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Molecular techniques and virus concentration methods have shown that previously un-

known viruses are shed by humans and animals, and may be transmitted by sewage-

contaminated water. In the present study, 10-L river-water samples from urban areas in

Barcelona, Spain and Rio Janeiro, Brazil, have been analyzed to evaluate the viral

dissemination of human viruses, validating also a low-cost concentration method for virus

quantification in fresh water. Three viral groups were analyzed: (i) recently reported vi-

ruses, klassevirus (KV), asfarvirus-like virus (ASFLV), and the polyomaviruses Merkel cell

(MCPyV), KI (KIPyV) and WU (WUPyV); (ii) the gastroenteritis agents noroviruses (NoV) and

rotaviruses (RV); and (iii) the human fecal viral indicators in water, human adenoviruses

(HAdV) and JC polyomaviruses (JCPyV). Virus detection was based on nested and quanti-

tative PCR assays. For KV and ASFLV, nested PCR assays were developed for the present

study. The method applied for virus concentration in fresh water samples is a one-step

procedure based on a skimmed-milk flocculation procedure described previously for

seawater. Using spiked river water samples, inter- and intra-laboratory assays showed a

viral recovery rate of about 50% (20e95%) for HAdV, JCPyV, NoV and RV with a coefficient of

variation �50%. HAdV and JCPyV were detected in 100% (12/12) of the river samples from

Barcelona and Rio de Janeiro. Moreover, NoV GGII was detected in 83% (5/6) and MCPyV in

50% (3/6) of the samples from Barcelona, whereas none of the other viruses tested were

detected. NoV GGII was detected in 33% (2/6), KV in 33% (2/6), ASFLV in 17% (1/6) and

MCPyV in 50% (3/6) of the samples from Rio de Janeiro, whereas KIPyV and WUPyV were

not detected. RV were only analyzed in Rio de Janeiro and resulted positive in 67% (4/6) of

the samples. The procedure applied here to river water represents a useful, straightforward

and cost-effective method that could be applied in routine water quality testing. The re-

sults of the assays expand our understanding of the global distribution of the viral path-

ogens studied here and their persistence in the environment.
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1. Introduction prevalence of HAdV and JCPyV in water samples from
Microbiological pollution in water represents a health risk for

human populations. Many viral infectious diseases are trans-

mitted by consumption of or contact with water contaminated

with sewage (Fong and Lipp, 2005). The discharge of untreated

or even treated sewage into the aquatic environment is well

known as the main cause of fecal pollution in water. The

treatments commonly applied for wastewater depuration do

not guarantee the absence of viral pathogens (Gantzer et al.,

1998; Pusch et al., 2005; van den Berg et al., 2005; Bofill-Mas

et al., 2006; Fumian et al., 2010).

Among the most frequently detected human viruses in

water samples are the well-known groups of gastroenteric

viruses: rotaviruses (RV) and noroviruses (NoV), together with

the proposed human viral indicators (Puig et al., 1994; Pina

et al., 1998; Bofill-Mas et al., 2000): human adenoviruses

(HAdV) and JC polyomavirus (JCPyV). Furthermore, recent

studies have shown that new and emerging viruses may also

be present in water contaminated with sewage, such as: the

new polyomaviruses Merkel cell, KI and WU (MCPyV, KIPyV

and WUPyV); the new picornavirus klassevirus (KV); and

an asfarvirus-like virus (Bofill-Mas et al., 2000; Miagostovich

et al., 2008; Hotlz et al., 2009; Loh et al., 2009; Bofill-Mas

et al., 2010b; Lodder et al., 2010; Wyn-Jones et al., 2011).

Rotavirus species A is considered the leading cause of se-

vere diarrhea in children worldwide and according to the

WHO, RV-diarrhea results in approximately half a million

deaths and 2.4 million hospitalizations in developing coun-

tries each year (Parashar et al., 2009). RV are ubiquitous, they

will have infected virtually all children by the time they reach

5 years of age regardless of socioeconomic status or geogra-

phy; they are environmentally stable; and they are spread via

direct or indirect contact with infected individuals (Schael

et al., 2009). NoV are the leading cause of food-borne disease

outbreaks worldwide; it is estimated that they cause 80e95%

of all cases of gastroenteritis globally andmay soon eclipse RV

as the most common cause of severe pediatric gastroenteritis

(Patel et al., 2008; Koo et al., 2010). NoVs are themajor cause of

sporadic outbreaks of infectious gastroenteritis and occa-

sionally lead to hospitalization (Glass et al., 2009). Outbreaks

tend to be most common in closed populations, such as

childcare centers and cruise ships, and tend to involve chil-

dren past infancy as well as adults (Khan and Bass, 2010; Glass

et al., 2009). NoV are divided into five genogroups based on

the phylogenetic analysis of the viral capsid (VP1) gene,

and further subdivided into genetic clusters called genotypes.

Genogroups I (GGI), II (GGII) and IV (GGIV) are the human

strains (Glass et al., 2009; Koo et al., 2010). Despite this di-

versity, only a few strains, primarily those of genogroup II and

genotype 4 (GGII.4), have been responsible for the majority of

cases and outbreaks of food-borne infections in recent years

(Barreira et al., 2010; Ferreira et al., 2010; Bull andWhite, 2011;

Prado et al., 2011).

