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ABSTRACT  
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INTRODUCTION 

The interpretation of the permeation of solutes or protein/peptide penetration under the frame of 

this model, usually invokes the partition phenomena between the aqueous phase and the 

membrane hydrocarbon region, disregarding the interphase region and the hydration state of the 

phospholipids. Structural and dynamical properties of water at the membrane adjacencies and its 

influence on the dynamical behavior of biomembranes have been studied by neutron scattering 

technique [5]. These measurements revealed a strong interaction of a “first hydration layer” with 

the membrane surface and a reduced self-diffusion of aqueous solvent parallel to the membrane 

surface. It is concluded that protein/lipid complexes are strongly affected by the amount of 

solvent interacting with the lipids and the membrane proteins. In particular, the lipids and their 

ability to attract solvent molecules play an important role on the “hydration-induced flexibility” 

of biomembranes. On the basis of this statement, the impact of hydration on the function of 

biomembranes should be discussed in terms of the lability of the solvent structure facing 

membrane surfaces of different polarities (i.e. polar or non polar groups). In thermodynamic 

terms, the lability is related to excess free energy that is the driving force for protein insertion.  
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Indirect references to the state of hydration have been used as an argument to reconcile 

experimental results with thermodynamic foundations . Mostly, different types of peptides are 

assayed in model lipid membranes of known composition. The phenomenological results are 

explained by models based on geometrical considerations of the lipid molecules postulating 

hypothetical intermediaries in membrane conformational arrangements in which water might be 

involved . Although the presence of water and its peculiar structural properties have been 

recognized in several previous studies, no explanation in regard to its role in the thermodynamics 

of membrane response has been considered in those proposals .  

The suggested deeper penetration of water into bilayers composed by unsaturated hydrocarbon 

chains has been correlated with the looser packing at the lipid-water interface [9]. This is 

immediately correlated with an area increase. However, the area creation is concomitant with the 

excess free energy promoted by the exposure of different kinds of groups to water and therefore 

it cannot be explained only in terms of free geometrical space. In this regard, the relation 

between the functional activities of the biological structures with the lability of the water 

ensembles at the lipid surfaces at different surface pressures has not received the necessary 

thermodynamic analysis to understand membrane response. In consequence, no general 

considerations can be derived from the multiple systems studied.  

Water by itself may constitute a bidimensional domain inhomogeneously distributed along the 

lipid surface. Water immediately adjacent to the glycerol backbone, the side groups and the 

hydrocarbon chains, has a lower activity than a zone of similar size in the bulk solution. In this 

region, due to the exposure of acyl chains and carbonyl groups to the aqueous phase, several 

populations of different water species in terms of hydrogen bonding has been reported [10,11]. It 

has been proposed that in solid monolayers, half of the water molecules in the surface layer is 
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replaced by amphiphilic molecules, the whole forming a highly ordered structure . However, 

the connection between the different water organizations with the excess surface free energy due 

to the membrane group-water interaction that may trigger the peptide or protein insertion has not 

been systematically analyzed so far. 

To understand the origin of this surface free energy as a consequence of the stability of the 

different arrays of water around the different membrane groups, a description of the interphase in 

terms of physicochemical considerations is required. In this regard, it is important to take into 

account the proposal made by Defay-Prigogine for an interphase [13, 14]. This model allows to 

ascribe measurable thermodynamic properties to the lipid surface. 

The region confined between the carbonyl group plane and external plane tangent to the 

phosphates depicted in Figure 1 is considered as a bidimensional solution in which the hydrated 

polar groups are imbibed in water. In consequence, the surface pressure of an insoluble 

monolayer is a direct measure of the surface water activity
 
[13]. Thus, from the thermodynamic 

point of view, the surface tension of pure water can be defined as 
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where 0  is the surface tension of pure water, A is the average area per mole of water in the 

interphase region, i

wa is the activity of water in the interphase of pure water and b

wa  is the water 

activity in the bulk phase.  When a monolayer is spread on the water surface, the surface tension 
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where L

wa is the surface water activity in the presence of lipids, i.e. in the interphase region. 

Thus, the difference between the surface tension of pure water ( 0 ) and surface tension of water 

with lipids spread on it forming a monolayer (  ), i.e. the surface pressure of the monolayer ( ) 

is expressed as a function of the surface water activities as [15]. 

