1 2 3 4 5 6 7	<i>Streptococcus lutetiensis</i> Bacteremia. First Clindamycin Resistant Isolate Carrying <i>lnu</i> B Gene. Almuzara M ¹ , Bonofiglio L ² , Cittadini R ³ , Vera Ocampo C ³ , Montilla A ² , del Castillo M ³ , Ramirez MS ⁴ , Mollerach M ² , Vay C ¹ *.
8	
9	¹ Laboratorio de Bacteriología. Departamento de Bioquímica Clínica. Hospital de Clínicas
10	José de San Martín. Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires.
11	Ciudad Autónoma de Buenos Aires, Argentina.
12	
13	² Cátedra de Microbiología. Facultad de Farmacia y Bioquímica. Universidad de Buenos
14	Aires. Argentina.
15	
16	³ Sanatorio Mater Dei, Ciudad Autónoma de Buenos Aires, Argentina.
17	
18	⁴ Instituto de Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad
19	de Medicina, Universidad de Buenos Aires, Argentina.
20	
21	
22	*Corresponding author. Mailing address: Avenida Córdoba 2351. First floor. Ciudad
23	Autónoma de Buenos Aires. Zip code: 1120. Argentina. Phone: 54 11 59508663; Fax: 54
24	11 59508691
25	E-mail: <u>cavay@fibertel.com.ar</u>
26	

27	Abstract
28	Herein, we describe the first case of S. lutetiensis isolate harboring the InuB gene
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	

50 Case report

52	A 70-year-old male patient had a history of fever, epigastric and right flank pain of one
53	month of evolution. One week prior to admission, residual choledochal microlithiasis
54	without bile duct dilatation was found on echoendoscopy. The patient had a
55	cholecystectomy 10 years before.
56	On the night before the Emergency Room consultation, the patient had postprandial
57	epigastralgia, fever and chills; therefore, his hospitalization was decided. During
58	hospitalization, Endoscopic Retrograde Cholangiopancreatography (ERCP) was performed
59	showing micro –gallstones. They were removed by Dormia basket and extraction balloon
60	catheter. Admission diagnosis was cholangitis due to residual lithiasis.
61	Admission laboratory findings were: white blood cell count: $4,900 \text{ /mm}^3$ (with 86 %
62	neutrophils), hematocrit: 37 %, kaolin partial thromboplastin time (KPTT) 34 sec and
63	prothrombin time 70 %. Liver function tests were as follows: alanine aminotransferase
64	(ALT), 716 U/L (normal, < 35 U/liter); aspartate aminotransferase (AST), 218 U/L
65	(normal, < 35 U/L); total bilirubin, 0.7 mg/dL (normal, < 1.0 mg/dL); direct bilirubin 0.3
66	(normal, < 0.3 mg/dL); alkaline phosphatase, 353 U/L (normal, < 279 U/L); total
67	cholesterol 103 mg/dL (normal, 150-200 mg/dL).
68	In two blood sample cultures taken on admission, after 24 hours of incubation, growth of
69	Streptococcus infantarius with Escherichia coli was obtained.
70	Phenotypic identification was carried out by conventional biochemical tests (1). The
71	organism was identified as Streptococcus infantarius, however, it was not possible to
72	determine the subspecies by this methodology. In addition, we used the GP card of the

73	VITEK 2 system (bioMerieux, Marcy-l_Etoile, France). The bionumber obtained was
74	141011164717711, giving an identification of S. infantarius subsp coli; now Streptococcus
75	lutetiensis (4)/Streptococcus bovis with an excellent confidence level. Identification was
76	also carried out by matrix-assisted laser desorption ionization-time-of-flight (MALDITOF)
77	mass spectrometry (MS) (Bruker Daltonik) showing a spectral score of 2.223 for
78	Streptococcus lutetiensis (2).
79	PCR amplification of the 16S rRNA was performed in order to reach definitive
80	identification. PCR product of the 16S rRNA gene, using the primers described by
81	Weisburg et al. (3), was obtained with the Taq DNA polymerase based on the
82	manufacturer's specifications (Promega). Sequencing of the 1.4 kb PCR product was
83	performed on both DNA strands at Macrogen, Inc., Seoul, Korea sequencing facility. The
84	sequences were analyzed using the Blast V2.0 software
85	(<u>http://www.ncbi.nlm.nih.gov/BLAST/</u>), showing a 99% identity with the sequences
86	corresponding either to the 16S RNA ribosomal gene S. infantarius subsp. infantarius
87	(GenBank accession number EU420174) or to the 16S RNA ribosomal gene S. lutetiensis
88	(GenBank accession number NR 037096). In order to discriminate subspecies, we
89	amplified the sodA gene (coding for the manganese-dependent superoxide dismutase)
90	following the methodology described by Poyart et al. (4, 5). A PCR product of 404 bp was
91	obtained using the primers described by these authors (4, 5). Sequence analysis revealed
92	100% identity with the sodA sequence of Streptococcus lutetiensis (GenBank accession No.
93	AY035713). These results confirmed the species identification.
94	Disk diffusion was performed following CLSI guidelines (6). Furthermore, susceptibility to
95	7 antimicrobial agents was determined by the Etest technique (bioMérieux) on Mueller -