The DNA viruses HAdV and JCPyV have been proposed

as human fecal/urine indicators in the environment (Puig

et al., 1994; Pina et al., 1998; Bofill-Mas et al., 2000). They are

ubiquitous as they are excreted by a high percentage of the

human population. Several studies have reported an elevated
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different geographical areas (Bofill-Mas et al., 2000; Albinana-

Gimenez et al., 2006; McQuaig et al., 2006; Miagostovich et al.,

2008; McQuaig et al., 2009; Wyn-Jones et al., 2011). Although

current policies concerning water quality include the use of

bacterial indicators E. coli and intestinal enterococcus to

evaluate microbiological water quality, various studies have

shown that bacterial levels do not always correlate with viral

presence. This is particularly so when the concentrations of

fecal bacterial indicators are low and is probably due to the

high environmental stability of HAdV and JCPyV (Brownell

et al., 2007; Colford et al., 2007; Calgua et al., 2008; Wyn-

Jones et al., 2011). HAdV are grouped into 7 species (AeG),

which have been widely reported to cause a broad range of

clinical manifestations including respiratory tract infection,

acute conjunctivitis, cystitis, gastroenteritis, and systemic

infections. Antibodies against JCPyV were detected in over

80% of humans worldwide (Weber et al., 1997) and conse-

quently their presence in water may not represent a signifi-

cant health risk for most of the population. The pathogenicity

of JCPyV is commonly associated with progressive multifocal

leukoencephalopathy (PML) in immunocompromised states

and has attracted attention due to its reactivation in some

patients with multiple sclerosis and other autoimmune dis-

eases when treated with immunomodulators (Berger and

Major, 1999; Yousry et al., 2006). The kidneys and bone

marrow are sites of chronic and latent infection with JCPyV,

which is also excreted in the urine of healthy individuals and

patients with PML (Kitamura et al., 1990; Koralnik et al., 1999).

MCPyV, KIPyV andWUPyV are novel viruses that have only

recently been reported (Allander et al., 2007; Gaynor et al.,

2007; Feng et al., 2008). Similarly to JCPyV, infection by these

three viral agents is widespread among the human population

(Babakir-Mina et al., 2009). They persist in a latent state in an

unidentified body location and they can reactivate in a setting

of immune suppression due to immunosuppressive drugs or

other medical conditions (Babakir-Mina et al., 2009). KIPyV

and WUPyV have been detected in the respiratory tract, sug-

gesting that they might play a role in at least a subset of

pneumonia infections in immunocompromised patients

(Babakir-Mina et al., 2009). Moreover, they have been detected

in various types of samples, including blood, feces, plasma

and the tonsils (Babakir-Mina et al., 2009). Although KIPyV has

been detected in lung cancer patients, only MCPyV has been

strongly associated with being the primary human oncogenic

polyomavirus candidate (Feng et al., 2008; Foulongne et al.,

2008; Babakir-Mina et al., 2009), and has been found to be

monoclonally integrated into the genome of Merkel cell car-

cinomas (Feng et al., 2008). Interestingly it has been suggested

that MCPyV forms part of the skin microbiome in humans

(Wieland et al., 2009; Schowalter et al., 2010; Moens et al., 2011;

Foulongne et al., 2012). KIPyV, WUPyV and MCPyV have also

been found in sewage samples, with MCPyV being detected

most frequently (Bofill-Mas et al., 2010a,b), which could mean

that it is more prevalent in silent infections or that it is a virus

that is highly excreted.

The proposed new picornavirus KV was identified by deep-

sequencing in stool samples from Australia and the USA, and

its presence was confirmed in urban sewage from Barcelona
quantification of classic and emerging viruses by skimmed-
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by PCR (Holtz et al., 2009). Phylogenetic analysis shows that KV

is most closely related to the Aichi virus in the genus Kobuviru,

a known cause of food-borne gastroenteritis in humans (Holtz

et al., 2009; Greninger et al., 2009). KV has also been reported in

South Korea, China and the USA (Northern California and

Missouri), and in all cases it was associated with gastroen-

teritis in infants (Greninger et al., 2010; Han et al., 2010; Shan

et al., 2010). Deep-sequencing also detected an asfarvirus-like

virus in human serum from theMiddle East and urban sewage

from Barcelona (Loh et al., 2009). The Asfarviridae family (sin-

gle double-stranded DNA) comprises a single genus with only

one previously reported species, the asfarvirus, which pri-

marily infects swine, leading to African swine fever. It is

considered endemic to sub-Saharan Africa, but has been

introduced to countries in Europe, South America and the

Caribbean. Phylogenetic analyses show that ASFLV sequences

are most closely related to the asfarvirus but are highly

divergent from known asfarviruses (ASFV) strains. Therefore

ASFLV is considered to be derived from at least one novel virus

in the Asfarviridae family (Loh et al., 2009). Although ASFV is

not known to infect humans even where the virus is endemic

in pigs, identification of ASFLV in serum frommultiple human

patients suggests that human infection might occur.