             (1) 

This equation clearly denotes that the surface pressure ( ) increases when L

wa  decrease below 1 

and becomes zero when L

w

i

w aa  , i.e. the activity of pure water when lipids coverage is zero. In 

that condition: 0  . An important consequence of equation (1) is that the surface pressure 

increases with the amount of lipids at the interface at constant area. This provides a method to 

regulate surface pressure by adding lipids to the air-water surface [16, 17]. In the present work, 

the different initial surface pressures before the addition of the proteins to the subphase are 

adjusted by adding known amounts of lipids to an air-water surface in a Langmuir trough. This 

method allows to fix the initial water activity at the interphase and has an extra benefit in relation 

to the thermodynamic state of the monolayer as compared to that in which the surface excess and 

hence, the surface pressure is varied by decreasing the area at constant lipid amounts. In this last 

case, lipids are forced to pack by a lateral external force that may cause distortions in the head 

group region [18]. 

It is clear that with the Defay-Prigogine definition, the thermodynamic parameter of surface 

pressure can be related to the water organization, which is implicit in the water activity term. At 

equilibrium, the chemical potential of water at the interphase ( wi ) will be equal to the chemical 

potential of water in the bulk water phase ( wb ). 
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When a solute from the bulk water dissolves in the interphase region, the water activity ( L

wa ) 

changes. This decrease in water activity with respect to bulk promotes a flow of water into the 

interphase region. In consequence, the surface pressure increases when the water enters the 

interphase. The film pressure can be described as a difference in osmotic pressure, over a 

thickness of the bidimensional solution, between the interphase at the monolayer and the bulk 

phase
 
[19]. 

In terms of solution chemistry, in principle, this should be independent of the particle nature that 

dissolves in it, at least in diluted systems according to the definition of colligative properties. 

Therefore, independent of the protein or peptide used, lipid membranes should give a similar 

response if determined water activity conditions are achieved. Most probably, deviations from 

the ideal behavior should be included in the activity coefficient different from 1 included in the 

activity term. 

The changes in surface pressure at different initial surface pressures, induced by defined 

concentrations of peptides in the subphase, has been usually interpreted by the plots of  vs  

as shown in Figure 2. In this figure, we summarize published results obtained with different 

kinds of lipids and two different aqueous soluble proteins (protease of Mucor miehei and S-layer 

extracted from lactobacilli). It is observed that the cut-off (or critical pressure defined as the 

pressure at which no perturbation is observed) depends on the head group region composition 

and the slope on the acyl chain composition. 

In this paper, we analyze these data in terms of the Defay and Prigogine model in a systematic 

interpretation of the protein-membrane phenomena in terms of the thermodynamic activity of 

water in different lipid membranes. The perturbation caused by different proteins on the surface 
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pressure of a monolayer can be measured considering that this is a thermodynamic parameter 

related to the interfacial tension and hence with the surface free energy.
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EXPERIMENTAL METHODS 

 

Chemicals: 1,2-dimyristoyl- sn-glycero- 3- phosphocholine (DMPC), 1,2-di-O-tetradecyl-sn- 

glycero-3-phosphocholine (etherPC), 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine 

(DMPE), 1,2-di-O-tetradecyl-sn-glycero-3-phosphoethanolamine (etherPE), 1,2-dipalmitoyl- sn- 

glycero-3-phosphoethanolamine N-monomethylated (mmDPPE) and N,N-dimethylated 

(dmDPPE) were obtained from Avanti Polar Lipids, Inc (Alabaster, AL). Soybean 

phosphatidylcholine (PC), stearylamine (SA) and cholesterol were purchased from Sigma (St. 

Louis, MO, USA). The purity of lipids was checked by thin layer chromatography using a 

chloroform:methanol:water mixture as running solvent. 

Protease Rennet from Mucor miehei, was from Sigma. For details see Martini et al. . The S-

layer protein was extracted from Lactobacillus brevis JCM 1059. A single protein band with an 

apparent molecular mass of 49.5 was observed as published in a previous work . 

