (4.1)

where L1 = R and L2 encodes the higher derivative gravitational interactions.

For our first example, we take the Gauss-Bonnet combination of quadratic curvature terms

L2 = LGB = α
(

RµνλρR
µνλρ − 4RµνR

µν +R2
)

, (4.2)
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and include also the electromagnetic field with Lmatter = −1
4FµνF

µν . The integral of LGB in d = 4

is the topologically invariant Euler character, and therefore the equations of motion in this theory

are identical to those of Einstein-Maxwell theory. The black hole entropy, however, will include a

correction term proportional to the Gauss-Bonnet coupling.

Einstein-Weyl gravity provides a second simple example, with

L2 = LW = αCµνλρC
µνλρ = α

(

RµνλρR
µνλρ − 2RµνR

µν +
1

3
R2

)

, (4.3)

and Lmatter = 0. The contribution to the equations of motion from LW is proportional to the

Bach tensor, Bµ
ν = (∇ρ∇σ + 1

2Rρ
σ)Cµσ

νρ, which can be shown to vanish for any Einstein space,

i.e. one for which the Ricci tensor is proportional to the metric. It follows that solutions to the

vacuum Einstein equations form a subset of the solutions to Einstein-Weyl gravity. In particular,

the Kerr geometry is a solution to Einstein-Weyl gravity, while the full Kerr-Newman spacetime

solves the equations of motion in our first example, which includes the Maxwell term as well as the

Gauss-Bonnet term in the action. For keeping track of dimensions, it is helpful to note that for

both LGB and LW the coupling constant α has dimensions of (length)2.

4.1.1 Kerr-Newman Black Hole

We start by reviewing properties of the Kerr-Newman black hole. The metric is given by

ds2 =
Σ

∆
dr2 − ∆

Σ

(

dt− a sin2 θ dφ
)2

+Σdθ2 +
sin2 θ

Σ

(

(r2 + a2) dφ− a dt
)2

, (4.4)

where

Σ = r2 + a2 cos2 θ , ∆ = r2 − 2µr + a2 + q2 . (4.5)

The Maxwell one-form is

A = q
r

Σ
(dt− a sin2 θdφ) . (4.6)

Here F = dA and we taken the charge to be purely electric field. Straightforward generalizations

exist with multiple U(1) charges and with both electric and magnetic charges.

The presence of either choice for L2 does not modify the ADM charges,7 and hence the mass,

angular momentum and electric charge are given by8

M =
µ

G
, J = aM , Q =

(

Σ2

8πG

)1/2

q . (4.7)

The locations of the inner and outer horizon r± are determined by the zeroes of ∆. In terms of the

parameters (µ, a, q) one finds that r+ + r− = 2µ and r+r− = a2 + q2. Following the definitions in

appendix A, the horizon generating Killing vector are given by ξ± = ∂t +Ω±∂φ, where the angular

7Although this is the case for asymptotically flat solutions, conserved charges may be affected by the presence of
L2 terms in asymptotically AdS spaces [41].

8Here Σ2 = 4π is the area of a 2-sphere, and our conventions for electric charge match with those used in [4, 5].
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velocity at each horizon are Ω± = a/(r2±+a2). From (A.2) and (A.4), the temperatures and electric

potentials of the inner and outer horizons are

T± =
r+ − r−

4π(r2± + a2)
, Φ± =

(

8π

Σ2G

)1/2 qr±
r2± + a2

. (4.8)

Even though L2 did not affect the value of the global charges or their conjugate potentials, the

entropy of the black hole is sensitive to the presence of higher curvature terms in the gravitational

action. With L2 = LGB, the inner and outer horizon entropies are given by

S± =
π

G

(

r2± + a2 + 4α
)

. (4.9)

The correction to the entropy from the Gauss-Bonnet term is proportional to the integral over a

horizon cross-section of the scalar curvature of the induced metric on this surface [52]. Since the

horizon cross-section is a 2-sphere, this integral is simply the Euler character of the sphere and is

independent of the horizon radius.