The presence and concentration of viral pathogens in

wastewater may vary according to the wastewater treat-

ments, geographical area, season, and the hygiene and sani-

tary conditions. The use of new approaches in molecular

detection such as viral metagenomics studies of stools

(Finkbeiner et al., 2008), urban sewage (Cantalupo et al., 2011)

and water matrices (Rosario et al., 2009) indicate that the

number of viruses reported to date is tiny compared to the

results of the new studies.

The recovery of viruses from water samples such as river

water, seawater and groundwater, where fecal contamination

could be low or moderate, requires the concentration of vi-

ruses from several liters of sample into a much smaller vol-

ume. Probably the most frequently used procedures to

concentrate viruses are the two-step methods based on

adsorptioneelution protocols with a second concentration

step, commonly by organic flocculation with beef extract.

Those methods include the use of electropositive or negative

nitrocellulose membranes or cartridges, glass wool and fiber

glass (Sobsey et al., 1973; Vilaginès et al., 1993; Pallin et al.,

1997; Lambertini et al., 2008; Albinana-Gimenez et al., 2009).

Albinana-Gimenez et al. (2009) reported that glass wool col-

umns are more efficient than the electropositive filters tested

in the study; they recovered HAdV (1.21%) and JCPyV (13.7%)

by qPCR from 50 L of fresh water. Lambertini et al. (2008), also

using a glass wool method, obtained viral recoveries of 70%,

21% and 29%, for poliovirus, adenovirus 41 and norovirus

respectively. Haramoto et al. (2004) and Katayama et al. (2002)

described two-step methods using electronegative mem-

branes, an inorganic elution with 1 M NaOH and finally a

second concentration step using Centripep. They reported

viral recoveries for poliovirus of around 90%. Calgua et al.

(2008) describe a one-step concentration method based on

organic flocculation with skimmed milk to concentrate vi-

ruses from 10 L of seawater and reported a viral recovery of

50% for HAdV by qPCR. The protocol using skimmed-milk

flocculation presented good recoveries from seawater and
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lower intra-laboratory variability than other common pro-

cedures (Girones et al., 2010), it is also more simple, has a

lower cost and is a useful protocol for the routine analysis of

large numbers of samples.

In the present study, human viruses grouped into emerging

viruses (KIPyV, WUPyV, MCPyV, KV and ASFLV), classical

gastroenteritis agents (NoV, RV) and human viral fecal in-

dicators (HAdV and JCPyV) were detected in river water sam-

ples from two different geographical areas with very different

hydrological and climate conditions (Barcelona, Spain and Rio

de Janeiro, Brazil). The procedure initially reported to concen-

trate viral particles from seawater (Calgua et al., 2008) was

adapted and validated for use with a wide range of fresh water

matrices and viruses of public health interest.
2. Materials and methods

2.1. Virus

Viruses for use in the recovery assays were initially isolated

from clinical samples and were as follows: HAdV 2 (originally

provided by Annika Allard, Umeå University, Sweden, and in

Brazil kindly provided by Dr. José Paulo Leite, LVCA, Fiocruz,

Brazil), JCPyV strain Mad-4 (originally provided by Dr. Eugene

O. Major, NINDS, National Institutes of Health, MD, USA), NoV

GGII (fecal samples kindly provided by Annika Allard, Umeå

University, Sweden and by Dr. José Paulo Leite, LVCA, Fiocruz,

Brazil) and RVA G1P[8] (fecal samples provided by Dr. José

Paulo Leite, LVCA, Fiocruz, Brazil). HAdV 2 was also used as a

control. HAdV 2 and JCPyV Mad-4 were cultured in A549

(epithelial cell line derived from human lung carcinoma) and

SVG-A cells (fibroblast cell line subcloned from the original

SVG human fetal glial cell line), respectively. The cell lines

were grown in Earle’s minimum essential medium (EMEM)

supplementedwith 1% glutamine, 50 mg of gentamicin/mL and

10% (growth medium) or 2% (maintenance medium) of heat-

inactivated fetal bovine serum.

2.2. Water samples

For validation assays of the virus concentration method,

approximately forty 5-L river samples, 20 in each laboratory

were used. In order to analyze viral contamination in field

samples from two geographical areas, six 10-L river water

samples were collected over one month and analyzed in each

laboratory for the selected viruses. River water samples (5 and

10 L) were collected from two different geographical areas: the

Llobregat river in Barcelona, Spain, a Mediterranean area; and

the Macacos and Fairas Timbó rivers in the urban area of Rio

de Janeiro, Brazil. Samples from Barcelona and Rio de Janeiro

were collected on two different days in March in every loca-

tion. The selected sampling site in Barcelona corresponds

with a source of water at the entrance to a drinking water

treatment plant. Moreover, upstream from the point there are

more than 30 sewage treatment plants that discharge sec-

ondary effluents into the river. The Llobregat river has a flow

rate of 16.9 m3/s and is 170 km long. Samples from Rio de

Janeiro were also collected in March. Both Brazilian rivers, the

Macacos and Farias Timbó, receive domestic sewage
quantification of classic and emerging viruses by skimmed-
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discharge fromurbanized areas in Rio de Janeiro. TheMacacos

river, which is less polluted, flows through the Tijuca rain-

forest and into Rodrigo de Freitas Lagoon to the south of the

city. The Farias Timbó river is a highly polluted river that flows

through the greater metropolitan and slum area of the city of

Rio de Janeiro, in a northerly direction. It receives a high load

of untreated domestic sewage discharge. It flows into Cunha

channel, and finally in Guanabara Bay, in the Atlantic Ocean.

