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Abstract 

 

With the aim to develop synthetic tools for the characterization of 

galactofuranosyltransferases, the synthesis of 9-decenyl glycosides of D-Manp, D-Galf and -

D-Galf-(1→3)-D-Manp was targeted. The interest in the alkenyl aglycone arises from its 

potential conjugation reactions, once the terminal double bond has been conveniently 

functionalized. The glycosylation of -D-Galf-(1→3)-D-Manp was attempted by two different 

approaches: the trichloroacetimidate method and the glycosylation via the glycosyl iodide. 

The conditions for the latter were established on the basis of glycosylation assays of per-O-

acetylmannose. On the other hand, the study of glycosylation reactions via per-O-bezoylated 

galactofuranosyl iodide confirms the versatility of glycosyl iodides as donors. 

 

Keywords: Mannopyranosyl iodide/ per-O-Benzoylated-galactofuranosyl iodide / per-O-tert-

Butyldimethylsilyl--D-galactofuranose / Galactofuranosyl transferases. 
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Among the numerous structures of pathogenic microorganisms in which D-

galactofuranose occurrs,
1 

the disaccharide -D-Galf-(1→3)-D-Manp (1, Figure 1) is found in 

glycoconjugates of protozoa (Trypanosoma cruzi and Leishmania spp.) and in fungi, as 

Aspergillius fumigatus
2,3

. In T. cruzi, motif 1 is present as non-reducing terminal units of the 

glycoinositolphospholipids (GIPLs),
4-6 

which are important for the interaction with the 

intestine of the insect vector.
7 

In Leishmania, disaccharide 1 is present as an internal unit in 

the lipophosphoglycan (LPG),
8 

which was also shown to play a critical role in the attachment 

of Leishmania promastigotes to the fly midgut.
9
 

For elucidating the biosynthesis of D-Galf containing glycoconjugates, synthetic 

substrates of the involved enzymes are required.
10-12

 Oligosaccharides containing the -D-

Galf-(1→3)-D-Manp (1) motif have been synthesized,
13,14

 as well as some derivatives of 1, 

which were afforded by different approaches.
15

 We have described the synthesis of free 

disaccharide 1 using the glycosyl-aldonolactone approach, and we have shown that is 

hydrolyzed by the exo -D-galactofuranosidase of P. fellutanum, our non-pathogenic model to 

evaluate the synthetic tools developed for studing the D-Galf related enzymes.
16 

 

 

Figure 1. Synthetic targets. 
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With the aim of obtaining a derivative of 1 for the characterization of the 

galactofuranosyltransferases of P. fellutanum and T. cruzi, we have now targeted the synthesis 

of 9-decenyl -D-Galf-(1→3)-D-Manp (2, Figure 1), which is expected to be an acceptor of D-

Galf units and as precursor of other derivatives designed to study the immunogenic activity of 

1. For the synthesis of 2 it was necessary to introduce the alkenyl moiety with a glycosylation 

method that would preserve the Galf-(1→3)-Manp linkage. We decided to carry on this 

synthesis by two alternative approaches: one based on the trichloroacetimidate method, which 

required transformations that we have previously applied,
17,18 

and the other involving a 

glycosyl iodide donor (Scheme 1). In this case, the conditions for the glycosylation of the 

acetylated mannose unit must be established. For the glycobiological studies, we have also 

decided to synthesize acceptors 3 and 4
 
(Figure 1). The optimized conditions for the synthesis 

of 3 would be useful for the glycosylation of 1. On the other hand, as continuation of our 

studies on the scope of glycosylations via galactofuranosyl iodides,
18-20

 this reaction was 

investigated for the synthesis of compound 4 from acylated precursors of D-Galf. Thus, we 

report here the studies of glycosylations of per-O-acetylmannose via glycosyl iodides, the 

exploration of the galactofuranosylation via iodides prepared from per-O-acylated precursors, 

and the synthesis of glycosyl disaccharide 2. 

 

Scheme 1. Retrosynthetic approaches for 9-decenyl -D-Galf-(1→3)-D-Manp (2) 
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For the synthesis of mannopyranoside 3 we used the glycosyl iodide method starting 

from penta-O-acetyl--D-mannopyranose (5). In first instance, we established the reaction 

conditions for the formation of the mannopyranosyl iodide and its subsequent glycosylation, 

in order to apply similar conditions to the synthesis of disaccharide 2. According to the 

reported conditions for similar substrates, 
21,22

 compound 5 was treated with TMSI (2.4 equiv) 

at room temperature and after 2 h, the medium was neutralized with EtN(iPr)2, and 9-decen-1-

ol was added as acceptor (Scheme 2). Under this conditions, starting compound 5 was not 

completely consumed, and the reaction proceeded slowly towards the formation of a main 

product, but on the basis of the 
13

C NMR spectrum, this compound was identified as the 

orthoesther 7 (Table 1, entry 1).
23,24 

Attempts to rearrange the orthoesther 7 with TMSOTf
25,26 

were not satisfactory as, 

although the NMR spectra of the crude product showed the formation of 8, a complex mixture 

of products has been obtained as result of partial O-deacetylation. 

 

Scheme 2. Synthesis of 9-decenyl -D-mannopyranoside (3) 

 

It has been reported that ZnI2 accelerates the formation of peracylated glycosyl iodides 

and prevents the formation of the orthoesther.
21,22 

The ZnI2 also acted as a iodide source and in  
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Table 1. Reaction conditions assayed for glycosylation of penta-O-acetyl-D-mannopyranose 

(5) via mannosyl iodide. 

 

Entry Iodide 6 formation Glycosylation 

 
TMSI 

(equiv) 

ZnI2 

(equiv) 
Conditions  

Base/promoter 

(equiv) 

MS 

4Å 
Conditions 

Products/ 

Observations 

1 2.4  25 ºC, 2 h  EtN(iPr)2 (2.4) - 25 ºC, 144 h 7 (50 %) 

           

2 1.5 0.4 45 ºC, 0.5 h  ZnI2 (1.0) yes 45 ºC, 3.5 h 
8 (46%) 

(80% after reacetylation) 

         

 

this way the halogen exchange in the anomeric carbon, that would occur with other 

halogenated Lewis acids, was avoided. Hence, ZnI2 was added in a substoichiometric amount 

and iodide 6 was formed in just 0.5 h (Table 1, entry 2). As the glycosylation of acylated 

iodides generally requires a promoter,
23,24

 after the complete transformation of 5 into 6, an 

additional amount of ZnI2 was added together with the 4Å powdered molecular sieves. They 

were not used in the first step because it has been reported that they retard the iodide 

formation.
23,24 

Under these conditions the 9-decenyl glycoside 8 was obtained as major 

product (46 %), along with an important amount of partially de-O-acylated products. 