The Kerr black hole (Q = 0) is also a solution to Einstein-Weyl gravity. Because Rµν = 0

for Kerr, the (Weyl)2 interaction term (4.3) agrees with the Gauss-Bonnet term (4.2) on-shell and

hence leads to the same expression for the entropy (4.9). One then finds that the the entropy

products in both theories are given explicitly in terms of the global charges by

S+S− = 4π2

[

J2 + (Q2 − 2α

G
)2 + 4M2α

]

(4.10)

which is clearly not independent of the mass.

It is also instructive to examine the role played by the higher derivative terms in the thermo-

dynamic properties of these solutions. The ordinary first law of thermodynamics dM = ±T±dS±+

Ω±dJ + Φ±dQ will still hold for both horizons. However, we may also consider an extended first

law, as proposed in [38], in which the higher derivative coupling α is varied as well

dM = ±T±dS± +Ω±dJ +Φ±dQ+Θ±dα , (4.11)

where the thermodynamic potential conjugate to α is defined to be Θ± ≡ (∂M/∂α)S± ,J,Q. It follows

from the form of the entropy (4.9) that for the Kerr(-Newman) solutions Θ± is proportional to the

horizon temperature,

Θ± = ∓4π

G
T± . (4.12)

Because α is dimensional, such an extension is necessary in order to obtain a Smarr formula from

the first law via an overall rescaling of parameters (see e.g. [38]). It then follows that the Smarr

formula for the Kerr(-Newman) spacetimes, considered as solutions to the higher derivative gravity

theories with LGB or LW is given by

M = 2(±T±S± +Ω±J) + Φ±Q+Θ±α , (4.13)
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where the final term simply compensates for the additional term in the entropy (4.9) relative to

Einstein gravity. It would be interesting to further understand the geometric significance of the

potentials Θ±.

Despite the fact that entropy product (4.10) depends on the mass, it is worth emphasizing that

it is independent of the Smarr formula (4.13). Therefore (4.10) implies a set of relations between the

thermodynamic potentials at the two horizons. These are found by taking the differential of both

sides of (4.10) and then using the first law (4.11) to eliminate dS±; requiring that the coefficients

of dM , dJ , dQ and dα are equal on both sides, which yields the relations

1

T+S+
− 1

T−S−

=
32π2Mα

S+S−

Ω+

T+S+
− Ω−

T−S−

= − 8π2J

S+S−

Φ+

T+S+
− Φ−

T−S−

= −16π2(Q2 − 2α/G)Q

S+S−

Θ+

T+S+
− Θ−

T−S−

= −16π2(M2 −Q2 + 2α/G)

S+S−

(4.14)

Some of these relations have been reported for Einstein-Maxwell black holes (i.e. with α = 0) in e.g.

references [42, 7]. The first relation, in particular, generalizes a well known relation between the two

horizons in the α = 0 case when the entropy product is mass independent. An understanding of the

physical significance of the full set of relations would require deeper intuition into the importance

of inner horizon thermodynamics.

Finally, our analysis did not include a cosmological constant (Λ 6= 0). Nevertheless, from the

nature of the corrections here we speculate that the product relation (1.2) for asymptotically (A)dS

black hole will not be quantized in the presence of higher derivative gravitational interactions LGB

and/or LW .

4.1.2 Comments on Field Redefinitions

We found that black holes solutions in Einstein-Maxwell-Gauss-Bonnet and Einstein-Weyl theories

in 4D do not satisfy (2.1). Curiously, however, the horizon areas do still satisfy the relation

A+A− = (Aext)
2 , (4.15)

because neither the geometry, nor the conserved charges, are modified by the presence of the higher

derivative terms. It is unclear what physical significance should be attributed to this result. One

needs to be careful when discussing specific properties of the metric in higher curvature theories.