Samples were collected according to ISO 19458 (2006).

Water samples for microbiological analysis were stored for a

maximum of 24 h at 4 �C before being processed. Samples

collected in Barcelona showed turbidity and conductivity

values between 6.18 and 44.5 NTU and 588-1360 mS respec-

tively; while the samples from Rio de Janeiro had values of 1

NTU and between 490 and 830 mS.

2.3. Virus concentration by skimmed milk (SM)
flocculation procedure

Water samples with high levels of organic matter (by simple

observation) such as leaves, algae or sand, were left to settle

for two hours and the clear water was then transferred to a

new container to start the concentration protocol. The con-

ductivity of all the samples was measured before starting the

virus concentration protocol, and samples with conductivity

�1.5mSwere conditioned by adding artificial sea salts (Sigma,

Aldrich Chemie GMBH, Steinheim, Germany) to obtain values

�1.5 mS.

The riverwater samples were then concentrated based on a

procedures described previously by Calgua et al. (2008) and

Bofill-Mas et al. (2011). Briefly, once the samples were condi-

tioned, a pre-flocculated 1% (w/v) skimmedmilk solution (PSM)

was prepared by dissolving 10 g skimmed milk powder (Difco,

Detroit, MI, USA) in 1 L of artificial seawater at pH 3.5 (Sigma,

Aldrich Chemie GMBH, Steinheim, Germany). The sample was

then carefully acidified to pH 3.5 by adding HCl 1 N. The PSM

was added to each of the previously conditioned samples until

the final concentration of skimmed milk in the sample was

0.01% (w/v). Samples were stirred for 8 h at room temperature

and flocswere allowed to form sediment by gravity for another

8 h. The supernatant was carefully removed using a vacuum

pump without disturbing the sediment. The final volume of

about 500 mL containing the sediment was transferred to a

centrifuge tube and centrifuged at 7000 � g for 30 min at 12 �C.
The supernatant was carefully removed and the pellet dis-

solved in phosphate buffer (1:2, v/v of Na2HPO4 0.2 M and

NaH2PO4 0.2 M) at pH 7.5, at a ratio of 1 mL of phosphate buffer

per 1 L of concentrated sample. The viral concentrate was

stored at �80 �C. When necessary, an aliquot of the clarified

phase of PSM was used to balance the centrifuge pots.

2.4. Validation of SM-flocculation procedure for
detecting viruses in river water

In order to validate the use of the SM-flocculation procedure

in river water, assays to evaluate the reproducibility and

repeatability of viral recovery were performed in two labo-

ratories in different geographical areas: Barcelona and Rio

de Janeiro. A total of approximately 40 samples were tested,

20 in each laboratory. Each laboratory used two sets of ten 5-
Please cite this article in press as: Calgua, B., et al., Detection and
milk flocculation and PCR in river water from two geographi
j.watres.2013.02.043
L river water samples, each set having been collected on

different days and then mixed together. Based on the re-

covery assays described by Lambertini et al. (2008), sets of

ten samples were divided into three groups as follows. (i) Six

samples to test viral recovery. These samples were spiked at

the same time with viral suspensions of HAdV 2, JCPyV Mad-

4, NoV GGII in Barcelona and HAdV 2, RV and NoV GGII in Rı́o

de Janeiro. (ii) Three non-spiked samples were treated to

concentrate the viral particles, after which the viral con-

centrates were spiked as above. The idea here was to extract

nucleic acids and quantify viral genomes under the same

conditions as the spiked samples in (i). These conditions

allow to be averted false estimates of viral recovery due to

nucleic acid extractions and qPCR quantification, and

therefore the values obtained (Fig. 1) were taken as the

reference spiked viral quantity (i.e. 100% recovery). (iii) One

sample was used to analyze the endogenous viruses present

in the set of samples, and the values obtained together with

the samples in groups (i) and (ii) were used to estimate viral

recovery.

2.5. Nucleic acid extractions

Nucleic acids (DNA and RNA) were extracted using the

QIAampViral RNA kit (Qiagen, Valencia, USA) according to the

manufacturer’s instructions, using 140 mL of viral concentrate

or viral suspension and eluting the resulting nucleic acid

extraction in 80 mL of elution buffer. Nucleic acid extractions

were analyzed immediately or stored at �80 �C until further

analysis.

2.6. Enzymatic detection and amplification of viruses

Based on previously reported sequences and their specificity

against related viruses, oligonucleotides for ASFLV and KV

were designed for nested PCR (nPCR) and reverse transcrip-

tion (RT)-nPCR, respectively (Table 1). For RNA viruses, the

first rounds of enzymatic amplifications were performed

using OneStep RT-PCR Kit (Qiagen, Hilden, Germany)

following the manufacturer’s instructions. While in the first

round of DNA amplification, 40 mL of amplification mix con-

tained: PCR Buffer 1�, MgCl2 1.5 mM, 250 mM of each dNTP,

0.5 mM of the specific primer for the virus analyzed, and 4

units of Taq Gold DNA polymerase (Applied Biosystems,

Foster, CA, USA). In the first round of either PCR or RT-PCR,

10 mL of undiluted nucleic acid extract and a 10-fold dilu-

tion was analyzed.

