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Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is
that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze
different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework
in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and
IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at
hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier.

1. Introduction

Production planning problems involve the allocation of
scarce resources to different tasks in such way as to optimize
one or more efficiency-related goals [1]. In most cases, these
problems are analyzed as instances of the Job-Shop Schedul-
ing Problem, in which given a set of machines and a list of
jobs, represented as ordered sequences of operations, to be
run on the machines, the goal is to minimize, in particular,
the processing time of all jobs, known as makespan [2]. This
problem belongs to the class NP-hard [3], for which no
efficient algorithms are known to run in reasonable execu-
tion times. The literature focuses mostly on single-objective
versions of the problem, despite the fact that several authors
have stated that a genuine scheduling problem involves more
than one objective when production efficiency is sought [4].
If this is indeed the appropriate approach, Multiobjective
Evolutionary Algorithms (MOEAs) are the tools of choice [5,
6]. Their main advantages are their ease of adaptation to dif-
ferent instances and their overall efficiency. Only the fitness

function has to be known, instead of its rates of variation,
making the evolutionary algorithms efficient for problems
that cannot be solved in reasonable time with gradient-based
methods.

In this paper we will evaluate the performance of three
MOEAs on Job-Shop scheduling problems [7, 8]: NSGAII
[9], SPEA2 [10], and IBEA [11]. These competing approaches
all use domination and elitism to reach the best possible
approximation to the solutions of multiobjective problems.
They differ in the strategies on which they are based (lack of
a predefined sharing parameter, in the case of NSGAII; a fine
grained fitness assignment procedure in SPEA2; a qualitative
indicator function over Pareto approximations in IBEA), but
their performance on different instances tends to be the best
available in the literature. We, furthermore, add extra con-
straints, on both the availability of machines and the buffer
capacity. We run the algorithms on real-world problems in
which nonstandardized production (like in the Job-Shop
context) has to share machines with standardized processes
that have priority over the former.
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2. Job-Shop Scheduling Problem

The Job-Shop Scheduling Problem is quite complex. It has
been analytically solved for 1, 2, and 3 machines and a small
number of jobs. Only a few efficient algorithms have been
found for 4 or more machines and 3 or more jobs. This is
due to the combinatorial explosion of possible schedules. In
the next subsections we will review the state of the art in
this matter and formally define the problem, introducing the
objectives to be optimized in our analysis.

2.1. State of the Art. A brief review of the approaches to the
Job-Shop Scheduling Problem shows a multiplicity of tech-
niques. So, for instance, [12] presents a tabu search method
intended to minimize total tardiness, while [13] presents a
GRASP (Greedy Randomized Adaptive Search Procedures)
algorithm that minimizes the makespan, and [14] uses a
HACO (Hybrid Ant Colony Optimization) algorithm for the
same goal. In [15] a localization approach is suggested, mini-
mizing bothmakespan and themachine load. In [16] amathe-
maticalmodel is introduced, able to solve only small instances
of the problem. Closer to our object of study, [17] presents a
hybrid algorithm alsominimizingmakespan, while [7] intro-
duces a genetic algorithm in which the representation makes
every schedule feasible. In [18] a genetic algorithm is pre-
sented for which the control parameters have been tuned to
optimize makespan. In [19] dispatch rules are proposed and
at each generation the search space is explored by means of
schemes, again with the objective of minimizing makespan.
This approach is generalized in [20] where an architecture
based on an evolutionary algorithm is combined with learn-
ing through schemes and the generation of populations by
means of combined dispatch rules. In [21] a multiple scenar-
ios genetic algorithm is introduced, in which each scenario
corresponds to an operation and each feasible machine to a
state. In [22] a genetic algorithm profits from the localization
approach presented in [15]. A class of mutations consists in
allocating operations frommachines with heavy loads to less
loaded ones. In [2] a hybrid genetic algorithm solves the
problem with the proviso that no waiting time is allowed
among operations for any job, minimizing the makespan.
Finally, [23] presents an evolutionary algorithm minimizing
the makespan, the total work load, and the maximum load.