As part of an effective field theory, L2 could be viewed as the first correction of an infinite series of

higher curvature terms, and the coupling α controls the perturbative expansion. In this context,

the metric and matter field suffer ambiguities due to field redefinitions. In particular we could

12



redefine the metric as

gµν → g̃µν = gµν + a1αRµν + a2αRgµν +O(α2) , (4.16)

for arbitrary constants a1,2. Such a transformation does not generally preserve the area of the black

hole. However, one expects that the entropy should be invariant under (4.16) since it corresponds

to a Noether charge [43].9 This is, in fact, already evident in our example. The two terms LGB

and LW are related by a field redefinition of the form (4.16) and as we have observed the entropy

of the Kerr black hole is the same for the two theories. In general, any two Lagrangians related

via (4.16) will give rise to the same Wald entropy. We also note that f(R) gravity theories are not

related via field redefinitions to the action (4.1) with either LGB or LW , because the coefficient of

(Rµναβ)
2 term is not modified by (4.16). This is as well reflected in the fact that for these theories

we obtained different results regarding both the Smarr relations and entropy products.

4.2 A Lovelock Example

Lovelock gravities [14] are distinguished among higher curvature theories by having equations of

motion that depend only on the curvature tensor, and not on its derivatives; hence the equations

are still only second order in derivatives of the metric. Above, we explored the effect of adding

the quadratic Lovelock interaction LGB to the gravitational Lagrangian in d = 4, finding that the

entropy product picks up a dependence on the mass. However, this case was in some sense too

simple, with the new interaction term contributing to the black hole entropy formula (4.9), but not

the dynamics of the theory. The black hole solutions were still those of Einstein gravity. Perhaps,

once Lovelock interactions contribute to the dynamics and affect the black hole geometry, the mass

independence of the entropy product relation might be restored.

The simplest way to assess this is to study the charged black holes of Einstein-Maxwell-Gauss-

Bonnet theory in dimensions d > 4. In this case, fully explicit charged black hole solutions are

known. Charged black holes in general Lovelock gravity theories coupled to the Maxwell Lagrangian

will be discussed in Appendix B. Here we take the action to be

S =
1

16πG

∫

ddx
√−g (L0 + L1 + LGB) +

∫

ddx
√−gLmatter , (4.17)

where as above L1 = R and Lmatter = (1/2)FµνF
µν , and we have also included a cosmological

constant term L0 = −2Λ. Taking the cosmological constant to be negative, it will also be convenient

to define the equivalent AdS curvature radius l and rescaled Gauss-Bonnet coupling αd by

Λ = −(d− 1)(d − 2)

2ℓ2
, αd = (d− 3)(d − 4)α . (4.18)

The Gauss-Bonnet term contributes to the equations of motion for spacetime dimensions d > 4.

9This issue has been discussed in the content of computing the entropy of extremal black holes, including higher
derivative corrections. The Wald entropy can then be casted as the extremum of an appropriate functional, and it is
clear in this case that is it insensitive to field redefinitions (see e.g. [3] for a review).
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Static black hole solutions to (4.17) have been known for some time, beginning with [44, 45]. Here

for the most part we will follow conventions established for Lovelock black holes used in [46] (see

also [47]). The static, charged black hole solutions to (4.17) then have the form

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2hijdx

idxj , F =
q

4πr(d−2)
dt ∧ dr , (4.19)

with the metric function

V (r) = κ+
r2

2αd

[

1 + ǫ

√

1 + 4αd

(

− 1

ℓ2
+

2µ

rd−1
− q2

r2(d−2)

)

]

, (4.20)

and hij is a maximally symmetric space in (d− 2)-dimensions which can be parametrized as

hijdx
idxj =

dχ2

1− κχ2
+ χ2dΩ2

d−3 , (4.21)

with κ = 0,±1 corresponding to a spherical, flat or hyperbolic horizons respectively. The first

notable difference with Einstein gravity is the appearance here of the parameter ǫ = ±1 in (4.20).