In the second round of enzymatic amplification, 2 mL of the

product obtained in the first round was added to 48 mL of

amplification mix containing a set of specific primers for each

virus and the same reagent composition described above. The

amplification conditions were as follows: 95 �C for 10 min, 30

cycles of 94 �C for 60 s, annealing temperature for 60 s, and

72 �C for 60 s, and finally 7 min at 72 �C.
Nested PCR, (RT)-nPCR and quantitative PCR assays for the

other viruses were performed according to previous studies

(Tables 2 and 3) in which they were applied to environmental

samples such as river water, groundwater, seawater, sewage

and drinking water (Bofill-Mas et al., 2000; Bofill-Mas et al.,

2003; Albinana-Gimenez et al., 2006; Bofill-Mas et al., 2006;
quantification of classic and emerging viruses by skimmed-
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Fig. 1 e Inter-and-intra laboratory assays to evaluate the viral recovery of virus concentration procedure by qPCR. (A) viral

recovery when results from spiked-viral concentrates were defined as 100% of input virus. (B) Viral recovery when results

from viral suspensions were defined as 100% of input virus. Tables show the concentrations (GC/mL) of viruses added and

recovered for each set. Values in the columns correspond with assays for each laboratory described in the graphic above.
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Albinana-Gimenez et al., 2009; Calgua et al., 2008; Bofill-Mas

et al., 2010a; Wyn-Jones et al., 2011; Fumian et al., 2011;

Lambertini et al., 2008). Each qPCR assay applied contained a

set of specific primers and a TaqMan�-fluorogenic probe.

The nucleic acids from the samples were analyzed undi-

luted, 10- and when necessary 100-fold diluted. Each sample

was run in duplicate (4e6 runs/sample). In all qPCRs or RT-

qPCRs, the amount of DNA or RNA in GC/mL was defined as

the mean of the data obtained. Non-template and inhibition
Please cite this article in press as: Calgua, B., et al., Detection and
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controls were included in each run. The inhibition controls

were extra aliquots of the nucleic acids extracted from one

sample with standard DNA added.

2.7. Sequencing products

Products obtained after nPCR were purified using the QIA-

quick PCR purification kit (Qiagen, Valencia, USA). Both

strands of the purified DNA amplicons were sequenced with
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Table 1 e Primers designed for molecular detection of klassevirus (KV) and asfarvirus-like virus (ASFLV).

Virus Primer Sequence 50e30 Region on the genome Positionb

KV LG0119a (1st round PCR) GCTAACTCTAATGCTGCCACC VP 1933e1953

KV-VP-R (1st round PCR) GAGGTCCAGGTCAAGTTCC Amplicon size 2319e2337

KV-VPn-F (2nd round PCR) GAAGGACTCCACAACTATTGG 404pb1st round PCR (primers Ta: 55 �C) 1997e2017

KV-VPn-R (2nd round PCR) CATAGAAAGCTGAGTCAATAGG 123pb2nd round PCR (primers Ta: 55 �C) 2099e2120

LG0118a (1st round PCR) ATGGCAACCCTGTCCCTGAG 3D 6795e6814

KV-3D-R (1st round PCR) TCCAGAACACGACCAGGTTGG Amplicon size 7177e7197

KV-3Dn-F (2nd round PCR) GATACAAGCAATTGTAGTCG 402pb1st round PCR (primers Ta: 60 �C) 6940e6959

KV-3Dn-R (2nd round PCR) TAGACCAGACATTAGAGAAGG 157pb2nd round PCR (primers Ta: 58 �C) 7077e7097

ASFLV ASFLV-Pol-F (1st round PCR) GAATTGAAGGATCTAATGAAACC Polymerase 10e32

ASFLV-Pol-R (1st round PCR) GGCAGGAAGATCCACATGAAC Amplicon size 320e340

ASFLV-Pol-nF (2nd round PCR) GCGGCTATCAATTGAATCCC 330pb1st round PCR (primers Ta: 62 �C) 50e69

ASFLV-Pol-nR (2nd round PCR) CGGCCAATACAATATTCAACTCG 195pb2nd round PCR (primers Ta: 58 �C) 223e245

a Primer from Holtz et al. (2009).