Changes on the surface pressure of lipid monolayers: The changes of the surface pressure of 

monolayers induced by proteins were measured in a Kibron μTrough S equipment (Kibron Inc, 

Espoo, Finland) at constant temperature (22 ± 0.5 °C). The surface of an aqueous solution 

contained in a Teflon trough of fixed area was exhaustively cleaned. Then, a chloroform solution 

of lipids was spread on this surface, to reach surface pressures between 20 and 42 mN/m. Similar 

results were obtained when the lipids were spread on the surface and the chosen pressure were 

attained by moving the barriers. For simplicity, the addition of lipids to a constant area trough 

was adapted. The monolayers were allowed to stabilize at long times in order to assure the 

complete evaporation of the chloroform. Several solvents with different rate of evaporation were 

tested and similar results were obtained in all cases provided the monolayer is allowed to 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

stabilize for long times (usually more than 30 minutes). Once the surface pressure was adjusted, 

protein solutions were injected in the sub-phase underneath the monolayer at each chosen surface 

pressure and the changes on the surface pressure were followed during time to reach a constant 

value. A control injecting the same volume of water produced no changes in the initial 

monolayer pressure. The difference between the final pressure obtained with the protein and the 

initial surface pressure before protein addition was taken as a measure of the perturbation caused 

in the lipid interphase (). This value is usually plotted vs the initial surface pressure. The 

same procedure was followed for all monolayer compositions. In the range of pressures used 

through this study the surface pressure–area isotherms of DOPC, DPhPC, DMPC, DPPC, and 

DMPE show that all lipids are forming monolayers when they are spread on an air-water surface 

[22-25]. 

 

RESULTS AND DISCUSSION

In order to interpret the surface pressure perturbation within the frame of the Defay-Prigogine 

model, similar experiments to those of Figure 2 A and C were carried out. In Figure 3, data of 

Figures 2A and C, corresponding to the perturbation induced by the proteins on the initial surface 

pressure of the monolayer ( ), are plotted in function of the difference between the critical 

surface pressure ( c ) and a chosen initial surface pressure achieved by the lipid surface excess. 

It is observed that the slopes are directly related to the unsaturation of the acyl chains. In 

addition, it is observed in Figure 3B, that the presence of carbonyl groups contributes to the 

hydrocarbon phase properties. The depletion of the CO group has a similar effect than the 

increase of unsaturation or branching in the hydrocarbon chains, that is, an increase in the slope. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

In Figure 4, the plot of data in Figure 2B and D are shown. In panel A, the slope remains 

unchanged with the addition of stearylamine (SA) maintaining the cholesterol ratio constant. In 

panel B, it is clearly shown that the slope decreases with the increase of cholesterol in a 

monolayer of constant PC/SA ratio.  

Finally in Table I, the values of the slopes for the different membrane compositions are shown. 

The plots of Figure 3 and 4 can be phenomenologically described by  

   ck

where  defines the perturbation of the initial surface pressure of the monolayer induced by 

the protein addition to the subphase. The initial surface pressure is related to the water activity at 

the interphase, according to equation (1), and is modulated by the amount of lipids added to the 

water surface at values below c

The value of the slope k is clearly a function of the acyl chain composition including the 

presence of carbonyl groups, according to data in Figure 3 and 4. Specifically, the increase in 

branching or unsaturation and the depletion of cholesterol and carbonyl groups increases the 

slope (Table I). A direct conclusion could be that the magnitude of the perturbation is related to 

the kinks formation due to the rotational isomers of the acyl chains and the cooperativity [26, 

27]. However, since those membrane conformers imply water penetration
 
[9], it is plausible to 

analyze these results in terms of the effects that those lipid components may cause on the water 

activity of the surface, following the hypothesis of Damoradan [13]
 
and the formalism of Defay 

Prigogine [19] described in the introduction. 
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The physical meaning of k in equation (3) is clearly related to phase state of the monolayer. It is 

interesting to observe the effect of cholesterol. In natural systems, the liquid condensed phase is 

physiologically relevant. Cholesterol, mainly found in the plasma membranes of eukaryotic cells 

[28, 29] is considered a passive modulator of membrane physical properties [30]. Biophysical 

studies in phospholipid:cholesterol model systems have been carried out in the range of 20% 

molar ratio [30-32]. 

In the liquid condensed phase, molecules have high diffusivity parallel to the plane of the 

membrane and undergo rapid rotational diffusion about the axis perpendicular to the plane of the 

membrane. In the absence of cholesterol, this enhanced diffusion is always accompanied by the 

onset of conformational freedom of the acyl chains, i.e., low orientational order, so that the 

normal fluid phase of pure lipid systems is appropriately described as the 'liquid expanded’ (ld) 

phase. 

The departure of the surface pressure values with respect to the critical surface pressure denoted 

in the abscissa can, in principle, be related to area changes concomitant to the onset of 

conformational freedom of acyl chains (Figures 3 and 4). The area per lipid molecule 

corresponds to the area excluded by the lipid head group and the immobilized hydration shell. 