Therefore, after reacetylation, compound 8 was obtained in 80 % combined yield (Table 1, 

entry 2). The NMR spectra of 8 showed that the glycosylation occurred with complete 1,2-

trans stereoselectivity, due to participation of the neighboring acetyl group on O-2. O-

Deacetylation of crude compound 8 afforded 3 in 80 % overall yield from 5. 

The synthesis of 8 and 3 as precursors of oligosaccharides present in the antigenic 

lipophosphoglycan of Leishmania donovani, had been previously accomplished by the 

Koenigs-Knorr method from acetobromomannose.
27

 The glycosyl iodide method here 
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described, besides avoiding the use of mercuric salts, affords 8 in higher yield, and the 

complete NMR spectroscopic characterization of both 8 and 3 is now provided. 

Previously, we have described the synthesis of per-O-TBS--D-galactofuranose (9) and 

its glycosylation by in situ activation with TMSI as the galactofuranosyl iodide 12 (Scheme 

3). Compound 12 was effectively glycosylated to afford O-,
18

 S-, C-galactofuranosides,
20

 and 

some nitrogenated derivatives,
19

 under mild conditions compatible with labile acceptors.
 

Recently, the lipoteichoic acid from Streptococcus sp. DSM 8747 has been synthesized by 

glycosylation of 9 via the galactofuranosyl iodide, and the method showed to be significantly 

more efficient than those using traditional glycosyl donors.
28

 Condensation of persilylated 9 

with 9-decen-1-ol under the conditions previously described,
18

 afforded glycoside 14 in 83 % 

yield as an anomeric mixture / in a 3:1 ratio. A similar diastereoselectivity was observed 

with simple acceptors, which was increased when bulky acceptors were used.
18 

O-Desilylation 

of 14 with TBAF afforded the free galactofuranoside 4 in 66 % yield. 

Although -D-galactofuranosides can be stereoselectively obtained by neighboring-

group participation from acylated precursors using SnCl4 or other Lewis acids
3
 as promoters, 

the glycosyl acceptors are limited to acid stable derivatives. We aimed to investigate the scope 

of the galactofuranosyl iodide glycosylations from the easily available peracylated Galf 

derivatives 10
29

 and 11,
30 

which are expected to give glycosides with higher 

diastereoselectivity than 9, due to the anchimeric effect. In order to optimize the reaction 

conditions, nBuOH was employed as a model acceptor. As peracylated precursors are less 

reactive than persilylated,
31-33

 more drastic conditions than those employed for 9 would be 

required. The assayed conditions involving variations in the amounts of TMSI, temperature 

and reaction time are summarized in Table 2. The effect of molecular sieves and promoters 
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was also examined. As expected, 11 was more reactive than 10, but less than 9 (Table 2, 

entries 1-3). The best condition for the preparation of iodide 13, in the absence of a catalyst or 

a promoter, was the treatment of 11 with 3 equiv of TMSI (Table 2, entry 5). Compound 10 

required 4.5 equiv of TMSI to complete the reaction (Table 2, entry 4). Iodide 13 was not 

stable enough to be isolated. 

The addition of powdered molecular sieves during the second step of the reaction 

avoided the formation of TMSOAc and TMSOBz
23,34 

and the subsequent reaction with 13, 

which would afford 10 and 11 as recombination products. 

The effect of the addition of ZnI2 during the iodide formation was also studied (Table 

2, entries 6-8). In the presence of 0.6 equiv of ZnI2, compound 13 was formed at room 

temperature with only 1.2 equiv of TMSI and in 0.5 h (Table 2, entry 8). When the amount of 

ZnI2 was reduced, the consumption of acetate 11 was not complete, although the formed 

iodide was consumed in 1 h (Table 2, entries 7 and 8). The best results were obtained 

conducting the reactions at room temperature, without the need of heating to 45 ºC, as in the 

case of the mannopyranosyl iodide 6. 

 

 

 

Scheme 3. Synthesis of O-galactofuranosides via in situ formed galactofuranosyl iodides. 
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Table 2. Reaction conditions assayed for O-glycosylations via in situ formed galactofuranosyl 

iodides. 
 

Entry Precursor 
TMSI 

(equiv) 

ZnI2 

(equiv) 
Conditions 

MS 

4Å 

Conversion 

to iodidea 

Products/ 

Observations 

1 9 1.2 - 0 ºC, 0.5 h yes 100 % 14    3:1 

2 10 1.2 - 0 ºC, 0.5 h yes 0 % - 

3 11 1.2 - 0 ºC, 0.5 h yes 20 % 15  

4 10 4.5 - 0→25 ºC, 1 h yes 100 % 15  

5 11 3.0 - 0→25 ºC, 1.5 h yes 100 % 15  

6 11 1.2 0.6 0→25 ºC,  0.5 h yes 100 % 15  in 1 h (80 %) 

7 11 1.2 0.4 0→25 ºC, 1-2 h yes 80 % 15  in 1 h 

8 11 1.2 0.2 0→25 ºC, 1-2 h yes 60 % 15  in 1 h 

aEstimated by TLC, bIsolated by column chromatography 

 

Under the optimized conditions established for the synthesis of 15 (Table 2, entry 8), the 

analogous decenyl glycoside 16 was obtained in 66 % yield, mainly in the -configuration 

(9:1). O-Debenzoylation of 16 with NaOMe/MeOH in CH2Cl2 afforded 4 in almost 

quantitative yield. The -configuration of the major component of 16 and 4 was confirmed on 

the basis of the 
13

C NMR spectra, which showed characteristic resonances for C-1 (105.6 and 

109.4 ppm, respectively) and signals corresponding to C-2 and C-4 above 80 ppm, also 

characteristic of the -D-Galf configuration. 