b According to GenBank sequence GQ184145 for KV and FJ957909 for ASFL.
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the ABI PRISM� Dye Terminator Cycle Sequencing Ready Re-

action kit with Ampli Taq� DNA polymerase FS (PerkinElmer,

Applied Biosystems, Foster, CA, USA) following the manufac-

turer’s instructions. The results were analyzed using the ABI

PRISM 3730 XL automated sequencer (PerkinElmer, Applied

Biosystems).
Table 2 e Sequences of primers used to detect viruses in wate

Virus Target region Primers 50e

HAdV Hexon proteina Hex1deg: GCCSCARTGGKCWTAC

Hex2deg: CAGCACSCCICGRATGT

neHex3ded: GCCCGYGCMACIGAI

neHex4deg: CCYACRGCCAGIGTR

JCPyV Regulatory regionb JR1: CCCTATTCAGCACTTTGTCC

JR2: CAAACCACTGTGTCTCTGTC

JR3: GGGAATTTCCCTGGCCTCCT

JR4: ACTTTCACAGAAGCCTTACG

NoV GGII RdRpc JV12Y: ATACCACTATGATGCAGA

JV13Y: TCATCATCACCATAGAAIG

Ni-R: AGCCAGTGGGCGATGGAAT

RV-A VP6d VP6F: GACGGVGCRACTACATGGT

VP6R: GTCCAATTCATNCCTGGTT

VP6NF: GCWAGAAATTTTGATAC

VP6NR: GATTCACAAACTGCAGA

MCPyV VP1/2/3e MC1c: GAATTAACTCCCATTCTTG

MC2c: TTGGCTTCTTCCTCTGGTA

MC3c: ATTTGGGTAATGCTATCTT

MC3c: GGATATATTTCTCCTGAAT

KIPyV VP1f KI1: GCTGCTCAGGATGGGCGTGA

KI2: CAGKGTTCTAGGGTCTCCTG

KI3: GTTGCTTGTTGTACCTCTAG

KI4: AATTGTATAGGTAGTTGGGC

WUPyV VP1g WU1: CCCACAAGAGTGCAAAGCC

WU2: AGGCACAGTACCATTGGTT

WU3: AGTTTTGGTGCTTCCTKTS

WU4: TACAGTATACTGAGCAGGC

Position according to GenBank virus sequence.

a (DQ315364.2).

b (Frisque et al., 1984).

c (AF356599).

d (Iturriza-Gomara et al., 2002).

e (EU375803).

f (EF127906).

g (EF444549).
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2.8. Phylogenetic studies

The Merkel cell virus nucleotide sequences introduced in this

work (corresponding to the VP2/VP3-VP1 junction) were

analyzed with representative sequences of human poly-

omaviruses obtained fromGenBank. Codon-based alignments
r by nPCR assays.

30 (position) Reference

ATGCACATC (18858e18882) Allard et al., 2001

CAAA 19138e19158)

ACSTACTTC (18931e18954)

WAICGMRCYTTGTA (19077e19102)

(4992e5011) Bofill-Mas et al., 2001

(428e447)

(5060e5079)

(297e317)

YTA (4279e4299) Vennema et al., 2002

AG (4878e4858)

TC (4515e4495)

(747e766) Iturriza-Gomara et al., 2002

and Gallimore et al., 2006GG (1126e1106)

A (867e884)

(1005e1021)

GATTCA (4228e4252) Bofill-Mas et al., 2010a,b

CT (4492e4472)

CTCC (4264e4286)

TACA (4461e4439)

(1684e1704) Bofill-Mas et al., 2010a,b

GT (2061e2043)

(1899e1918)

CT (2088e2067)

TTC (1730e1750) Bofill-Mas et al., 2010a,b

TTA (2234e2213)

C (2044e2063)

(22072118)
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Table 3 e Sequences of primers and probes used to quantify viruses in water by qPCR assays.

Virus Target region Primers and probes 50e30 (position) Reference

HAdV qPCR (hexon

protein)a
AdF: CWTACATGCACATCKCSGG (17629e17647) Hernroth et al., 2002

AdR: CRCGGGCRAAYTGCACCAG (17679e17697)

AdP: FAM-CCGGGCTCAGGTACTCCGAGGCGTCCT-BHQ1 (17650e17676)

JCPyV qPCR (Large T

antigen)b
JE3F: ATGTTTGCCAGTGATGATGAAAA (4339e4317) Pal et al., 2006

JE3R: GGAAAGTCTTTAGGGTCTTCTACCTTT (4251e4277)

JE3P: FAM-AGGATCCCAACACTCTACCCCACCTAAAAAGA-BHQ1 (4313

e4482)

NoV GGII qPCR (ORF1-ORF2)c JJV2F: CAAGAGTCGATGTTTAGGTGGATGAG (5003e5028) Johtikumar et al., 2006

COG2R: TCGACGCCATCTTCATTCACA (5080e5100)

RING2: FAM-TGGGAGGGCGATCGCAATCT-BHQ1 (5048e5067)

RV-A qPCR (NSP3)d NSP3f: ACCATCTWCACRTRACCCTCTATGAG (963e988) Zeng et al., 2008

NSP3r: GGTCACATAACGCCCCTATAGC (1028e1049)

NSP3p: FAM-AGTTAAAAGCTAACACTGTCAAA-MGB (995e1017)

Position according to GenBank virus sequence.

a (DQ315364.2).

b (NC_001699.1).

c (X86557).

d (X81436).
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of nucleotide sequences were determined using Prankster

software (Löytynoja and Goldman, 2005) and edited using the

Bioedit v7.0.9.0 program (Hall, 1999). A maximum likelihood

(ML) phylogenetic tree was obtained using PhyML software

v3.0 (Guindon et al., 2010) with the substitution model esti-

mated by the jModelTest software v0.1.1 (Posada, 2008) ac-

cording to the Akaike Information Criterion (AIC). The

robustness of the phylogenetic grouping was evaluated by

bootstrap analysis using ML (1000 replicates) and the PhyML

software.