This reflects that in the absence of a black hole (i.e. with µ = q = 0) and even in the limit Λ = 0,

the theory can have two different constant curvature vacuum solutions. Taking Λ = 0, for ǫ = 1 the

vacuum is either dS or AdS space depending on the sign of α, while for ǫ = −1 we recover empty

Minkowski space. The ADM mass M and the electric charge Q of the solution are given by

µ =
8πGM

(d− 2)Σd−2
, q =

(

8πG

Σd−2

)(d−3)/(d−2)

Q , (4.22)

where Σd−2 is the area of hij in (4.21).

It is sufficient for our purposes to restrict our focus further at this point to the case of asymp-

totically flat solutions in d = 5 and with Λ = 0 (see appendix B for the more general case). The

charged solutions (4.20) in this case reduces to

V (r) = 1 +
r2

2αd

[

1−
√

1 + 4αd

(

2µ

r4
− q2

r6

)

]

, (4.23)

where we have set ǫ = −1 and ℓ → ∞ and for simplicity considered only spherical horizons (κ = 1).

These solutions were first found in [48, 49]. The roots of V (r) are located at

r2± =
1

2
(2µ − αd)±

√

1

4
(2µ − αd)2 − q2 , (4.24)

with r+ denoting the outer horizon and r− the inner horizon. Some useful relations are (r+r−)
2 = q2

and r2+ + r2− = 2µ − αd. The temperatures, electric potentials and entropies for each horizon are
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given by

T± =
1

2π

r2+ − r2−
r±(2αd + r2±)

, Φ± = 3
( π

4G

)1/3 Q

r2±
, S± =

π2

2G
r3±

(

1 +
6αd

r2±

)

, (4.25)

where the electric charge is given by Q =
(

π
4G

)2/3
q.

The product of the horizon entropies is then found to be

S+S−

4π2
= (1 +

12αdµ

q2
+

30α2
d

q2
)Q3 , (4.26)

which clearly depends on the mass through the parameter µ. It is worth noting that, if instead

we evaluate the product of the horizon areas, then the result is unaffected by the presence of the

Gauss-Bonnet term in the action. The product of horizon areas A± = 2π2r3± is given by

A+A−

(8π)2
= Q3 . (4.27)

which is the same result found in d = 5 Einstein gravity. Hence, while the product of horizon

entropies is mass dependent, the product of horizon areas is actually quantized in d = 5 Einstein-

Maxwell-Gauss-Bonnet gravity as it was in d = 4. This is a curious result. In view of the comments

regarding field redefinitions in section (4.1.2), it is not clear whether this has physical significance,

or should be regarded as coincidental.

Finally, we record the first laws and Smarr formulas for both the inner and outer horizon

quantities that hold for these Einstein-Maxwell-Gauss-Bonnet black holes. For the extended first

laws which allow for the variation of the Gauss-Bonnet, we obtain

dM = ±T±dS± +Φ±dQ+Θ
(2)
±

dαd , (4.28)

while the Smarr relations are given by

M = ±3

2
T±S± +Φ±Q+Θ

(2)
± αd , (4.29)

and one finds that Θ
(2)
± = 3π

8G (1 ∓ 8παdr±T±) is the potential conjugate to the Gauss-Bonnet

coupling αd. As in the d = 4 case above, it is necessary to include the dαd term in the first law in

order to obtain the correct Smarr formula via an overall rescaling [38]. We note that relations of

the form (4.14) between the potentials at the inner and outer horizons can also be obtained in this

case.

5 Discussion

We have found that the mass independence of the horizon entropy product is sensitive to exactly

which higher curvature terms appear in the Lagrangian. Simple counter-examples have shown that
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the mass independent form given in equation (1.2) is in fact not universal. Given that there exists

a broad and physically important class of theories (and solutions) for which (1.2) holds, it becomes

a puzzle as to what specific features of the gravitational theory are required for this to be the case.