Despite the convenience of the use of iodide 13 to achieve stereoselectively -D-

galactofuranosides, the disarmed character of this benzoylated iodide was evidenced when 

allylTMS, (TMS)2S or 2,4,6-tri-O-benzoyl-D-manono-1,4-lactone were used as acceptors. 

While these compounds were effectively coupled with 9,
18,20

 the glycosylation of 13 failed. 
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Scheme 4. Synthesis of 9-decenyl -D-Galf-(1→3)-D-Manp (2). 

 

Both strategies designed to accomplish the synthesis of the decenyl glycoside 2, 

required per-O-acetylated disaccharide 17,
 
which was afforded as an anomeric mixture in 75 

% yield by treatment of 1
16 

with Ac2O/py (Scheme 4). The approach involving a 

trichloroacetimidate donor required the selective anomeric O-deacetylation of 17. Hence, 17 

was treated with ethylenediamine and acetic acid to afford the hemiacetal 18 in 84 % yield 

(Scheme 4), exclusively in the -configuration as indicated by the 
1
H NMR spectrum. 

Treatment of 18 with trichloroacetonitrile and DBU afforded the trichloroacetimidate 20 (83 

%). Glycosylation of 20 with 1.5 equiv of 9-decen-1-ol in CH2Cl2 using TMSOTf as catalyst 

gave 21 in 72 % yield. The NMR spectra showed that, despite the anchimeric assistance from 
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the participating acetyl group at O-2, compound 21 was obtained as an inseparable mixture of 

/ anomers, in a 3:2 ratio. The 
13

C NMR spectrum showed resonances at 102.7 and 102.5 

ppm corresponding to C-1’ of the - and the -anomers, respectively, and signals at  99.6 

(C-1) and 99.2 (C-1) due to the mannopyranosyl unit. The 
1
H NMR spectrum showed 

singlets at 5.19 and 5.13 ppm for H-1’ of the - and the -anomers, respectively, and doublets 

at 4.90 (H-1 and 4.52 ppm (H-1for the mannopyranosyl unit. 

On the other hand, peracetylated compound 17 was treated with TMSI/ZnI2, according 

to the conditions optimized for the formation and glycosylation of iodide 6 (Table 1, entry 2), 

although a greater amount of ZnI2 (0.7 equiv) was necessary to obtain iodide 19. Then, 9-

decen-1-ol and 4Å powdered molecular sieves were added (Scheme 4). Compound 21 (78 %) 

was obtained, along with a small amount of 18. 

In the 
1
H NMR spectrum of 21 obtained in this way, it was observed that an anomeric 

mixture in a / ratio of 3:2 was actually obtained. This ratio was almost equal to that 

obtained in the glycosylation via the trichloroacetimidate 20, suggesting that the 

stereoselectivity depends on the substrate itself rather than the glycosylation method used. 

Probably, the -D-Galf unit as substituent on the O-3 of D-Manp would be responsible for a 

distortion in the intermediate bicyclic 1,2-acyloxonium ion, making the anchimeric 

participation less efficient. 

Finally, de-O-acetylation of 21 with NaOMe/MeOH in CH2Cl2 afforded 2 in 

quantitative yield (Scheme 4). The 
1
H NMR spectrum of 2, showed signals corresponding to 

H-1’ ( 5.04 and 5.00) of both anomers, which correlated with signals at 104.3 and 105.4 ppm 

in the HSQC experiment. The broad singlets at  4.74 (H-1) and 4.47 (H-1) corresponding 

to the Manp unit, correlated with signals at 99.9 (C-1) and 99.7 (C-1) ppm. The assignment 
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of the anomeric configuration in the Manp moiety was confirmed by a 2D NOESY 

experiment which showed cross peaks between H-1/ H-3 and H-1/H-5 for the -anomer. 

Since its development, the trichloroacetimidate glycosylation method has been widely 

used as it has the advantage of being mild enough to preserve other glycosidic linkages 

present in the acceptor or in the donor.
35 

This aspect is particularly critic in the case of 

furanosyl units, due to their lability. Glycosyl iodides have long been underused as they were 

considered too reactive to be of synthetic utility. However, their use as glycosyl donors has 

been revalued over the past 15 years mainly due to the development of new methods of 

preparation.
36

 Our studies on the glycosylation via the benzoylated galactofuranosyl iodide 13 

confirms once more the versatility of glycosyl iodides as donors. 

For the synthesis of 2 by the trichloroacetimidate approach compound 21 was obtained 

from 17 in three steps with the corresponding column chromatography purifications in 50 % 

overall yield. The synthesis of 21 from 17 by means of the glycosyl iodide strategy involved 

two reaction steps and two column chromatography purifications, in 78 % overall yield. 

Beyond the yield, the advantage of the iodide approach was that the sequence was shorter and 

the reaction times were significantly reduced. On the other hand, in the synthesis of 2 via a 

mannosyl iodide, we demonstrated that a -D-Galf unit in the glycosyl donor resists the 

glycosylation, without degradation. 

 

1. Experimental section 

 

1.1. General synthetic methods 
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Analytical thin layer chromatography (TLC) was performed on Silica Gel 60 F254 

(Merck) aluminum supported plates (layer thickness 0.2 mm) with solvent systems given in 

the text. Visualization of the spots was effected by exposure to UV light and charring with a 

solution of 10 % (v/v) sulphuric acid in EtOH, containing 0.5 % p-anisaldehyde. Column 

chromatography was carried out with Silica Gel 60 (230-400 mesh, Merck). Optical rotations 

were measured with a Perkin-Elmer 343 digital polarimeter. Nuclear magnetic resonance 

(NMR) spectra were recorded with a Bruker AMX 500 spectrometer. Assignments of 
1
H and 

13
C were assisted by 2D 

1
H-COSY and HSQC experiments. High resolution mass spectra 

(HRMS ESI
+
) were recorded in a Bruker micrOTOF-Q II spectrometer. 

 

1.2. 9-Decenyl 2,3,4,6-tetra-O-acetyl--D-mannopyanoside (8) 

A suspension of 5 (0.1 g, 0.25 mmol) and ZnI2 (0.4 equiv, 0.032 g, 0.1 mmol) in anhydrous 

CH2Cl2 (10.0 mL) was stirred under argon atmosphere at 0 ºC for 15 min. TMSI (1.5 equiv, 

50.0 μL, 0.375 mmol) was slowly added and the stirring was continued for another 15 min. 