This area, calculated from monolayers studies and from X-ray diffraction is around 64 Å
2
 for 

DOPC [16, 34]. Note that this area is larger than that reported for collapse monolayers, and 

corresponds to lipids at the water interphase at saturation without compression (i.e. constant 

area)  

The excess area beyond that occupied by a lipid molecule with its hydration shell at saturation is 

difficult to justify by the ideal formalism of an increase in geometrical space. Several equations 

of state have been proposed to consider the non-ideal behavior of lipid monolayers, introducing 
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the co-volume of the lipid head groups and the intermolecular interactions [33, 35].
 
Thus, 

changes in the area per lipid lead to a membrane state that is affected by the protein perturbation.  

Therefore, the increase in surface pressure promoted by the proteins cannot be interpreted with 

the simple geometrical criterion in which the protein intercalates with the lipids and therefore 

increases the surface pressure. The water molecules beyond the hydration shell of the 

phospholipids and the phospholipid themselves defines the thermodynamic state of the 

interphase. The monolayer expansion gives place to surface sites, in terms of surface excess free 

energy, reactive for the amino acid residues of the proteins. The perturbation can thus be 

expressed by the difference of free energy between the final state of the monolayer with protein 

and the free energy of the initial state of the monolayer (prior to protein addition). 

The resolution of k in terms of equation (1) can now be done considering that the surface 

pressure produced by the protein in the monolayer is  

p

w

i

w

a

a
RT ln

 

where p

wa is the water activity of interphase after protein addition 

Thus, considering that πp as a surface pressure of monolayer in the final state after protein 

addition, the pressure perturbation (Δπ) can be written as    

p

w

L

w

p
a

a
RT ln 
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This equation denotes that there is no perturbation when p

w

L

w aa  . This condition is achieved 

when the whole surface is occupied by the lipids, i.e. c  is reached. In addition,  >0 when p

wa  

< L

wa . That is, the protein insertion reduces the water activity at the interface. 

On the other hand, the difference of the surface pressures with respect to the critical one ( c ) 

can be expressed as      

Lc

w

i

w

c
a

a
RT ln  

From which  

Lc

w

L

w
c

a

a
RT ln

Equation (7) makes clear that for  c  > 0, the water activity at the interphase for any lipid 

concentration should be higher than at the critical Lc

wa , given by the limit of packing of the lipids 

with its hydration shells. 

Thus, dividing member by member (6) by (7) we have: 

 
 Lc

w

L

w

p

w

L

w

aa

aa
k

lnln

lnln






The increase of the slopes due to the increase of unsaturation or the depletion of cholesterol, as 

shown in the Figures and in Table 1, means that the protein insertion depends on the difference 

in L

wa  with respect to P

wa , for a given departure from Lc

wa .  
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Multiplying and dividing by RT and knowing that chemical potential (µ) can be defined as: 

aRT ln0     

 
 wcw

wpw
k










Assuming that there are no significant differences between the standard chemical potentials in 

the different conditions, equation (9) clearly denotes that the process is driven by the difference 

in the chemical potential of water in the different states of the interphase. 

wcw  
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0G

  

 

Conclusions  

In real systems, in which area and lipids are maintained constant, the excess of free energy 

necessary for peptide or protein insertion can be produced by fluctuations in curvature and 

packing according to the viscoelasticity of the membrane system.  

The link between the thermodynamics of lipid interfaces with the hydration state of the 

membrane to explain the interactions of aqueous soluble protein should be established by 
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demonstrating the relationship of the water activity values with the organization of water at the 

different regions of the membrane, which deserves further studies. 
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Membrane 

composition 

k Cut off Protein 

DMPC 0.264 41.5 Aqueous protease 

DMPE 0.266 30.8 Aqueous protease 

Di(ether)PC 0.351 31.8 Aqueous protease 

Di(ether)PE 0.282 29.4 Aqueous protease 

DPPC 0.259 39.5 Aqueous protease 

DOPC 0.336 41.5 Aqueous protease 

DPhPC 0.428 39.6 Aqueous protease 

PC:SA (10:1) 0.685 35.18 Bacterial S-layer 

PC:Chol:SA 

(10:2.5:1)  

0.519  34.6  Bacterial S-layer 

PC:Chol:SA 

(10:5:1) 

0.328  36.64 Bacterial S-layer 
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