96	Hinton agar with 5% sheep blood following the manufacturer's specifications. The MIC
97	breakpoints used in this study were those established by the Clinical and Laboratory
98	Standards Institute CLSI 2012 (6) for Streptococcus spp. viridans group. The MICs for S.
99	<i>lutetiensis</i> isolate were as follows (µg/mL): penicillin 0.032; ceftriaxone 0.023;
100	vancomycin 0.38; ciprofloxacin 0.75; erythromycin 0.064; clindamycin 2.0 and lincomycin
101	128.
102	The phenotypic characterization was complemented by a modified triple disk induction test
103	as previously described (7). In the test, lincomycin and clindamycin disks were placed at
104	the sides of an erythromycin disk 15 mm apart. No inhibition zones were observed around
105	clindamycin and lincomycin disks; no inducible pattern was detected.
106	To determine the lincosamide resistance mechanism (L-phenotype: erythromycin
107	susceptible but clindamycin resistant), detection of <i>lnu</i> B gene, encoding the lincosamide
108	nucleotidyl-transferase enzyme was performed. The presence of <i>lnu</i> B gene was detected
109	using the previously described (8) primers and confirmed by sequencing. The nucleotide
110	sequence was deposited in the EMBL/GenBank/DDBJ databases under accession number
111	KC688833.
112	Given the clinical picture of cholangitis (fever and epigastric and right flank pain), and with
113	the preliminary report of Streptococcus infantarius with Escherichia coli isolation in blood
114	cultures, treatment with ampicillin-sulbactam 3.0 g/6 hours/IV plus ciprofloxacin 400
115	mg/12 hours/IV was started.
116	After receiving the antibiotic sensitivity report of both microorganisms, ciprofloxacin was

117 discontinued.

118	After 3 days of treatment with this antimicrobial agent, the patient was afebrile and
119	recovered well. He was discharged on ertapenem 1g/day i.v. for 15 days.
120	
121	In the nineties, and after several different proposals, the group Streptococcus bovis /
122	equinus was reclassified based on their phenotypic and genotypic differences in:
123	Streptococcus gallolyticus subsp. gallolyticus (9), formerly S. bovis biotype I;
124	Streptococcus lutetiensis, previously known as Streptococcus infantarius subsp. coli (4),
125	which in turn corresponds to S. bovis biotype II / 1, and finally Streptococcus gallolyticus
126	subsp. pasteurianus (formerly S. bovis biotype II/2) (4). Species from this group are
127	frequently encountered in blood cultures of patients with bacteremia, sepsis, and
128	endocarditis. The clinical significance S. bovis group growing in blood culture is based on
129	the association of S. gallolyticus subsp. gallolyticus with gastrointestinal disorders
130	including colon cancer and chronic liver disease and S. gallolyticus subsp. pasteurianus
131	with meningitis (1, 10-12). Other species that are also part of this group but less related to
132	men are Streptococcus equinus, Streptococcus gallolyticus subsp. macedonicus,
133	Streptococcus infantarius subsp. infantarius, and Streptococcus alactolyticus (13).
134	As regards S. bovis group antibiotic susceptibility, a high rate of resistance to erythromycin
135	and to clindamycin in this group has previously been described by Rodríguez-Avial et al.
136	(14). In their study, on a total of 18 isolates, 78% were resistant to erythromycin and 72%
137	were resistant to clindamycin. Among their isolates, the $cMLS_B$ phenotype was the most
138	predominant and in all of them, the erm(B) gene was detected; the iMLS _B phenotype was
139	only detected in one erythromycin-resistant isolate. Additionally, differences in the rates of
140	resistance to erythromycin and clindamycin were observed among the different subspecies