One possible piece of this puzzle is the fact that the form of the Smarr relation is modified

for all the “failures” we have studied, while it remains unchanged for the “successes”. There is

no obvious relation between the horizon entropy products and the Smarr relations. Nevertheless,

in the “failing” theories both are drastically modified by the presence of higher curvature terms.

Another possible puzzle piece is the continued mass independence of the horizon area product in

all our higher curvature examples, even though its thermodynamic interpretation becomes obscure.

Alternatively, it may be that the relations (4.14) between thermodynamic quantities at the inner

and outer horizons, whose existence does not depend on the mass independence of the horizon

entropy product, may prove to be of fundamental significance.

The fact that the horizon entropy product is not generically independent of the mass has

important implications. One immediate consequence is the breakdown of a CFT description of the

black hole proposed in [13] when higher curvature terms are present. The success of this program

relies heavily on the mass independence of the horizon entropy product as noted in [7, 8]. In

particular, equation (1.2) insures that the central charge of the 2D CFT is similarly independent of

the mass, and in turn that it will agree with the value obtained using Kerr/CFT techniques (under

certain assumptions). For examples in which the mass independence of the product S+S− is no

longer protected in the presence of higher curvature terms, the conclusion would be that only the

low energy description of the thermodynamics is captured by a Cardy formula.

It would clearly be of interest to test mass independence of the product S+S− in the context of

string theory black holes. The class of higher derivative corrections that appear in this context are

significantly more complicated than those considered here. However, it is possible to construct BPS

solutions in these theories and compute the corrections to the Wald entropy (see e.g. [50, 3, 51]

and references therein). The advantage in this case is that exists a better understanding of the

microscopic degrees of freedom for BPS configurations than is available for the simpler higher

curvature theories considered here. It would be interesting to investigate the properties of finite

temperature black holes in these theories and understand what role the entropy product S+S−

plays in the D-brane construction.

Finally, a geometric derivation of (1.2) should continue to be a goal. In addition to the impli-

cations for the statistical interpretation of the Wald entropy in terms of a two dimensional CFT,

failure of the mass independence of the horizon entropy product may reflect some other potential

pathologies of a given classical higher curvature theory. It would be interesting if mass indepen-

dence of the horizon entropy product could serve as a simple diagnostic test for consistency of higher

curvature terms, associating S+S− 6= S2
ext with a potential sickness of some sort. For example, It

might possibly reflect thermodynamic instability or perhaps capture the potential for classical hair.

The verdict remains unclear.
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A Conventions and Definitions

In this section we will collect some definitions that we used throughout our derivations. For most

computations it is convenient to use the ADM form of the metric, where

ds2 = −N2dt2 + γab(dx
a +Nadt)(dxb +N bdt) , (A.1)

with xa spatial directions and a, b = 1, . . . , d−1, and the greek indices span all spacetime directions

µ, ν = 0, 1, . . . , d− 1. N(xa) and N b(xa) are the lapse function and the shift vector respectively.

The horizons are defined as the zeroes of the appropriate radial component of the metric. We

use the notation r = ri to refer to the location of these horizons; and we emphasize that ri is not

restricted to be a real number. For those case where there are only two horizons we use the notation

r = r± and refer to them as inner (r−) and outer (r+) horizon.

As in [5], the angular potentials and temperatures for each horizon are

Ωi
k = − Nk

∣

∣

∣

ri
, Ti =

1

4π

∣

∣

∣

∣

∣

(N2)′
√

grrN2

∣

∣

∣

∣

∣

ri

, (A.2)

where k = 1, 2, ..., [d−1
2 ]. For a stationary solution, the null Killing vectors that define the inner

and outer horizon are then

χi = ∂t − Ωi
k ∂φk , (A.3)

where the coordinates φk has periodicity 2π. And finally, the electric potential is defined as

Φi = (χµAµ)∞ − (χµAµ)ri . (A.4)

The normalization of Φi depends on our definition of electric charge; usually we will use units where

the electric charge is quantized in Planck units when appropriate.