The suspension was allowed to reach room temperature and then heated at 45 ºC. After 30 min 

of stirring TLC analysis showed total consumption of the starting material (Rf = 0.36, 1:1 

hexane/EtOAc) and a single spot of Rf = 0.52 (1:1 hexane/EtOAc). Powdered molecular 

sieves 4Å and 9-decen-1-ol (0.14 mL, 0.75 mmol, 3.0 equiv) were added. After 3 h of stirring 

at 45 ºC and 18 h at room temperature, the solution was diluted with CH2Cl2 (250 mL), 

washed with NaHCO3 (ss) (2 x 140 mL) and water (3 x 100 mL), dried (Na2SO4) and 

concentrated. The residue was purified by column chromatography (3:1→3:2 hexane/EtOAc) 

affording syrupy compound 8 (0.056 g, 46 %), Rf = 0.70 (1:1 hexane/EtOAc), []D +38.4 (c 

0.9, CHCl3). Lit:
27

 []D +40 (c 1, CHCl3). Fractions of Rf = 0.34 (1:1 hexane/EtOAc) were 
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reacetylated affording 195 in 80 % overall yield. 
1
H NMR (CDCl3, 500 MHz) 5.80 (m, 1H, 

CH=CH2), 5.34 (dd, J = 3.4, 10.0 Hz, 1H, H-3, 5.26 (at, J = 10.0 Hz, 1H, H-4), 5.22 (dd, J = 

1.7, 3.4 Hz, 1H, H-2), 4.96 (m, 1H, CH=CHaH), 4.92 (m, 1H, CH=CHHb), 4.79 (d, J = 1.7 Hz, 

1H, H-1), 4.27 (dd, J = 5.3, 12.2 Hz, 1H, H-6), 4.09 (dd, J = 2.3, 12.2 Hz, 1H, H-6’), 3.97 

(ddd, J = 2.3, 5.2, 10.0 Hz, 1H, H-5), 3.67 (m, 1H, OCHaH), 3.43 (dt, J = 6.6, 9.6 Hz, 1H, 

OCHHb), 2.14, 2.09, 2.03, 1.98, (4s, COCH3), 1.58 (CH2), 1.28 (CH2). 
13

C NMR (CDCl3, 

125,8 MHz)  170.6, 170.1, 169.9, 169.7 (COCH3), 139.1 (CH=CH2), 114.1 (CH=CH2), 97.5 

(C-1), 69.7 (C-2), 69.1 (C-3), 68.5 (O CH2), 68.3 (C-5), 66.2 (C-4), 63.0 (OCH2), 62.5 (C-6), 

33.7, 32.7, 29.3, 29.2, 29.0, 28.8, 26.0 (CH2), 20.9, 20.72, 20.67 x 2 (COCH3). 
1
H NMR data 

matches data reported in the literature.
27 

HRMS (ESI) m/z calcd. for C24H38NaO10 [M+Na]
+
: 

509.2357. Found: 509.2376. 

 

1.3. 9-Decenyl -D-mannopyranoside (3) 

To a solution of 8 (0.05 g, 0.1 mmol) in anhydrous 2:1 CH2Cl2/MeOH (10 mL) at 0 ºC, 1.3 M 

NaOMe/MeOH (0.5 mL) was added. After 1 h of stirring at 0 ºC, the mixture was 

concentrated to 3 mL and deionized by elution with MeOH through a column of strongly 

acidic cation exchange resin (H
+
). The eluate was evaporated under reduced pressure to afford 

compound 3 (0.032 g, 99 %) as a syrup, Rf = 0.65 (7:1:2 nPrOH/NH3/H2O), []D +50 (c 0.9, 

MeOH). Lit.:
27

 []D +56 (c 0.5, MeOH). 
1
H NMR (CD3OD, 500 MHz) 5.81 (ddt, J = 6.8, 

10.2, 13.9 Hz, 1H, CH=CH2), 4.98 (ddt, J = 1.6, 2.2, 17.1 Hz, 1H, CH=CHaH), 4.91 (ddt, J = 

1.2, 2.3, 10.2 Hz, 1H, CH=CHHb), 4.73 (d, J = 1.6 Hz, 1H, H-1), 3.82 (dd, J = 2.4, 11.8 Hz, 

1H, H-6), 3.78 (dd, J = 1.7, 3.4 Hz, 1H, H-2), 3.73 (dt, J = 6.7, 9.6 Hz, 1H, OCHaH partially 

overlapped with H-6’), 3.71 (dd, J = 5.8, 11.8 Hz, 1H, H-6’), 3.69 (dd, J = 3.4, 9.2 Hz, 1H, H-
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3), 3.61 (at, J = 9.5 Hz, 1H, H-4), 3.52 (ddd, J = 2.4, 5.8, 9.6 Hz, 1H, H-5), 3.41 (dt, J = 6.3, 

9.7 Hz, 1H, OCHHb), 2.081.27 (CH2). 
13

C NMR (CD3OD, 125.8 MHz)  140.1 (CH=CH2), 

114.7 (CH=CH2), 101.5 (C-1), 74.5 (C-5), 72.7 (C-3), 72.3 (C-2), 68.63 (OCH2), 68.56 (C-4), 

62.9 (C-6), 34.9, 30.6, 30.53, 30.50, 30.2, 30.1, 27.3 (CH2). 
13

C NMR data matches data 

reported in the literature.
27 

HRMS (ESI) m/z calcd. for C16H30NaO6 [M+Na]
+
: 341.19346. 

Found: 341.19476. 