2.2. Formal Definitions. The Job-Shop Scheduling problem
consists in finding an optimal allocation of a class of n jobs
𝐽 = {𝐽𝑗}

𝑛
𝑗=1, to be processed by a set of m machines 𝑀 =

{𝑀𝑘}
𝑚
𝑘=1. Each job is described as a sequence of tasks that can

be performed in sequence 𝐽𝑗 ≡ 𝑆1, ..., 𝑆𝑛𝑗. The operation of a
task 𝑆𝑖 of job 𝐽𝑗 on machine 𝑀𝑘 is denoted as 𝑂𝑘𝑖𝑗. Oper-
ation 𝑂𝑘𝑖𝑗 requires using machine 𝑀𝑘 for an uninterrupted
processing time 𝜏𝑘𝑖𝑗. A solution for this problem involves the
determination of the starting time 𝑡𝑘𝑖𝑗 of each operation 𝑂𝑘𝑖𝑗
while optimizing the objectives [8]. Here we consider three
objectives. The first one is the minimization of themakespan
(1). This involves shortening the total time required for the 𝑛
jobs. The second objective is the minimization of the mean

flow time (2). This amounts to reducing the number of jobs
processed in parallel. Finally, we seek to minimize the effects
on the makespan of variations of the 𝜏𝑘𝑖𝑗, for each 𝑂

𝑘
𝑖𝑗. For

this we run microsimulations to find the variance of the first
objective 𝜎2(𝐶𝑗max) [24]. The minimization of this variance
ensures the stability of solutions (3):

𝑓1 : min𝐶𝑗max = ∑
𝑖∈𝑆𝑗

max
𝑘∈𝑀
(𝑡
𝑘
𝑖𝑗 + 𝜏
𝑘
𝑖𝑗) , (1)

𝑓2 : min𝐹 = 1
𝑛
∑

𝑗∈𝐽

∑

𝑖=𝑚

(𝑡
ℎ
𝑖𝑗 + 𝜏
ℎ
𝑖𝑗 − 𝑡
𝑘
1𝑗) , (2)

𝑓3 : min𝜎2 (𝐶𝑗max) . (3)

We assume the nonnegativity of the starting time 𝑡𝑘𝑖𝑗 of each
𝑂
𝑘
𝑖𝑗: 𝑡
𝑘
𝑖𝑗 ≥ 0. Besides, we have (joint) precedence constraints of

operations for each job: if 𝑖 ≥ 𝑠, 𝑆𝑖, 𝑆𝑠 are tasks of 𝐽𝑗 and 𝑆𝑖 is
executed on𝑀𝑘, while 𝑆𝑠 on𝑀ℎ, then 𝑡

𝑘
𝑖𝑗−𝑡
ℎ
𝑠𝑗 ≥ 𝜏
ℎ
𝑠𝑗. Finally, the

(disjoint) nonjuxtaposition constraints are applied on each
machine: if 𝑆𝑖 is a task in 𝐽𝑗 while 𝑆𝑠 in 𝐽𝑝, both to be executed
on𝑀𝑘, we have that 𝑡

𝑘
𝑖𝑗 − 𝑡
𝑘
𝑠𝑝 ≥ 𝜏

𝑘
𝑠𝑝. The purpose of the latter

constraints is to warrant that no machine carries out two
operations at the same time. Two additional constraints
involve the availability of machines and the capacity of the
buffer. The first ones limit the operational interval of each
machine; that is, (𝑡𝑘𝑖𝑗, 𝑡

𝑘
𝑖𝑗 + 𝜏
𝑘
𝑖𝑗) must be larger than the opera-

tional interval corresponding to the standardized operational
interval of machine 𝑀𝑘. The second group of constraints
limits the number of operations 𝑂𝑘𝑖𝑗 on machine𝑀𝑘 that are
on a waiting list. The buffer can either hold 0 operations (no-
wait) or 𝑛 − 1 operations (nonrestricted).

3. Evolutionary Multiobjective Algorithms

Evolutionary algorithms imitate genetic processes by improv-
ing solutions, pairing existing solutions as if they were DNA
chains, and creating new chains. A chromosome is composed
by smaller units called genes. For our problem the chro-
mosomes identify a schedule of operations. Evolutionary
improvements should end up yielding the optimal schedule.
To show how this works we use an example with three jobs
and three machines (3 × 3). The total problem involves nine
operations. Their corresponding processing times (𝜏𝑘𝑖𝑗) and

variances (𝜎𝑘𝑖𝑗
2
) for the machine in which they run (𝑀𝑘) are

shown in Table 1.

3.1. The Evolutionary Phase. To represent an individual
schedule, we use the notation proposed in [8]. The chromo-
some contains binary variables and the chain has as many
genes as machines in the problem. Each gene has a certain
number of alleles, depending on the number of jobs of the
problem.More precisely, the size of a gene is ⌈log(𝑛!)/ log(2)⌉,
while the total size of the chromosome is𝑚∗⌈log(𝑛!)/ log(2)⌉.
For each gene the sequence of binary numbers represents the
sequence of jobs in the corresponding machine 𝑀𝑘. In our
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Table 1: Scheduling operations.
3 × 3 problem with 9 operations