2.9. Statistical analysis

Analysis of variance (one- and two-way ANOVA tests) was

used to evaluate differences between recovery rates through

intra- and inter-laboratory assays. The ShapiroeWilks and

Bartlett tests were used to test for normality and homogeneity

of variance in the ANOVA procedures. P-values of <0.05 were

considered significant. The statistical analysis was performed

using R software version 2.14.1 (Verzani, 2004; R, 2008).
3. Results

3.1. Inter- and intra-laboratory variability of viral
recovery values for SM flocculation procedure for detecting
viruses in river water

Values of intra- and inter-laboratory variability in the viral re-

covery of HAdV 2 and NoV GGII showed low variability ac-

cordingwith values described for virus concentrationmethods

byCalgua et al. (2013),withmeanvalues of 50% (25e95% [mean:

1.80� 106; 1.50� 106e1.72� 106 GC/mL]; SD¼ 24.21; coefficient

of variation [CV] ¼ 48.47%) and 41% (21e89% [mean: 5.48 � 107;

5.26 � 107e1.48 � 108 GC/mL]; SD ¼ 20.70; CV ¼ 51.44%) for

HAdV, and 52% (34e74% [mean: 7.45 � 107;

5.70� 107e1.26� 108 GC/mL]; SD¼ 18.45; CV¼ 35.78%) and 53%

(22e73% [mean: 1.01 � 105; 4.30 � 104e1.40 � 105 GC/mL];

SD ¼ 15.59; CV ¼ 29.68%) for NoV, in Barcelona and Rio de
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Janeiro, respectively (Fig. 1). The mean recovery of JCPyV in

Barcelona was 51% (38e71% [mean: 2.02 � 107;

1.25 � 107e3.28 � 107 GC/mL]; SD ¼ 9.26; CV ¼ 18.23%), and for

RV tested in Rio de Janeiro themean recoverywas 41% (27e57%

[mean: 1.18 � 108; 6.38 � 107e1.90 � 108 GC/mL]; SD ¼ 8.33;

CV ¼ 20.24%); both recovery values showed low variability

(Fig. 1a). Whereas that the recovery values estimated by the

quantitation from the raw data directly using the viral sus-

pension (Fig. 1b) were 22% (7e54% [mean input: 9.45 � 106;

mean recovered: 2.06 � 106; 7.58 � 105e4.80 � 106 GC/mL];

SD ¼ 14.11; CV ¼ 65,9%) and 29% (12e64% [mean input:

2.21� 108;mean recovered: 6.25� 107; 2.27� 107e1.16� 108 GC/

mL]; SD ¼ 18.24; CV ¼ 63,77%) for HAdV, and 26% (14e48%

[mean input; 2.91 � 108; mean recovered: 7.47 � 107;

4.50 � 107e1.27 � 108 GC/mL]; SD ¼ 9.25; CV ¼ 35.31%) and 89%

(50e135% [mean input: 1.14 � 105; mean recovered: 1.02 � 105;

4.29� 104e1.17� 105 GC/mL]; SD¼ 23.14; CV¼ 25.87%) for NoV,

in Barcelona and Rio de Janeiro, respectively. For JCPyV the

values were 45% (66e31% [mean input: 4.44 � 107; mean

recovered: 2.02 � 107; 1.25 � 107e3.28 � 107 GC/mL]; SD ¼ 8.43;

CV ¼ 18.54%) and for RV 32.59% (20e47% [mean input:

3.08� 108;mean recovered: 2.02� 107; 7.68� 107e1.76� 108GC/

mL]; SD ¼ 8.86; CV ¼ 27.19%).

3.2. Distribution of viruses in river water

To evaluate the viral contamination in the geographical areas

studied and during March, six 10-L river water samples per

laboratorywere treated to concentrate the viruses. A list of the

viruses detected in each laboratory is given in Table 4. The

average values given were calculated only from the positive

samples.

3.2.1. Human fecal viral indicators HAdV and JCPyV
HAdV and JCPyV were detected in 100% of the samples

analyzed in Barcelona (6/6) and Rio de Janeiro (6/6). In Barce-

lona the mean concentration of HAdV and JCPyV was

6.43� 103 GC/L (1.99� 103e1.18� 104 GC/L) and 1.05� 104 GC/L

(4.40 � 103e1.49 � 104 GC/L), respectively (Table 4). In Rio de
quantification of classic and emerging viruses by skimmed-
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Table 4 e Virus detected in river water from Barcelona and Rio de Janeiro.