 

1.4. 9-Decenyl 2,3,5,6-tetra-O-tert-butyldimethylsilyl-,-D-galactofuranoside (14)  

A solution of 9 (0.20 g, 0.26 mmol) in anhydrous CH2Cl2 (10.0 mL) containing dry 4 Å 

powdered molecular sieves was cooled to 0 ºC and stirred during 10 min under Ar. Then, 

TMSI (1.2 equiv, 0.042 mL, 0.32 mmol) was added and the solution was stirred at 0 ºC until 

TLC monitoring showed complete transformation of 9 into two lower moving products, the 1-

iodo intermediate 12 (Rf = 0.70, 10:1 hexane-EtOAc) and some 2,3,5,6-tetra-O-TBS--D-

galactofuranose (Rf = 0.54), formed as a result of the hydrolysis of 12 on the silica gel plate.
16

 

9-Decen-1-ol (1.3 equiv, 0.34 mmol, 0.061 mL) and EtN(iPr)2 (0.054 mL, 0.32 mmol), were 

added by syringe. After stirring at room temperature during 2 h the solution was diluted with 

CH2Cl2 (250 mL), washed with NaHCO3 (ss) (2 x 140 mL) and water (3 x 100 mL), dried 

(Na2SO4) and concentrated. The syrup obtained was purified by column chromatography 

(99.7:0.3→99.5:0.5 hexane/EtOAc) affording syrupy compound 14 (0.167 g, 83 %) as an 

inseparable  mixture in a 3:1 ratio, which gave Rf = 0.40 (7:0.1 hexane/EtOAc twice 

developed), []D 11.7 (c 1, CHCl3). 
1
H NMR (CDCl3, 500 MHz) 5.81 (m, 1.29H, CH=CH2 

,), 4.99 (m, 1.29H, CH=CHaH ,), 4.92 (m, 1.29H, CH=CHHb ,), 4.84 (d, J = 4.2 Hz, 

0.36H, H-1), 4.79 (d, J = 2.6 Hz, 1H, H-1), 4.20 (apparent t, J = 5.0 Hz, 0.36 H, H-3), 
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4.13 (dd, J = 3.6, 6.0 Hz, 1H, H-3), 3.98 (dd, J = 2.5, 3.5 Hz, 1H, H-2), 3.94 (dd, J = 2.5, 

6.0 Hz, 1H, H-4), 3.90 (dd, J = 4.0, 5.2 Hz, 0.36H, H-2), 3.75 (m, 2.3H, H-5, H-4, H-5, 

OCHaH), 3.67 (m, 2.6H, H-6,, OCHaH), 3.57 (m, 1.43H, H-6’,), 3.35 (dt, J = 6.7, 9.6 

Hz, 1H, OCHHb), 3.28 (m, 0.32H, OCHHb), 2.041.28 (CH2,), 0.910.87 (SiC(CH3)3), 

0.110.05 (Si(CH3)2). 
13

C NMR (CDCl3, 125.8 MHz)  139.2 (2C, CH=CH2,), 114.1 (2C, 

CH=CH2,), 108.0 (C-1), 102.2 (C-1), 84.7 (C-2), 83.8 (C-4), 79.5 (C-3), 78.8 (C-

2), 76.4 (C-3), 73.5 (C-5), 73.3 (C-5), 68.7 (OCH2), 68.0 (OCH2), 65.2 (C-6), 64.5 

(C-6), 33.8, 29.7, 29.6, 29.5, 29.44, 29.42, 29.1, 29.08, 28.94, 28.92 (CH2), 26.225.7 

(SiC(CH3)3), 18.417.8 (SiC(CH3)3), 3.5(5.4) (Si(CH3)2). HRMS (ESI) m/z calcd for 

C40H86NaO6Si4 [M+Na]
+
: 797.53937. Found: 797.54188. 

 

1.5. 9-Decenyl 2,3,5,6-tetra-O-benzoyl--D-galactofuranoside (16) 

A suspension of 11 (0.20 g, 0.31 mmol) in anhydrous CH2Cl2 (10.0 mL) containing dry 4 Å 

powdered molecular sieves cooled to 0 ºC and stirred during 10 min under Ar. TMSI (1.2 

equiv, 0.048 mL, 0.37 mmol) and ZnI2 (0.6 eq, 0.059 g, 0.18 mmol) were added and the 

stirring was continued at 0 ºC for 15 min and then the suspension was allowed to reach room 

temperature. After 0.5 h TLC monitoring showed complete transformation of 11 (Rf = 0.61, 

9:1 toluene-EtOAc) into a lower moving product (Rf = 0.27), presumable 2,3,5,6-tetra-O-

benzoyl-D-Galf. 9-Decen-1-ol (1.3 equiv, 0.40 mmol, 0.072 mL) was added and the stirring 

was continued during 1 h. Then, the suspension was filtered and the filtrate was diluted with 

CH2Cl2 (250 mL), washed with NaHCO3 (ss) (2 x 140 mL) and water (3 x 100 mL), dried 

(Na2SO4) and concentrated. After purification by column chromatography (95:5 toluene-

EtOAc) fractions of Rf = 0.67 (9:1 toluene-EtOAc) afforded syrupy compound 16 (0.15 g, 66 



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

16 

 

%), []D +10.3 (c 1.2, CHCl3). For the  anomer: 
1
H NMR (CDCl3, 500 MHz)  8.167.21 

(aromatic), 6.08 (m, 1H, H-5), 5.81 (m, 1H, CH=CH2), 5.63 (d, J = 5.2 Hz, 1H, H-3), 5.47 (s, 

1H, H-2), 5.30 (s, 1H, H-1), 5.014.90 (m, 2H, CH=CH2), 4.794.72 (m, 2H, H-6,6’), 4.64 

(m, 1H, H-4), 3.75 (m, 1H, OCHaH), 3.54 (m, 1H, OCHHb), 1.721.57 (CH2), 1.511.47 

(CH2), 1.411.22 (CH2).
 13

C NMR (CDCl3, 125.8 MHz)  166.1, 165.7, 165.6, 165.4 (COPh), 

139.1 (CH=CH2), 133.42, 133.40, 133.29, 133.28, 133.2, 133.04, 133.03 (C-aromatic), 114.1 

(CH=CH2), 105.6 (C-1), 82.0 (C-2), 81.2 (C-4), 77.6 (C-3), 70.3 (C-5), 67.6 (OCH2), 63.5 (C-

6), 40.3, 33.7, 29.3, 29.04, 29.02, 28.9, 26.6 (CH2). HRMS (ESI) m/z calcd for C44H46NaO10 

[M+Na]
+
: 757.2983. Found: 757.2999. 