𝐽𝑗 𝐽1 𝐽2 𝐽3

𝑂
𝑘
𝑖𝑗 𝑂

1
11 𝑂

2
21 𝑂

3
31 𝑂

2
12 𝑂

3
22 𝑂

1
32 𝑂

3
13 𝑂

1
23 𝑂

2
33

𝜏
𝑘
𝑖𝑗 10 15 8 12 9 10 11 5 16
𝜎
𝑘
𝑖𝑗

2 4 4 2 4 3 5 2 1 4
𝑀𝑘 1 2 3 2 3 1 3 1 2

example we choose 000 → 1 | 2 | 3, 001 → 1 | 3 | 2,
010 → 2 | 1 | 3, 011 → 2 | 3 | 1, 100 → 3 | 1 | 2
and 101 → 3 | 2 | 1. Consider the first parent in Figure 1.
The first gene, of machine 𝑀1, is 000. This means that the
sequence of jobs in themachine is 1, 2, and 3. For𝑀2 the gene
is 010, that is, the sequence of jobs, is 2, 1, and 3. Finally, for
𝑀3 the gene is 011, and therefore the jobs are 2, 3, and 1.

A crossover operator acts on pairs of chromosomes. It
aligns the chromosomes, cuts them at a certain points, and
exchanges the fragments between the chromosomes. To see
how it works, consider again Figure 1 the two “parents” to
crossover, called First Parent and Second Parent. A “child”
is built incorporating randomly elements from both parents
(the offspring in Figure 2). The other child is obtained by
inverting the choices made for the other one. This crossover,
called uniform, yields better results exploring solutions close
to the Pareto frontier. A mutation varies the binary values of
one or more alleles of the gene. This variation is applied at
random points of the chromosome, generating an individual
with small differences with the original chromosome. In our
case 10% of the alleles of the chromosomes are changed. In
Figure 2, offspring∗ represents the mutated chromosome.

3.2. Selection of MOEAs. We consider three Multiobjective
Evolutionary Algorithms: Nondominated Sorting Genetic
Algorithm II (NSGAII) [9], Strength Pareto Evolutionary
Algorithm 2 (SPEA2) [10], and Indicator-Based Evolutionary
Algorithm (IBEA) [11]. They have been applied in the liter-
ature to engineering problems. It classifies the population in
fronts. Each individual is assigned a rank corresponding to
its nondominance level. This method ensures that the best
solutions will remain at the next iteration. Elitism is therefore
already incorporated without requiring an external proce-
dure. NSGAII further reduces the complexity of the ordering
procedure, based on nondominance, of its predecessorNSGA
and allows the preservation of diversity by means of a tech-
nique called crowding. SPEA2 is a variant of SPEA. It assigns
fitness by considering for each individual the class of indi-
viduals that dominate it and the class of those that are domi-
nated by the individual. SPEA2 uses also a “closest neighbor”
technique that values the density to improve the search.
Finally, IBEA incorporates indexes of multiobjective quality,
providing an alternative to Pareto dominance as a guide in
the search.

4. Implementation and Design of Experiments

For our experiments we used four instances drawn from
real cases: C 1 (15 × 20 problem with 157 operations), C 2

(20 × 20, 242 operations), C 3 (20 × 25, 412 operations),
and C 4 (25 × 25, 597 operations). For each one we took
into account the characteristics of the buffer, namely, no-
wait and nonrestricted. Once the appropriate number of gen-
erations for the evolutionary phase and the production
configuration for the microsimulations are defined, we run
the experiments using PISA (A Platform and Programming
Language Independent Interface for SearchAlgorithms) [25].
The parameters and characteristics of the experiments are
shown in Table 2. For IBEA we chose the additive epsilon
index. The other parameters keep their PISA predefined
values. For each problem, the algorithm was run 30 times.
From the class of solutions obtained, the dominated ones
were eliminated. The running time of problems C 1, C 2,
and C 3 was less than 30 minutes (Processor: 2.1 GHz AMD
TurionX2UltraDual-Core,Memory: 4GB 800MHzDDR2).
C 4, instead, took in average 85,71 minutes.

5. Results

We provide in the next subsections analyses of the Pareto
frontiers and a comparison of the three algorithms by means
of the Hypervolume and R2 indexes.