All conserved charges are computed using Komar integrals, and we follow the conventions in

[1, 2]. For example, for Einstein gravity the mass is given by

M = − 1

8π

∫

Σd−2

dΣµ3···µdǫµ1µ2µ3···µd
∇µ1ξµ2 . (A.5)
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where ξ is a time-like Killing vector normalized such that at infinity |ξ|2 → −1. And for the angular

momentum

J =
1

16π

∫

Σd−2

dΣµ3···µdǫµ1µ2µ3···µd
∇µ1ηµ2 . (A.6)

where η is the spatial Killing direction.

The Wald entropy is given by

S± = 2π

∫

Σi
d−2

dΣ
∂L

∂Rµνλρ
ǫµνǫλρ , (A.7)

where Σi
d−2 is a spacelike bifurcation surface at the virtual horizon (ri) and ǫµν is the binormal to

this surface Σi
d−2.

B General Lovelock Black Holes

It is rather straight forward to extend our analysis in section 4.2 to general static solutions of

Einstein-Maxwell-Lovelock theories with arbitrary Lovelock coefficients α̂i (including cosmological

constant) and in arbitrary dimensions.

The action will be the general Lovelock action plus the Maxwell action in d dimensions [46]:

S =
1

16πG

∫

L+
1

4

∫

F ∧ ∗F , (B.1)

where F = dA and the Lovelock terms are

L =

[d/2]
∑

p=0

α̂pLp , Lp ≡ ǫa1b1···cj

p
∧

i=0

Raibi

d−2p
∧

j=0

ecj , (B.2)

In this notation, the term p = 0 corresponds to the volume element which will give rise to a

cosmological constant; hence α̂0 = Λ. The term p = 1 is simply the Einstein-Hilbert Lagrangian,

where α̂1 = 1. The last term in the sum, i.e. p = [d/2], always corresponds to a topological

invariant in d dimensions and hence it does not affect the equations of motion. If we take d = 4, we

are back again to Gauss-Bonet, the same theory as we studied in section 4.1. In d = 5 we are just

adding the term p = 2, which reduces to our example in section 4.2 with α̂0 = 0. To keep track of

the dependence on the cosmological constant we introduce the notation

L =

[d/2]
∑

p=s

α̂pLp, s =

{

0 if Λ 6= 0 ,

1 if Λ = 0 .
(B.3)

Static solutions with both mass and electric charge are as follows. The metric and field strength

are

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2hijdx

idxj , F =
q̂

rd−2
dt ∧ dr , (B.4)
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with

V (r) = κ− r2f(r) , (B.5)

and hij is given by (4.21) where the normalized horizon curvature takes values κ = 0,±1. The

function f(r) is a solution to the polynomial equation

P (f) =

[(d−1)/2]
∑

p=0

αpf
p =

2µ

rd−1
− q2

r2(d−2)
. (B.6)

with

q2 =
8πG

(d− 2)(d − 3)
q̂2 , (B.7)

and

α0 =
α̂0

α̂1

1

(d− 1)(d − 2)
, α1 = 1 , αp =

α̂p

α̂1

2p
∏

n=3

(d− n) , p ≥ 2 . (B.8)

Here µ and q are proportional to the ADM mass and electric charge, with the normalizations given

by (4.22). For generic values of αk, it is difficult to solve explicitly for f(r). Still, the fact that the

solution fits into this polynomial form simplifies many things. As we will see, we do not need to

solve this equation for finding the entropy.

