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Abstract:   
We report the complete mitochondrial genome sequence of the flowering plant Amborella trichopoda.  
This enormous, 3.9 Mb genome contains six genome equivalents of foreign mitochondrial DNA, 
acquired from green algae, mosses, and other angiosperms.  Many of these horizontal transfers were 
large, including acquisition of entire mitochondrial genomes from three green algae and one moss.  
We propose a fusion-compatibility model to explain these findings, with Amborella capturing whole 
mitochondria from diverse eukaryotes, followed by mitochondrial fusion (limited mechanistically to 
green plant mitochondria), and then genome recombination.  Amborella’s epiphyte load, propensity to 
produce suckers from wounds, and low rate of mitochondrial DNA loss probably all contribute to the 
high level of foreign DNA in its mitochondrial genome. 
 
One-sentence summary:   A mitochondrial genome with six genome equivalents of foreign 
mitochondrial DNA, including four whole-genome transfers, has rich implications for mechanisms of 
horizontal transfer in mitochondria. 
 
Main text:  Many of the fundamental properties of eukaryotes arose from horizontal evolution on a 
grand scale, i.e., the endosymbiotic origin of the mitochondrion and plastid from bacterial progenitors 
(1).  Since their birth, however, mitochondrial and plastid genomes seem to have been little affected 
by horizontal gene transfer (HGT).  The most notable exception involves land plants, especially 
flowering plants (angiosperms), in which HGT is surprisingly common in the mitochondrial genome 
but unknown in plastids (2-10).   
 To gain insight into the causes and consequences of HGT in mitochondrial DNA (mtDNA), we 
sequenced the mitochondrial genome of Amborella trichopoda because PCR-based sampling had 
shown it to be rich in foreign genes (4). This large shrub is endemic to rain forests of New Caledonia 
and is probably sister to all other angiosperms, a divergence dating back about 200 million years ago 
(11,12). 
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 Overall genome properties.  The Amborella mitochondrial genome assembled as five 
autonomous, circular-mapping chromosomes of lengths 3179, 244, 187, 137, and 119 kb, giving a 
total genome size of 3,866,039 bp (Figs. 1A, S1-4) (13).  The five chromosomes are distinct in 
sequence, but similar in base composition (45-47% G+C), stoichiometry, and HGT properties (Figs. 
1A, S2, S4).  Stoichiometry was assessed by sequencing coverage and Southern blot analysis of 32 
individuals from three populations (fig. S5) (13).   

As described in the next three sections, Amborella mtDNA possesses an extraordinary 
assemblage of foreign sequences, corresponding to about six genome equivalents of mtDNA 
acquired from mosses, angiosperms, and green algae.  Multi-gene HGT has been described in two 
other lineages of plant mtDNA (8,10), but not on a scale approaching Amborella.  The Amborella 
mitochondrial genome also contains a large amount (138 kb) of plastid DNA (ptDNA) (Figs. 1A, S2; 
table S1).   
 Multichromosomal mitochondrial genomes in plants were only recently discovered (14,15) and 
mostly involve large (>1 Mb) genomes, with Silene genomes of 6.7 and 11.3 Mb dwarfing Amborella 
in size and chromosome number (15).  These three mitochondrial genomes are the largest 
completely assembled organelle genomes, larger than many bacterial genomes and even some 
nuclear genomes.  However, the processes responsible for their expansion differ in that Silene 
genomes possess no readily discernible foreign mtDNA and relatively little ptDNA (15). 
 HGT from mosses.  Amborella mtDNA contains four regions, of lengths 48, 40, 9, and 4 kb, 
acquired from moss mtDNA (Figs. 1A, S2).  With one exception, the 41 protein and rRNA genes from 
these four regions were placed phylogenetically, almost always strongly, as sister to the moss 
Physcomitrella (Figs. 2A-D, S8 and S9).  Gene order in the four regions (Figs. 3, S6) is highly similar 
to both Physcomitrella and Anomodon (mosses which are themselves identical in gene order and 
content) (16) and extremely different from angiosperms.  The moss-like regions in Amborella also 
harbor the same 27 introns and largely the same set of intergenic sequences as moss mtDNAs (Fig. 
S6) (13).   