141	of Streptococcus gallolyticus, S. infantarius subsp. infantarius and Streptococcus lutetiensis
142	in the Romero et al. study (15). The highest percentage of resistance was obtained for S .
143	<i>lutetiensis</i> (60 % resistant to erythromycin and to clindamycin, $MIC_{50} > 2 \mu g/ml$) (15).
144	These results differ from those reported by Beck et al. (1). In their work, 94% of the
145	isolates of S. lutetiensis tested were susceptible to erythromycin (MIC ₉₀ 0.12 μ g/ml) while
146	clindamycin susceptibility was not reported (1). The highest percentages of erythromycin
147	resistance were observed on S. gallolyticus subsp. gallolyticus (MIC90 > 32 μ g/ml) isolates
148	and on <i>S. gallolyticus</i> subsp. <i>pasteurianus</i> isolates (MIC90 > $32 \mu g/ml$); however
149	erythromycin resistance mechanism was not recorded by these authors (1). In our work, S.
150	lutetiensis isolate was PCR positive only for lnuB gene, representing the first description of
151	this gene within this species. Among streptococci, <i>lnu</i> B gene was also described in
152	Streptococcus agalactiae (16, 17); Streptococcus dysgalactiae ssp. equisimilis and in
153	Streptococcus uberis (18, 19).
154	The difficulty to differentiate Streptococcus infantarius subspecies using conventional
155	biochemical tests has been reported by other authors. Beck et al. (1) found that some
156	features of S. infantarius subsp. coli (now S. lutetiensis) (on 17 isolates studied) were
157	different from the data given by Schlegel, L. et al. (13, 20) especially regarding hydrolysis
158	of esculin and acidity from glycogen, trehalose and starch. These different characteristics,
159	together with the largest number of S. infantarius subsp. coli strains published, allowed
160	Beck et al. to create an amended species description for S. infantarius subsp. coli (1). Also,
161	the limitations of the 16S RNA sequencing to identify members of Streptococcus bovis
162	group has been indicated by Poyart et al. (4). These authors pointed out that the 16S rDNA
163	sequences of strains from S. infantarius sp coli were almost identical to those of the type of

164	S. bovis (99±9%) and S. infantarius (99±9%) strains. To differentiate such strains, these
165	authors proposed the use of an alternative single-copy target sequence which exhibits
166	greater sequence divergence than that of 16S rDNA: The sodA gene of the Gram-positive
167	cocci, which encodes the manganese-dependent superoxide dismutase (Mn-SOD), allows
168	differentiating closely related species belonging to the Streptococcus and Enterococcus
169	(4,5) genera.
170	In conclusion, we describe the first case of S. lutetiensis isolate harbouring the InuB gene
171	highlighting that antibiotic resistance in S. bovis group monitoring is necessary not only to
172	detect new resistance mechanisms but also for a better therapeutic management when
173	clindamycin is indicated.
174 175	Nucleotide sequence accession number. The obtained sequences for the Streptococcus
176	lutetiensis sodA and lnuB genes have been deposited at GenBank under accession numbers
177	KC714048 and KC688833, respectively.
178	Acknowledgments
179	This work was supported by grants from the "Secretaría de Ciencia y Técnica de la
180	Universidad de Buenos Aires" (UBACyT) to Carlos Vay and Marta Mollerach. MSR, LB
181	and MM are members of the CONICET research career.
182 183 184 185	References
186	1. Beck M, Frodl R, Funke G. 2008. Comprehensive study of strains previously
187	designated Streptococcus bovis consecutively isolated from human blood cultures

188		and emended description of Streptococcus gallolyticus
189		and Streptococcus infantarius subsp. coli. J. Clin. Microbiol. 46:2966-2972.
190	2.	Carbonnelle E, Mesquita C, Bille E, Day N, Dauphin B, Beretti JL, Ferroni A,
191		Gutmann L, Nassif X. 2011. MALDI-TOF mass spectrometry tools for bacterial
192		identification in clinical microbiology laboratory. Clin. Biochem. 44:104-109.
193		
194	3.	Weisburg WG, Barns SM, Pelletier DA, Lane LD. 1991. 16S- ribosomal DNA
195		amplification for phylogenetic study. J. Bacteriol. 173:697-703.
196		
197	4.	Poyart C, Quesne G, Trieu-Cuot P. 2002. Taxonomic dissection of the
198		Streptococcus bovis group by analysis of manganese-dependent superoxide
199		dismutase gene (sodA) sequences: reclassification of «Streptococcus infantarius
200		subsp. coli» as Streptococcus lutetiensis sp. nov. and of Streptococcus bovis biotype
201		II.2 as Streptococcus pasteurianus. Int. J. Syst. Evol. Microbiol. 52:1247-1255.
202		
203	5.	Poyart C, Quesne G, Coulon S, Berche P, Trieu-Cuot P. 1998. Identification of
204		streptococci to species level by sequencing the gene encoding the manganese-
205		dependent superoxide dismutase. J. Clin. Microbiol. 36:41-47.
206		
207	6.	Clinical and Laboratory Standards Institute. 2012. Performance standards for
208		antimicrobial susceptibility testing; M100-S22, 22th informational supplement.
209		Clinical and Laboratory Standards Institute, Wayne, PA.
210		