The location of the horizons ri are determined by

V (ri) = 0 = κ− r2i f(ri) . (B.9)

Plugging this into (B.6) we have

P
[

κr−2
i

]

= 2µr−d+1
i − q2r

2(2−d)
i . (B.10)

Multiplying by r
2(d−2)
i gives

[(d−1)/2]
∑

p=0

αpκ
pr

2(d−p−2)
i − 2µrd−3

i + q2 = 0 . (B.11)

The degree of this polynomial depends on the highest power 2(d − p − 2). If Λ 6= 0 ( α0 6= 0)

the degree is 2(d − 2); for Λ = 0 (α0 = 0) the degree is 2(d − 3). Since equation (B.11) is just a

polynomial we may write it in its factorized form

[(d−1)/2]
∑

p=s

αpκ
pr2(d−p−2) − 2µrd−3 + q2 = αsκ

s

2(d−s−2)
∏

i=1

(r − ri) . (B.12)

Generically, there will be 2(d− s− 2) horizons. When s = 0, Λ 6= 0, many of the horizon radii will

be complex and will correspond to virtual horizons; however, we are assuming that at least one

horizon is a real positive number. If κ = 0, assuming that α0 6= 0, the polynomial remains of the
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same degree. If α0 = κ = 0 the situation is degenerate and the analysis below does not apply.

Comparing the left and right hand side of (B.12) gives some useful relations between the global

charges (µ, q) and locations of the horizon. In particular we find

q2

αsκs
=

2(d−s−2)
∏

k=i

ri . (B.13)

This will imply that the product of the areas is always independent of the mass µ.

Each root ri will satisfy it’s own “thermodynamical” relation. Some of these thermodynamic

quantities are straightforward to compute. For instance, from (A.2) the temperature is given by

Ti =
V ′(ri)

4π

=
1

4πriP ′(κr−2
i )

[

κ
∑

p

(d− 2p− 1)αp(κr
−2
i )p−1 + (3− d)q2r

2(3−d)
i

]

(B.14)

where we used P ′(x) =
∑

p pαpx
p−1 and 2µ = rd−1

i P (κr−2
i ) + q2r3−d

i . For d = 5 we have α̂0 = 0,

α̂1 = 1, α̂2 = α, and this yields

Ti =
r4i − q2

2πr3i (2αd + r2i )
, (B.15)

which is in exact agreement with our calculation in (4.25).

The entropy associated to each horizon is given by

Si =
Σd−2

4G

[d/2]
∑

p=s

p(d− 2)

d− 2p
αpκ

p−1rd−2p
i

=
Ai

4G

[d/2]
∑

p=s

p(d− 2)

d− 2p
αp

(

κ

r2i

)p−1

, (B.16)

where Σd−2 is the area of hij , and Ai = Σd−2r
d−2
i is the area of each horizon. This result can be

obtained either by using Wald’s formula (A.7) or the thermodynamic method in [52].10 For the

Gauss-Bonnet theory (αk = 0 for k > 2), (B.16) reduces to

Si =
Ai

4G

[

α1 + 2α2
(d− 2)

(d− 4)
κr−2

i

]

. (B.17)

which reduces to (4.26).

To find the product of the entropies (B.16) for all horizons it is convenient to write the entropy

as

Si =
Ai

4Gr
2([d/2]−1)
i

[d/2]−1
∏

n=1

(

r2i − Cn

)

, (B.18)

10We are including in (B.16) the contribution of the topological term given by p = [d/2].
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for appropriate choices of the coefficients Cn such that we recover (B.16). Notice that Cn only

depends on αp, κ and d, and it does not depend on either µ or q. Using (B.12) with r → ±Cn we

can write

2(d−s−2)
∏

i=1

(ri ±
√

Cn) =
1

αsκs





[(d−1)/2]
∑

p=s

αpκ
pCd−p−2

n − µ
(

±
√

Cn

)d−3
+ q2



 . (B.19)

And the product of them for all roots ri is

Gd ≡
[d/2]−1
∏

n=1

2(d−s−2)
∏

k=1

(rk −
√

Cn)