The four moss regions contain one and only one copy of 61 of the 65 genes present in 
sequenced moss mtDNAs (Figs. 3, S6) (13).  Taking into account six inferred deletions and 
duplications larger than 100 bp, the 101.8 kb of moss DNA in Amborella reconstructs to a 
hypothetical donor genome of 106.0 kb, compared to the 104.2- and 105.3-kb genomes in 
Physcomitrella and Anomodon, respectively.  We infer, therefore, that Amborella captured an entire 
mitochondrial genome (13) from a moss with nearly identical mtDNA architecture to those of 
Physcomitrella and Anomodon. This foreign genome subsequently rearranged into four pieces, with a 
few gene-order changes and 11 gene losses, truncations, and/or partial duplications, all of which are 
associated with rearrangement breakpoints (Figs. 1A, 3, S2, S6, table S2).   
 HGT from green algae.  The Amborella mitochondrial genome contains an average of three 
green-algal-derived copies of each protein and rRNA gene commonly found in green algal mtDNAs 
(Figs. 1A, 2A-D, S2, S4, S8, S10, S11; table S3).  Many of these genes are clustered in two large 
tracts of lengths 83 and 61 kb.  The 83-kb tract (B1+A2 in Fig. 1A) contains two copies of a 10-gene 
cluster (each marked by 10 red arrows in the top comparison of Fig. 4), with all 10 “duplicates” highly 
divergent from each other.  The 61-kb tract (B2+A1 in Fig. 1A) lacks these 10 genes and instead 
contains highly divergent duplicates of two genes that are absent from the 83-kb tract.  A single 
hypothesized recombination event between these two tracts (Figs. 1A, 4) accounts for the above 
duplications, with the initial, 92- and 52-kb regions each containing a nearly complete set of green -
algal mitochondrial genes and no extra copies (fig. S11).  We conclude that the 83-kb and 61-kb 
tracts arose by acquisition of whole mitochondrial genomes (designated the A and B genomes) from 
two green algae, followed by a single recombination between them and a few gene losses (13).  
Additionally, the two inferred donor genomes are phylogenetically distinct: Whenever Amborella has 
three or more green- algal copies of a given gene, the A-genome copy is separated by a relatively 
long branch from a well-supported clade containing the other green algal copies (Figs. 2A-D, S8).  
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Furthermore, the two regions assigned to the A genome have a lower non-coding G+C composition 
(39%) than the two B-genome regions (47%) (table S4). 

Most of the remaining green algal mtDNA in Amborella, comprising tracts of lengths 49, 18, 16, 
and 2 kb (Figs. 1A, S2), also appears, on the basis of synteny and genome reconstruction (Figs. 4, 
S11), to be derived by whole genome transfer (from donor C).  Seven of the eight remaining, mostly 
short tracts of green algal mtDNA (Fig. 1A) can tentatively be reconstructed as resulting from the 
transfer and/or retention of about one-third of a genome from a fourth green -algal donor (donor D); 
alternatively, the D regions may result from multiple HGT events.  Although the B-D genomes are 
relatively similar in sequence (Figs. 2A-D and S8), their many differences in gene order (Figs. 1A, 4) 
and intron content (e.g., cox1 has two introns in the D genome but none in B) rule out the possibility 
that they result from only one or two transfers followed by large-scale duplication within Amborella.  
We therefore conclude that Amborella acquired its ~3.3 genome equivalents of green algal mtDNA 
(Fig. 1A) via at least four transfers, including three whole-genome transfers. 

The multiple copies of each green-algal gene present in Amborella almost always ally, usually 
strongly, with the trebouxiophyte Coccomyxa (Figs. 2A-D, S8).  Likewise, gene order within the A-C 
genomes is most similar to that of Coccomyxa (fig. S7).  The B, C, and D copies of each gene 
invariably form a strongly supported clade (Figs. 2A-D, S8, S10), with the B+C genomes sister to the 
A genome in gene-loss phylogeny (fig. S12).  Thus, Amborella probably acquired its green algal 
mtDNA from the Coccomyxa subgroup of trebouxiophytes.  Because members of this subgroup often 
live as lichen photobionts, and lichens commonly grow on Amborella (Fig. 5), its algal genomes may 
have been acquired from lichens. 