 

1.6. 9-Decenyl ,-D-galactofuranoside (4)  

1.6.1. From 14. To a solution of compound 14 (0.077 g, 0.1 mmol) in freshly distilled THF 

(10.0 mL) cooled at 0 ºC, TBAF (0.209 g, 0.8 mmol) was added.
18

 The stirring was continued 

for 10 min at 0 ºC and then at room temperature for 1 h. The solution was evaporated and the 

residue was purified by column chromatography (EtOAc). Fractions of Rf = 0.85 (7:1:2 

nPrOH/NH3/H2O) gave compound 4 (0.028 g, 87 %) as / mixture in a 3:1 ratio, []D 34.3 

(c 0.8, CH3OH). 
1
H NMR (CD3OD, 500 MHz) 5.81 (ddt, J = 6.7, 10.3, 17.1 Hz, 1.23H, 

CH=CH2,), 4.98 (m, 2H, CH=CH2), 4.91 (m, 0.89H, CH=CH2), 4.854.83 (m, 1.44H, 

H-1,), 4.08 (at, J = 7.3 Hz, 0.44H, H-3), 4.00 (dd, J = 4.0, 6.7 Hz, 1H, H-3), 3.94 (m, 

0.44H, H-2), 3.93 (dd, J = 2.0, 4.0 Hz, 1H, H-2), 3.91 (dd, J = 3.3, 6.7 Hz, 1H, H-4), 3.80 

(dt, J = 6.9, 9.6 Hz, 0.44H, OCHaH), 3.743.67 (m, 2.44H, H-4, H-5, OCHaH), 

3.653.58 (m, 2.88H, H-5, H-6, H-6, H-6’), 3.55 (m, 0.44H, H-6’), 3.46 (dt, J = 6.7, 

9.4 Hz, 0.44H, OCHHb), 3.41 (dt, J = 6.6, 9.6 Hz, 1H, OCHHb), 2.081.27 (7 CH2). 
13

C 
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NMR (CD3OD, 125.8 MHz)  140.1 (CH=CH2), 114.7 (CH=CH2), 109.4 (C-1), 102.8 (C-

1), 84.1 (C-4), 83.5 (C-4), 83.4 (C-2), 78.9 (C-2), 78.7 (C-3), 76.4 (C-3), 74.5 (C-

5), 72.4 (C-5), 69.7 (OCH2), 68.9 (OCH2), 64.6 (C-6), 64.2 (C-6), 34.9, 30.7, 30.6, 

30.55, 30.49, 30.2, 30.1, 27.2 (CH2). HRMS (ESI) m/z calcd for C16H30NaO6 [M+Na]
+
: 

341.19346. Found: 341.19470. 

 

1.6.2. From 16. To a solution of compound 16 (0.073 g, 0.1 mmol) in anhydrous 3:2 

CH2Cl2/MeOH (10 mL) at 0 ºC, 1.3 M NaOMe/MeOH (0.4 mL) was added. After 1 h of 

stirring at 0 ºC, the mixture was concentrated to 4 mL and deionized by elution with MeOH 

through a column of strongly acidic cation exchange resin (H
+
). The eluate was evaporated 

under reduced pressure to afford compound 4 (0.030 g, 94 %) as a syrup, Rf = 0.9 (7:1:2 

nPrOH/NH3/H2O), []D 25.6 (c 1.1, MeOH). The NMR spectra were showed that compound 

4 was a mixture of anomers in 9:1 ratio. 

 

1.7. 1,2,4,6-Tetra-O-acetyl-3-O-(2,3,5,6-tetra-O-acetyl--D-galactofuranosyl)-,-D-

mannopyranose (17). To a solution of 1 (1.43 g, 4.19 mmol)
19

 in dry pyridine (10 mL) 

cooled at 0ºC, Ac2O (4.74 mL, 50.26 mmol) was added dropwise, and the mixture was stirred 

overnight at 5 ºC. After cooling to 0 ºC, the reaction was quenched by slow addition of water 

(0.5 mL) and the stirring continued for 30 min at room temperature. The solution was diluted 

with CH2Cl2 (250 mL) and then successively washed with HCl 10% (150 mL), NaHCO3 ss 

(150 mL) and water (3  150 mL). The organic layer was dried (Na2SO4), filtered and then 

concentrated under reduced pressure. Purification of the crude mixture by column 

chromatography (8:1 →1:1 hexane/EtOAc) afforded compound 17 (2.13 g, 75 %) as an 
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anomeric mixture in 2:1 / ratio, Rf 0.55 (1:3 hexane/EtOAc), []D 20.1 (c 0.9, CHCl3). 

1
H NMR (CDCl3, 500 MHz)  6.09 (d, 1H, J  2.0 Hz, H-1), 5.80 (d, 0.4H, J  1.2 Hz, H-

1), 5.51 (dd, 0.4H, J  1.2, 3.7 Hz, H-2), 5.405.33 (m, 1.4H, H-5’,), 5.29 (m, 1H, H-

2), 5.275.17 (m, 1.4H, H-4,), 5.14 (s, 1H, H-1’), 5.11 (s, 0.4H, H-1’), 4.974.95 (m, 

2.8H, H-2’,, H-3’,), 4.39 (dd, 1H, J  4.5, 11.6 Hz, H-6’a), 4.374.25 (m, 1.8H, H-

6a,, H-6’a), 4.204.12 (m, 4.2H, H-4’,, H-6’b,, H-6b, H-3), 4.09 (dd, 1H, J  2.5, 

12.2 Hz, H-6b), 4.033.97 (m, 1.4H, H-3, H-5), 3.773.73 (m, 0.4H, H-5), 2.172.05 

(CH3CO). 
13

C NMR (CDCl3, 125.8 MHz)  170.7, 170.4, 170.3, 169.96, 169.9, 169.2, 169.1, 

169.06, 169.03 (CH3CO), 102.5 (C-1’), 102.2 (C-1’), 90.9 (C-1), 90.8 (C-1), 80.8, 80.7 

(C-2’,), 80.6 (2C, C-4’,), 76.4 (2C, C-3’,), 73.4 (C-5), 72.3 (C-3), 70.6 (C-5), 

70.5 (C-3), 69.3 (2C, C-5’,), 66.0 (C-2), 65.9 (2C, C-4,), 65.8 (C-2), 62.5 (2C, C-

6’,), 62.2 (2C, C-6,), 20.9, 20.8, 20.79, 20.77, 20.73, 20.71, 20.67, 20.66, 20.5 (CH3CO). 