2(d−s−2)
∏

j=1

(rj +
√

Cn) =

Even d :

[d/2]−1
∏

n=1

1

α2
sκ

2s











[(d−1)/2]
∑

p=s

αpκ
pCd−p−2

n + q2







2

− µ2Cd−3
n





Odd d :

[d/2]−1
∏

n=1

1

α2
sκ

2s





[(d−1)/2]
∑

p=s

αpκ
pCd−p−2

n + q2 − µC(d−3)/2
n





2

(B.20)

Therefore the entropy product above becomes:

2(d−s−2)
∏

i=1

Si =

(

Σd−2

4G

)2(d−s−2)( q2

αsκs

)(d−2[d/2])

Gd (B.21)

Thus the product of the entropies will have a mass dependent term.

Looking at Gd in (B.20) we see that it will contain a µ dependent term, unless all Ci vanish.

From (B.16) we see that this happens for a generic Lovelock theory if κ, the normalized horizon

curvature, vanishes. This as well implies that for planar black holes there are no correction to

Bekenstein-Hawking area law, as noted in [53]. The product of the entropy (per unit area) satisfies

∏

i

Si =
∏

i

Ai

4GΣd−2
=

(

q2

16G2α0

)d−2

. (B.22)

C Yang Monopole Solution

In this appendix we discuss the self-gravitating Yang monopole in D = 6 dimensions [54]. This is

a solution of Einstein gravity coupled to Yang-Mills theory for the group SU(2). The action of the

theory is

S =
1

16πG

∫

d6x
√−g(L0 + L1)−

1

2g2

∫

d6x
√−gtr(F 2) ,

with the gauge field A

A = Aa
µTadx

µ ,

with Ta being the generators of the Lie algebra.
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The one-form of the Yang monopole configuration is

A =
Σijn

inj

1 +
√
1− n2

,

where ni are coordinates on the four sphere (i = 1, 2, 3, 4) such that the metric on the unit four-

sphere reads

dΩ2
4 =

(

δij +
ninj

1− nknk

)

dxidxj ,

with ni = δijn
j. The constants Σij = ηaijTa obey

ηaijη
b
klf

c
ab = δliη

c
jk + δkjη

c
il − δkiη

c
jl − δljη

c
ik ,

where f c
ab are the structure constant and satisfy ηa[ijη

a
kl] = εijkl. The form of the metric charged

under A takes the form

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2dΩ2

4 ,

with

V (r) = 1− M

r3
− Q2

r2
− Λ

10
r2, (C.1)

for M and Q real constants. Notice that this solution exhibits a charge term −Q2/r2 that damps

off slower than the six-dimensional Newtonian mass term −M/r3. This is related to the fact that

self-gravitating Yang monopole has infinite energy [54].

This will be another example which shows peculiar behavior regarding the product of the

entropies: For each horizon we assign entropy Si = Ai/4G. The product of the entropies for Λ 6= 0

is
5
∏

i=1

Si =
5
∏

i=1

Ai

4G
=

(

Σ4

4G

)5(10M

Λ

)4

,

which is independent of the charge Q while does depend on M .

Similarly, when Λ = 0 the radii of the horizons are located at zeroes of V (r). There are three

zeroes and the product of the entropies becomes

3
∏

i=1

Si =

(

Σ4

4G

)3

M4 =

3
∏

i=1

Si,ext , (C.2)

where Si,ext is the entropy of each virtual horizon at zero temperature (i.e when two roots of

(C.1) coincide). It is rather peculiar that the product is independent of the charge Q. However,

we emphasize that the direct identification of M and Q with the mass and the electric charge is

misleading. In fact, the solution presents infinite mass if Q 6= 0; that is, M corresponds to the

ADM case if Q = 0 where the product of entropies (C.2) vanishes. It is also very interesting that

the product of the entropies equals the extremal (T = 0) entropy.
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