HGT from angiosperms.  Amborella mtDNA contains 150 angiosperm-like copies (full or 
partial) of the 49 protein and rRNA genes likely present in the ancestral angiosperm mitochondrial 
genome (fig. S13) (17) [see (13) for how trans-spliced genes are counted (table S5)].  We designated 
82 of these copies as foreign, 63 as native, and 5 as uncertain (table S3).  Angiosperm-specific 
phylogenetic analyses provided strong support for 26 (32%) of the foreign assignments and 16 (25%) 
of the natives (figs. S14-S16, table S6).  These analyses were consistent, but with lower support, with 
an additional 20 foreign and 22 native assignments.  These lower values reflect the generally poor 
resolution in many of the trees (fig. S14), which is a consequence of low substitution rates in most 
angiosperm mtDNAs (18). 

Four other lines of evidence were used to distinguish foreign from native angiosperm genes 
and intergenic DNA.  First, the extent of C-to-U RNA editing, which is much higher in Amborella than 
in all examined eudicots and monocots (table S7) (13), provided evidence for native vs. foreign origin 
for many of the 150 angiosperm genes in Amborella mtDNA (13).  Second, six genes were 
exceptionally divergent relative to all other genes analyzed phylogenetically (fig. S15), suggesting that 
they came from angiosperms with much higher mtDNA substitution rates than Amborella (fig. S17) 
(13,18).  Third, levels of sequence identity to other angiosperm mtDNAs were measured on a 
genome-wide basis to define native as well as angiosperm-HGT regions (13).  Finally, native (or 
angiosperm-HGT) sequences defined by the above four criteria and located within 5 kb of each other 
were combined into continuous native (or angiosperm-HGT) tracts (13).   

These analyses identified 753 kb of DNA as having been acquired from other angiosperms 
(Figs. 1A, S2, S4).  This DNA contains an average of 2.0 copies of the 32 protein and rRNA genes 
that are virtually always present in angiosperm mtDNA (table S3) (17) and thus corresponds to 
roughly two genome equivalents of foreign angiosperm mtDNA.  Most (86%) of the 753 kb is 
intergenic, consistent with the high proportion of intergenic mtDNA in angiosperms (11,13).  About 
half of the 753 kb shares ≥90% sequence identity with one or more sequenced angiosperm 
mitochondrial genomes (fig. S4).  This far surpasses the level of highly conserved mtDNA in other 
angiosperms (fig. S18) (13).  The 753-kb estimate is probably conservative owing to the limited 
number of angiosperm mtDNAs available for comparison (13). 
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Angiosperm donors.  One class of plastid-derived DNA played a key role in donor 
identification.  Phylogenetic analysis shows that most of the 138 kb of ptDNA present in Amborella 
mtDNA was acquired via intracellular gene transfer (IGT), i.e., from the Amborella plastid genome 
(Figs. 2E-H, S19).  Analysis of the remaining 10 kb of ptDNA, which probably entered Amborella via 
foreign mitochondria, identified donors with much greater specificity than did the mitochondrial gene 
analyses (13).  Four of the HGT plastid regions identified Fagales, Oxalidales, or the predominantly 
parasitic Santalales as donor, while a fifth pointed to Magnoliidae (Figs. 2E-H, S18).  A Santalalean 
origin is also supported by four of the five mitochondrial genes for which multiple Santalales have 
been sampled (figs. S14-nad1b, S20).  The exceptionally high and specific similarity of two 
featureless regions to Ricinus communis or Bambusa oldhamii (Figs. 1B, S21) identified transfers 
from these lineages.  Finally, the exceptionally high divergence that diagnosed six angiosperm-like 
genes as foreign also suggests that they came from additional donors, with high mitochondrial 
substitution rates.   