HRMS (ESI) calcd for C28H38NaO19 [M  Na]
+
: 701.1900. Found 701.1897. 

 

1.8. 2,4,6-Tri-O-acetyl-3-O-(2,3,5,6-tetra-O-acetyl--D-galactofuranosyl)--D-

mannopyranose (18). 

To a stirred solution of ethylendiamine (0.025 mL, 0.38 mmol) in THF (5 ml) cooled to 0 °C 

glacial acetic acid (0.025 mL, 0.46 mmol) was added dropwise. Immediately, this mixture was 

transferred to a flask containing compound 17 (0.23 g, 0.34 mmol) and the solution was 

stirred for 21 h at room temperature. The mixture was diluted with CH2Cl2 (50 ml), washed 

with 5% HCl (30 ml), NaHCO3 ss (30 ml) and water (3x 30 ml). The organic layer was dried 

(Na2SO4), filtered and evaporated under reduced pressure. Purification by column 

chromatography (2:3 hexane/EtOAc) gave compound 18 in 84 % yield (0.17 g), Rf  0.28 (1:3 
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hexane/EtOAc), []D 12.7 (c 1, CHCl3). 
1
H NMR (CDCl3, 500 MHz)  5.35 (dt, 1H, J  2.9, 

4.1 Hz, H-5’), 5.30 (dd, 1H, J  1.9, 3.5 Hz, H-2), 5.23 (s, 1H, H-1), 5.21 (at, J = 9.9 Hz, 1H, 

H-4), 5.12 (s, 1H, H-1’), 4.964.93 (m, 2H, H-2’, H-3’), 4.33 (dd, 1H, J  4.2, 11.9 Hz, H-

6’a), 4.254.08 (m, 6H, H-3, H-6a, H-6’b, H-4’, H-5, H-6b). 
13

C NMR (CDCl3, 125.8 MHz)  

170.8, 170.5, 170.3, 169.9, 169.3, 169.28, 169.25 (CH3CO), 102.2 (C-1’), 92.4 (C-1), 80.8 (C-

2’), 80.5 (C-4’), 76.5 (C-3’), 70.3 (C-3), 69.3 (C-5’), 68.5 (C-5), 67.5 (C-2), 66.6 (C-4), 62.6, 

62.5 (C-6, C-6’), 20.9, 20.79, 20.76, 20.75, 20.7, 20.5 (CH3CO). HRMS (ESI) calcd for 

C26H36NaO18 [M  Na] 659.1794, found 659.1776. 

 

1.9. 9-Decenyl 2,4,6-tri-O-acetyl-3-O-(2,3,5,6-tetra-O-acetyl--D-galactofuranosyl)-,-D-

mannopyranoside (21) 

1.9.1. Trichloroacetimidate method. To a stirred solution of 18 (0.16 g, 0.25 mmol) and 

trichloroacetonitrile (0.174 mL, 1.75 mmol) in anhydrous CH2Cl2 (15 mL) cooled to 0ºC, 

DBU (15.5 L, 0.1 mmol) was slowly added. After 1 h, the solution was carefully 

concentrated under reduced pressure, and the residue was purified by column chromatography 

(2:3 hexane/EtOAc) to give 0.163 g (83.4 %) of the trichloroacetimidate of 20 as a syrup, Rf  

0.63 (1:3 hexane/EtOAc). A stirred suspension of 20 (163 mg, 0.208 mmol), 9-decen-1-ol (55 

L, 0.313 mmol), and 4 Å powdered molecular sieves (0.5 g) in anhydrous CH2Cl2 (15 mL) 

was cooled to 78ºC, and TMSOTf (11.3 L, 0.062 mmol) was slowly added. After 48 h of 

stirring at room temperature, the mixture was quenched by addition of NaHCO3 ss(10 mL) 

and then extracted with CH2Cl2. Purification by column chromatography (2:1→1:1 

hexane/EtOAc), afforded syrupy 21 (0.11 g, 72 %) as an anomeric mixture in 2:3 / ratio, Rf 

 0.58 (1:3 hexane/EtOAc), []D 31.9 (c 1.2, CHCl3). 
1
H NMR (CDCl3, 500 MHz) 5.79 
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(m, 2.5H, CHCH2,), 5.385.34 (m, 2.5H, H-5’,), 5.30 (at, J = 8.5 Hz, 1.5H, H-4), 

5.28 ddJ  9.0, 10.0 Hz, 1H, H-4), 5.19 (s, 1.5H, H-1’), 5.13 (s, 1H, H-1’), 5.06 (dd, J  

2.1, 6.1 Hz, 1H, H-3’), 5.024.99 (m, 4.5H, H-2’CHCHaH, H-3’4.97 (m, 

1HCHCHaH), 4.94 (dd, J  0.6, 2.3 Hz, 1H, H-2’4.93 (m, 1H, CHCHHb), 

4.924.90 (m, 2.5H, CHCHHb, H-1), 4.52 (d, J  1.3 Hz, 1.5H, H-1), 4.374.15 (m, 

11.5H, H-6’a,, H-6a,, H-4’,, H-6’b,, H-6b), 4.11 (dd, J  1.4, 3.1 Hz, 1.5H, H-

2), 4.08 (dd, J  2.4, 12.3 Hz, 1H, H-6b), 4.044.00 (m, 2H, H-2, H-3), 3.91 (dt, J = 6.8, 

9.5 Hz, 1.5H, OCHaH), 3.87 (ddd, J  2.8, 5.3, 10.3 Hz, 1H, H-5), 3.82 (dd, J  3.1, 9.0 Hz, 

1.5H, H-3), 3.65 (dt, J = 6.8, 9.8 Hz, 1H, OCHaH), 3.59 (m, 1.5H, H-5), 3.50 (dt, J = 6.8, 