5.1. Pareto Frontiers. The frontiers obtained in our exper-
iments are shown in Figures 3 to 6. The horizontal
axis represents objective 𝑓1, the left vertical one, 𝑓2, while
the right vertical, 𝑓3. Comparing 𝑓1 and 𝑓2, the fronts
of the three algorithms look alike, although IBEA gener-
ated a better distributed front. NSGAII, instead, generated
an incomplete frontier. With respect to 𝑓1 versus 𝑓3, we see
that for C 1 with a buffer of 0 operations, algorithms SPEA2
and IBEA obtained better values than NSGAII (Figure 3).
For C 1 with a buffer of 14 operations, IBEA got the best
variance values (Figure 3). For C 2 the 0 operations buffer
makes no difference (Figure 4). For C 2 with a buffer of
19 operations, IBEA yielded the best values in variance
(Figure 4). On C 3 with a 0 operations buffer, NSGAII and
IBEA got better values than SPEA2 (Figure 5), while for the 19
operations buffer, NSGAII and SPEA2 obtained better values
than IBEA (Figure 5). Finally, on C 4, a 0 or 24 operations
buffer made no difference (Figure 6).

5.2. Comparison through Quality Indexes. We compared the
results according two indexes: Hypervolume [26] and R2
[27]. These are the usually recommended approaches to the
evaluation of Pareto fronts. They provide slightly different
advantages in the assessment of the frontiers. On one hand,
Hypervolume seems fitter because it satisfies strong mono-
tonicity while R2 only weak monotonicity. On the other,
the former tends to be biased towards boundary solutions,
while 𝑅2 is more uniform. Hypervolume requires a reference
point to establish the area dominated by a given point,
represented by the vector of its 𝑓1, 𝑓2, and 𝑓2 values. Thus,
a higher index indicates that the algorithm yields better
solutions. 𝑅2 estimates the degree of closeness of the solution
to the real front. Therefore, a low index indicates that the
algorithm yields better solutions. Figures 7 and 8 show cases
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Table 2: Parameters and characteristics of the experiments.

C 1
15 × 20, 157 op.

C 2
20 × 20, 242 op.

C 3
20 × 25, 412 op.

C 4
25 × 25, 597 op.

Inicialization Random Random Random Random
Representation Binary Binary Binary Binary
Number of genes 20 20 25 25
Size of gene 22 62 62 84
Size of chromosome 820 1240 1550 2100
Size of population 50 50 100 100
Generations 1000 1000 1000 1000
Crossover type Uniform Uniform Uniform Uniform
Probability of crossover 0.85 0.85 0.85 0.85
Mutation type Alterate Alterate Alterate Alterate
Mutated alleles 82 124 155 210
Probability of mutation 0.05 0.05 0.05 0.05
Number of objectives 3 3 3 3
Number of runs 30 30 30 30
Buffer limits 0–14 0–19 0–19 0–24
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Figure 2: Crossover and mutation.
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Table 3: Approximate Pareto frontier and the contribution of each
algorithm.

Problem NSGAII SPEA2 IBEA
C 1 (no-wait) 50,00% 60,00% 100,00%
C 1 (non-restricted) 59,26% 66,67% 100,00%
C 2 (no-wait) 48,48% 60,61% 100,00%
C 2 (non-restricted) 51,28% 69,23% 100,00%
C 3 (no-wait) 52,94% 73,53% 100,00%
C 3 (non-restricted) 50,98% 74,51% 100,00%
C 4 (no-wait) 46,30% 77,78% 85,19%
C 4 (non-restricted) 56,14% 73,68% 91,23%

in which SPEA2 and IBEA are better according both indexes.
Figure 9, instead, shows a case in which IBEA yields the
better results, while Figure 10 presents a case in which there
are no differences among the three algorithms. A possible
explanation for NSGAII’s general low degree of efficiency is

that more than 2 objectives impair the crowding operator.
Besides, it is well known that this algorithm is not efficient
with binary representations.

To these casual observations we added a parametric sta-
tistical analysis, Fisher’s test, with a significance level of 0.05.
Problems C 1, C 2, and C 3 present significant differences in
favor of SPEA2 and IBEA over NSGAII. Even if C 3 IBEA
seems to perform better than SPEA2, the statistical analysis
does not yield differences between these two algorithms.
Finally, in C 4 there are no significant differences among the
algorithms. Table 3 shows the contribution of each algorithm
to the approximate Pareto, formed by taking the nondomi-
nated solutions.

6. Conclusions

This paper presents an analysis of the performance of three
different Multiobjective Evolutionary Algorithms in exper-
iments with Job-Shop Scheduling Problems. It required
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the specification of parameters appropriate for the problems
at hand, involving constraints on machine availability and
buffer capacity. An important share of the running time of the
algorithms corresponded tomicrosimulations of the variance
of makespan of solutions. The comparison leads to the selec-
tion of SPEA2 and IBEA, while the contribution to the
approximate Pareto frontier makes IBEA the most efficient
algorithm for the problems at hand. Future work involves
the extension of this comparison on other production envi-
ronment problems. It seems also worthwhile analyzing the
implications of the variance of makespan in comparison with
other objectives.
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