Because some angiosperm HGT tracts in Amborella mtDNA are of mixed phylogenetic origin 
(Fig. 1) (13), some of its foreign DNA may be the product of serial, angiosperm-to-angiosperm-to-
angiosperm HGT (13).  In particular, the rbcL gene of santalalean origin (Fig. 2E) resides only 3 kb 
from the Bambusa-derived sequence on the same 27-kb foreign tract (Fig. 1B).  Because all four 
genes of meaningful length on this tract evidently came from core eudicots (fig. S14), and because 
parasitic plants are especially active in mitochondrial HGT (5,7-10), this tract probably came from a 
santalalean donor that had previously acquired Bambusa DNA via HGT (13).  The presence of 
santalalean DNA in six, mostly long HGT tracts (Fig. 1A) suggests that a large portion of the foreign 
angiosperm DNA in Amborella came from Santalales.  Indeed, RNA-editing data indicate that the 27-
kb tract of putative santalalean origin may actually be part of a much larger (>105 kb) HGT tract (13). 

A graveyard of foreign genes.  The 197 foreign mitochondrial protein genes in Amborella are 
predominantly pseudogenes, with only 50 (25%) of them having full-length, intact open reading 
frames (tables S2, S8).  The intact genes are predominantly short (figs. S22, S23), suggesting that 
many of these have remained intact by chance, i.e., are pseudogenes that have yet to sustain an 
obvious pseudogene mutation.  Consistent with this, many of these intact genes are not expressed 
properly.   

On the basis of phylogenetic, RNA editing, and/or linkage evidence (table S9) (13), Amborella 
mtDNA is hypothesized to contain a functional, native copy of all but one (rpl10) of the 49 
mitochondrial protein and rRNA genes inferred to be present in the ancestral angiosperm (fig. S13) 
(17).  cDNA sequencing of 44 of the 48 native genes showed that, with one apparent exception, they 
are all transcribed and properly RNA edited (table S10) (13).  In contrast, no transcripts were 
detected for many genes of foreign origin, and 13 of 14 transcribed genes of foreign angiosperm 
origin (eight of them intact) were poorly edited, suggesting that they are pseudogenes (table S10) (13, 
19).   

The strongest candidates for functional replacement of native genes are tRNA genes.  Several 
native tRNA genes are missing from Amborella mtDNA (fig. S13).  These, and even some of the 
native tRNA genes still present (20), may have been functionally replaced by some of its dozens of 
intact foreign tRNA genes (figs. S2, S4) (13).  This would not be surprising, because cognate tRNAs 
of diverse origin (plastid, nuclear, bacterial) often replace native tRNAs in plant mitochondrial 
translation (6,11,20,21).  Moreover, even a modest number of tRNA gene replacements could have 
led to the fixation, via genetic hitchhiking, of a considerable portion of the foreign mtDNA in 
Amborella. 

In summary, the great majority of the foreign mitochondrial genes in Amborella are unlikely to 
be functional.  Given its six genomes-worth of foreign mitochondrial genes, Amborella mtDNA serves 
as a striking example of neutral evolution.  

Ancient transfers, remarkably intact.  Our ability to date the many mitochondrial HGTs in 
Amborella is limited.  However, the extensive pseudogene decay of its foreign DNA (tables S2, S8) – 
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in conjunction with low mitochondrial substitution rates in angiosperms (including Amborella; fig. S17) 
(18) and low rates of pseudogene decay (19) – suggests that most transfers are probably millions of 
years old (13).   

Angiosperm mitochondrial genomes typically experience high rates of DNA gain, loss, and 
rearrangement (13,17).  Amborella mtDNA seems, however, less prone to lose and rearrange DNA.  
Relative to their many pseudogene mutations, the four moss and green-algal whole-genome transfers 
are surprisingly intact with respect to overall sequence content and arrangement.  Only 11% of the 
protein-coding sequence content inferred to be present at the time of these four transfers has been 
deleted, mostly due to a few single- or multi-gene deletions (Figs. 4, S6; tables S2, S8) (13).  The 
green algal A and B genomes are both intact syntenically except for a single, mutual recombination 
event, while the C and moss genomes have each been fragmented into just four segments (Figs. 1, 
3, 4).  In typical angiosperm mtDNAs, comparably old and large tracts of largely nonfunctional DNA 
would be expected to have mostly been lost by now, and what remained to be more highly 
rearranged (13,17). 