211	7.	Jenssen, W. D., S. Thakker-Varia, D. T. Dubin, and M. P. Weinstein. 1987.
212		Prevalence of macrolides-lincosamides-streptogramin B resistance and erm gene
213		classes among clinical strains of staphylococci and streptococci. Antimicrob.
214		Agents Chemother. 31:883-888.
215		
216	8.	Bozdogan B, Berrezouga L, Kuo MS, Yurek DA, Farley KA, Stockman BJ,
217		Leclercq R. 1999. A new resistance gene, linB, conferring resistance to
218		lincosamides by nucleotidylation in Enterococcus faecium HM1025. Antimicrob.
219		Agents Chemother. 43 :925-929.
220		
221	9.	Farrow JAE, Kruze J, Phillips BA, Bramley AJ, Collins MD. 1984. Taxonomic
222		studies on Streptococcus bovis and Streptococcus equinus: description of
223		Streptococcus galactolyticus sp. nov. and Streptococcus saccharolyticus sp. nov.
224		Syst. Appl. Microbiol. 5:467–482.
225		
226	10	. Gavin PJ, Thomson RB Jr, Horng SJ, Yogev R. 2003. Neonatal sepsis caused by
227		Streptococcus bovis variant (biotype II/2): report of a case and review. J. Clin.
228		Microbiol. 41 :3433-3435.
229		
230	11	. Klein RS, Recco RA, Catalano MT, Edberg SC, Casey JI, Steigbigel NH. 1977.
231		Association of Streptococcus bovis with carcinoma of the colon. N. Engl. J. Med.
232		297 :800-802.
233		

234	12. Pergola V, Di Salvo G, Habib G, Avierinos JF, Philip E, Vailloud JM, Thuny F,
235	Casalta JP, Ambrosi P, Lambert M, Riberi A, Ferracci A, Mesana T, Metras
236	D, Harle JR, Weiller PJ, Raoult D, Luccioni R. 2001. Comparison of clinical and
237	echocardiographic characteristics of Streptococcus bovis endocarditis with that
238	caused by other pathogens. Am. J. Cardiol. 88:871-875.
239	
240	13. Schlegel L, Grimont F, Ageron E, Grimont PAD, Bouvet A. 2003. Reappraisal
241	of the taxonomy of the Streptococcus bovis/Streptococcus equinus complex and
242	related species: description of Streptococcus gallolyticus subsp. gallolyticus subsp.
243	nov., S. gallolyticus subsp. macedonicus subsp. nov. and S. gallolyticus subsp.
244	pasteurianus subsp. nov. Int. J. Syst. Evol. Microbiol. 53:631-645.
245	
246	14. Rodríguez-Avial I, Rodríguez-Avial C, Culebras E, Picazo JJ. 2005. In vitro
247	activity of telithromycin against viridans group streptococci and Streptococcus
248	bovis isolated from blood: antimicrobial susceptibility patterns in different groups
249	of species. Antimicrob. Agents Chemother. 49:820-823.
250	
251	15. Romero B, Morosini MI, Loza E, Rodríguez-Baños M, Navas E, Cantón R,
252	Campo RD. 2011. Reidentification of Streptococcus bovis isolates causing
253	bacteremia according to the new taxonomy criteria: still an issue? J. Clin.
254	Microbiol. 49 :3228-3233.
255	

256	16. Corrêa AB, Silva LG, Pinto Tde C, Oliveira IC, Fernandes FG, Costa NS,
257	Mattos MC, Fracalanzza SE, Benchetrit LC. 2011. The genetic diversity and
258	phenotypic characterisation of Streptococcus agalactiae isolates from Rio de
259	Janeiro, Brazil. Mem. Inst. Oswaldo Cruz. 106:1002-1006.
260	
261	17. Faccone D, Lalonardi F, Abel S, Machain M, Errecalde L, Littvik A,
262	Kauffman S, Galas M; WHONET-Argentina Group, Corso A. 2010. Multiple-
263	Clones of Streptococcus agalactiae harbouring lnuB gene. J. Infect. Dev. Ctries.
264	4: 580-582.
265	
266	18. Schmitt-van de Leemput E, Zadoks RN. 2007. Genotypic and phenotypic
267	detection of macrolide and lincosamide resistance in Streptococcus uberis. J. Dairy
268	Sci. 90: 5089-5096.
269	
270	19. Lüthje P, Schwarz S. 2007. Molecular basis of resistance to macrolides and
271	lincosamides among staphylococci and streptococci from various animal sources
272	collected in the resistance monitoring program BfT-Germ Vet. Int. J. Antimicrob.
273	Agents 29: 528-535.
274	
275	20. Schlegel, L., F. Grimont, M. D. Collins, B. Regnault, P. A. D. Grimont, and A.
276	Bouvet. 2000. Streptococcus infantarius sp. nov., Streptococcus infantarius subsp.
277	infantarius subsp. nov. and Streptococcus infantarius subsp. coli subsp. nov.,
278	isolated from humans and food. Int. J. Syst. Evol. Microbiol. 50:1425-1434.