9.5 Hz,1.5H, OCHHb), 3.42 (dt, J = 6.8, 9.8 Hz, 1H, OCHHb), 2.132.06 (CH3CO, CH2), 

1.641.54 (CH2), 1.401.27 (CH2). 
13

C NMR (CDCl3, 125.8 MHz)  170.88, 170.84, 170.5, 

170.4, 170.0, 169.99, 169.97, 169.7, 169.4, 169.1 (CH3CO), 139.2 (2C, CHCH2,), 114.2, 

114.1 (CHCH2,), 102.7 (C-1’), 102.5 (C-1’), 99.6 (C-1), 99.2 (C-1), 82.4 (C-2’), 

81.6 (C-2’), 80.5 (C-4’), 80.1 (C-4’), 76.1 (C-3’), 75.7 (C-3’), 75.0 (C-3, 74.5 (C-

3), 72.2 (C-5), 70.1 (OCH2), 69.28, 69.27 (C-5’,), 68.3 (C-5), 68.1 (OCH2), 67.3 (C-

2), 66.9 (C-4), 66.8 (C-2), 66.4 (C-4), 62.8 (C-6’), 62.7 (C-6), 62.6 (C-6), 62.4 (C-

6’), 33.825.9 (CH2), 20.920.6 (CH3CO).  

 

1.9.2. Glycosyl iodide method. A suspension of 17 (0.050 g, 0.074 mmol) and ZnI2 (0.038 g, 

0.12 mmol) in anhydrous CH2Cl2 (10.0 mL) was stirred at 0 ºC under argon atmosphere. After 

15 min TMSI (35 μL, 0.26 mmol) was slowly added and the reaction was allowed to reach 

room temperature. After 30 min of stirring at 45 ºC TLC analysis showed total consumption 
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of starting material (Rf = 0.51, 1:3 hexane/EtOAc) and a new compound of Rf = 0.64 (1:3 

hexane/EtOAc), presumably 19. Powdered molecular sieves 4Å (0.5 g) and 9-decen-1-ol (0.04 

mL, 0.22 mmol) were then added. After 17 h of stirring at room temperature the reaction 

mixture was diluted with CH2Cl2 (250 mL), washed with NaHCO3 ss (2 x 140 mL) and H2O 

(3 x 100 mL), dried (Na2SO4) and concentrated under reduced pressure. The syrup was 

purified by silica gel column chromatography (2:1→1:1 hexane/EtOAc) and fractions of Rf = 

0.59 (1:3 hexane/EtOAc) afforded compound 21 (0.034 g, 61 %). By reacetylation of the 

partial deprotected products formed during the purification by column chromatography the 

yield was improved (78 %). 

 

1.10. 9-Decenyl 3-O-(-D-galactofuranosyl)--D-mannopyranoside (2) 

To a solution of 21 (0.05g, 0.064 mmol) in 2:1 anhydrous CH2Cl2/MeOH (6 mL) stirred at 

0ºC, 1.3 M NaOMe/MeOH (0.75 mL) was added. After 1 h the solution was deionized by 

elution with MeOH through a column of strongly acidic cation exchange resin (H
+
). The 

eluate was evaporated and the residue was dissolved in water and further purified through a 

RP18 cartridge. Compound 2 (0.031 g, 100%) was obtained as a 2:3  anomeric mixture, Rf 

 0.62 (7:1:2 nPrOH/NH3/H2O), []D 12.7 (c 1, MeOH). 
1
H NMR (D2O, 500 MHz)  5.68 

(m, 2.5H, CHCH2,), 5.04 (s, 1.5H, H-1’), 5.00 (s, 1H, H-1’), 4.89 (dd, 2.5H, J  6.5, 

16.7 Hz, CHCHaH ,), 4.82 (m, 2.5H, CHCHHb ,), 4.74 (s, 1H, H-1),4.47s, 1.5H, 

H-1),4.076m, 1.5H, H-2’), 4.05 (m, 2.5H, H-2’-), 4.033.96 (m, 6H, H-3’,H-

4’,, -2, 3.813.66 (m, 11H, OCHaH , H-5’,, H-6a ,, H-6b ,, -3, H-4), 

3.643.51 (m, 9H, OCHaH, H-6’a ,, H-6’b ,, -3, -4, 3.503.43 (m, 2.5H, 

OCHHb, H-5), 3.33 (m, 1H, OCHHb), 3.24 (m, 1.5H, H-5), 1.981.88, 1.571.45, 
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1.341.13 (7 CH2).
 13

C NMR (D2O, 125.8 MHz)  139.0, 138.8 (CHCH2), 114.16, 114.15 

(CHCH2), 105.4 (C-1’), 104.3 (C-1’), 99.9(C-1), 99.7 (C-), 83.3 (C-4’), 83.1 (C-

4’), 81.3 (C-2’), 81.1 (C-2’), 77.5 (C-3), 77.1 (2C, C-3’,), 76.9 (C-3) ,76.1 (C-5), 

72.5 (C-5), 70.8, 70.7 (2C, C-5’,), 69.8 (OCH2), 67.7 (OCH2), 67.6 (C-2), 67.3 (C-

2), 64.8 (C-4), 64.6 (C-4), 62.8 (2C, C-6’,), 60.9 (2C, C-6,), 33.7, 33.6 

(CH2CHCH2,), 29.425.7 (CH2). HRMS (ESI) calcd for C22H41O11 [M  H ]
+
 481.26434. 

Found, 481.26331. 
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Figure 1. Synthetic targets. 

 



  

 

Scheme 1. Retrosynthetic approaches for 9-decenyl -D-Galf-(1→3)-D-Manp (2) 

 



  

 

 

Scheme 2. Synthesis of 9-decenyl -D-mannopyranoside (3) 

 



  

 

 

 

Scheme 3. Synthesis of O-galactofuranosides via in situ formed galactofuranosyl 

iodides. 

 



  

 

Scheme 4. Synthesis of 9-decenyl -D-Galf-(1→3)-D-Manp (2). 
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 9-Decenyl glycosides of D-Manp, D-Galf and -D-Galf-(1→3)-D-Manp were 

synthesized. 

 Conditions for glycosylation per-O-acetyl-Manp iodide were revised and optimized. 

 The established conditions were used for the glycosylation of -D-Galf-(1→3)-D-

Manp 

 Galactofuranosylation via per-O-benzoyl--D-Galf iodide was investigated. 

 