Mitochondrial fusion drives and limits mitochondrial HGT.  Two mechanisms have been 
proposed to account for the relatively high frequency of HGT in land plant mitochondria and its 
absence from plastids of land plants, including Amborella (6,8,9).  First, plant mitochondria are 
transformation competent (22), whereas no such evidence has been reported for plastids.  Second, 
plant mitochondria regularly fuse in vivo, whereas plastids do not (23,24).  Three aspects of the 
horizontally acquired DNA in Amborella argue that its entry into the mitochondrion was driven 
principally, if not entirely, by mitochondrial fusion − i.e., this DNA entered predominantly in large 
pieces, including whole genomes (13), is limited to other mitochondrial genomes (13), and is limited 
to green algae and land plants.   
 Why are the many Amborella donors limited to green plants, as opposed to, for instance, fungi, 
given their pervasive interactions with plants as mycorrhizal partners, endophytes, epiphytes, and 
pathogens?  We propose that this reflects a phylogenetically-deep incompatibility in the mechanism 
of mitochondrial fusion.  The mechanism of mitochondrial fusion in fungi and animals is fundamentally 
the same, involving a core machinery of dynamin-related GTPases that are absent from green plants 
(25-27).  This absence, combined with evidence for differences in the physiological requirements for 
fusion, has prompted speculation that mitochondrial fusion occurs by a different mechanism in 
angiosperms than in animals and fungi (24, 27, 28).  Our data provide evolutionary support for this 
hypothesis and also lead us to propose that mitochondrial fusion occurs in a fundamentally similar 
manner across land plants and green algae (Fig. 6).  This model explains why, despite presumably 
broad phylogenetic exposure to foreign mitochondria, the vast majority of HGT in the mitochondrion 
of Amborella – and other plants (2-10,13) – is restricted to other plant mitochondria.   
 Capture of foreign mitochondria.  Biological vectors large enough to mobilize entire 
mitochondria, such as pollen (9,29), insects, and fungi, could account for some of the mitochondrial 
HGT in Amborella (bacteria and viruses are presumably too small to transfer an entire 
mitochondrion).  However, in light of its ecology and development, processes involving direct contact 
between Amborella and potential donors probably predominate.  Amborella grows in montane 
rainforests, often covered by a diversity of epiphytes, mostly bryophytes (including mosses) and 
lichens (a potential source of its green algal genomes), and sometimes even other angiosperms (Fig. 
5).  Amborella is often wounded and responds by producing abundant suckers (Figs. 5A-B).  
Wounding can break cells belonging to both Amborella and the organisms growing on and within it.  
We postulate that some of the broken Amborella cells are healed and incorporated into a new 
meristem – a new germline arising thanks to the totipotency of plant cells.  Indeed, plant meristems 
often form in direct response to wounding and may be especially active in “massive mitochondrial 
fusion” (24).  Given the ease of both mitochondrial membrane fusion and mitochondrial genome 
recombination, those healed cells that have taken up a mitochondrion from another green plant could 
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well incorporate a portion of the foreign mitochondrial genome.   A fraction of these transfers could 
then become fixed. 
 The wounding-HGT model applies not only to plants that live on Amborella, but also parasites.  
The Santalales – probably the major source of foreign angiosperm mtDNA in Amborella – are also the 
major group of parasitic plants in New Caledonia and the largest group of parasitic angiosperms 
worldwide (30,31).  
 Concluding Remarks.  The Amborella mitochondrial genome has both captured other 
mitochondrial genomes whole and also retained them in remarkably intact form for ages.  Its 
assemblage of foreign mtDNA probably reflects a range of factors – ecological, developmental, and 
molecular – that promote the capture of foreign mtDNA and retard its loss and rearrangement.  This 
genome highlights the potential scale of neutral evolution and is thus relevant to current debates on 
the issue of “junk DNA” in nuclear genomes (32).  The greatest significance of this genome is 
mechanistic: It provides compelling support for mitochondrial fusion as the key that unlocks 
mitochondrial HGT and for fusion incompatibility as a major barrier to phylogenetically unconstrained 
mitochondrial “sex”.      
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Fig. 1.  Foreign DNA in the Amborella mitochondrial genome.  (A) Map of its five chromosomes 
shown linearized and abutted (see arrows).  Numbers give unified genome coordinates in kb.  
Shown are regions of inferred organelle origin whose ancestry was assignable (see key, mt = 
mitochondrial; pt=plastid).  Full-height boxes indicate genes.  Half-height boxes indicate “tracts” 
(see text) of native and angiosperm-HGT DNA.  Labeled black lines indicate horizontally 
transferred mitochondrial genomes (Figs. 3, 4) or partial genomes.  M1-M4 mark a moss-derived 
genome.  A1, A2, B1, B2, and C1-C4 mark three green-algal-derived genomes.  D marks the 
seven fragments of a partial genome from a fourth green-algal donor.  Oxalidales, Santalales, 
Fagales, and Ricinus mark angiosperm tracts whose donors were identified to at least order.  The 
pie chart depicts the roughly eight genome equivalents of organelle DNA present in Amborella 
mtDNA.  Genome equivalents: mt moss, 1.0; mt green algal, 3.2; mt angiosperm, 2.0; mt native, 
1.0; pt IGT, 0.8.  See (13) and table S11 for all plant images, including their relevance.  (B) 
Detailed view of three 150-kb regions of Amborella mtDNA.  Histograms show the “angiosperm 
score” (13).  Triangles indicate intergenic regions of species-specific identity to Ricinus and 
Bambusa (fig. S21).  Gene names are given only for well-supported cases of angiosperm HGT. 
 
Fig. 2.  Maximum likelihood evidence for HGT in Amborella mtDNA.  (A-D) Mitochondrial gene 
trees of land plants and green algae reveal diverse donors in Amborella mtDNA.  Colors are as in 
Fig. 1. See fig. S8 for outgroups.  Bootstrap values ≥50% are shown.  Scale bars correspond to 
0.1 (A-D) or 0.01 (E-H) substitutions/site.  Bold branches are reduced in length by 50%.  (E-H) 
Plastid gene trees of angiosperms showing strong support for HGT to the level of order: light blue, 
Santalales (E-F); brown, Oxalidales (G); violet, Fagales (H).  Amborella labels: “Amb plastid”, 
gene in Amborella plastid; “Amb IGT”; gene in mitochondrion via IGT; red “Amb”, gene in 
mitochondrion via HGT.  Outgroups are not shown, but see fig. S19 for more taxon-rich analyses, 
including outgroups.  “rps7” denotes the rps7-rps12-trnV-rrnS cluster.   
 
Fig. 3.  A nearly full-length moss mitochondrial genome in Amborella mtDNA.  Colored boxes and 
arrows indicate the position and relative orientation, respectively, of the seven blocks of synteny 
between the mitochondrial genome of the moss Anomodon (top) and the four moss-derived 
regions in Amborella mtDNA (M1-M4; Fig. 1A).  Selected genes are shown; see figs. S2 and S6 
for all genes.  
 
Fig. 4.  Pairwise comparisons of the green-algal B-genome donor to Amborella with the A- and C-
genome donors.  Brackets on the A-C genomes indicate their fragmentation in Amborella (Fig. 
1A).  Blocks of two or more genes with identical order in a comparison are colored the same, 
regardless of gene orientation.  Open boxes mark genes present in both genomes but not part of 
a syntenic block.  Bullets mark genes present in only one genome.   
 
Fig. 5.  Ecological setting of HGT in Amborella. (A, B) Prostrate branches of Amborella with 
suckers (green arrows) and epiphytes, including mosses, liverworts, ferns, and angiosperms. (C–
F) Amborella leaves and branches covered predominantly with lichens (C, F), leafy liverworts (D), 
and mosses (E).  See table S11 for photo credits.   
  
Fig. 6.  Evolutionary model of mitochondrial fusion compatibilities.  Green and orange indicate 
different mechanisms of mitochondrial fusion (24, 25, 27, 28), due to either highly divergent 
evolution from a common ancestral mechanism or independent origins of fusion.  See table S11 
for photo credits. 
 
 