Site River water
sample

Viruses analyzed

HAdV GC/L JCPyV GC/L NoV GGII GC/L RV GC/L MCPyV
nPCR

KIPyV
nPCR

WUPyV
nPCR

KV
nPCR

ASFLV
nPCR

BCN BCN1a0309 7.90 � 103 9.40 � 103 1.27 � 103 NT � � � � �
BCN2a0309 1.10 � 104 1.21 � 104 e NT þ � � � �
BCN3a0309 1.18 � 104 1.49 � 104 2.93 � 103 NT þ � � � �
BCN4b0309 1.99 � 103 4.40 � 103 1.04 � 104 NT þ � � � �
BCN5b0309 2.48 � 103 1.21 � 104 1.47 � 105 NT � � � � �
BCN6b0309 3.46 � 103 9.94 � 103 8.95 � 104 NT � � � � �

RDJ RJN1a09a 7.11 � 104 1.58 � 102 8.57 � 103 2.70 � 104 � � � � �
RJN2a09a 1.47 � 104 1.07 � 103 6.76 � 103 1.63 � 104 þ � � � �
RJN3b09a 1.59 � 103 1.98 � 104 e e þ � � þ �
RJN4b09a 3.98 � 104 2.97 � 104 e e þ � � þ �
RJN5b09b 1.11 � 104 2.82 � 103 e 7.29 � 102 � � � � þ
RJN6b09b 7.13 � 102 2.71 � 103 e 1.11 � 103 � � � � �

NT: Not tested.

a Farias Timbó river.

b Macacos River river.
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Janeiro the mean concentrations of HAdV and JCPyV were

2.31� 104 GC/L (7.13� 102e7.11� 104 GC/L) and 9.38� 103 GC/L

(1.58 � 102e2.97 � 104 GC/L), respectively (Table 4). Four out of

the six positive qPCR results for HAdV were sequenced and

using the BLAST tool. It identified three samples as HAdV 41

and one samples as HADV 40, showing a similarity of about

95e99% over 99e98% of sequence coverage. For JCPyV, 3/6

samples were sequenced and the strains identified by BLAST

showed the expected archetypical structure in the regulatory

region (Bofill-Mas et al., 2001).

3.2.2. Emerging viruses KIPyV, WUPyV, MCPyV, KV and
ASFLV
As shown in Table 4, MCPyV was detected in 50% of the river

samples from Barcelona (3/6) and Rı́o de Janeiro (3/6). KIPyV

and WUPyV were not detected in Barcelona or Rio de Janeiro.

KV and ASFLV were detected in 33% (2/6) and 16% (1/6),

respectively, of the samples from Rio de Janeiro and were not

detected in river water from Barcelona. The sequence analysis

using BLAST showed a similarity of about 95e99% over

96e98% of sequence coverage with the corresponding target

sequences present in GenBank.

3.2.3. Common gastroenteritis viral agents NoV GGII and RV
The results for NoV and RV are also presented in Table 4. NoV

GGII were detected at a concentration of 5.02 � 104 GC/L

(1.27 � 103e1.47 � 105 GC/L) in 83% (5/6) of the samples from

Barcelona. In Rio de Janeiro NoV were detected in 33% (2/6) of

the river samples with a mean value of 7.66 � 103 GC/L. In Rio

de Janeiro RV were detected and quantified in 67% (4/6) of the

river samples at a concentration of 1.13 � 103 GC/L

(7.29� 102e2.70� 104 GC/L). Selected positive samples for NoV

GGII from Barcelona (4/5) were sequenced and the results as

analyzed using BLAST showed that three samples were NoV

GGII.4 and one was NoV GGII.12. Positive samples of NoV from

Rio de Janeiro were not sequenced. Sequence analysis for RVA

showed 99% similarity with RVA genotype I2, which is

generally grouped with RVA genotype G2P.
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3.3. Phylogenetic studies

In order to characterize MCPyV, the PCR amplicons were

sequenced and phylogenetically analyzed along with refer-

ence sequences for the human polyomaviruses. The se-

quences clearly grouped with the Merkel cell cluster, with

high bootstrap support (Fig. 2a). Further analysis of the MC

cluster showed that the sequences reported in this work are

divergent from previously reported sequences. While BCN 4

was the most divergent sequence, the sequences from Rı́o de

Janeiro formed a cluster (with low bootstrap support) with

viral genomes from clinical specimens from the United States

and Japan (Fig. 2b).

3.4. Statistical studies

The results show that there is no statistically significant dif-

ference between the results of viral recoveries obtained by the

two laboratories in the intra- or inter-laboratory assays. In the

intra-laboratory assay, (one-way ANOVA) the P-values ob-

tained were 0.895 in Barcelona (HAdV, NoV and JCPyV) and

0.118 in Rio de Janeiro (HAdV, NoV and RV), whereas in the

inter-laboratory assay (two-way ANOVA) the P-values for

HAdV and NoV II (viruses analyzed in both laboratories) were

0.479 and 0.692, respectively. No statistically significant dif-

ferences were observed due to the day of the analysis (P-value

>0.05). The data were normally distributed (ShapiroeWilks

test, P-value >0.05) and homoscedastic (Bartlett’s test, P-value

>0.05).
4. Discussion

The presence of human viruses in rivers is due to contami-

nation from urban sewage and the stability of the viruses in

response to environmental conditions. Here, the occurrence

of new and emerging viruses (MCPyV, KIPyV, WUPyV, KV and

ASFLV), gastroenteritis-related viruses (NoV GGII and RV) and
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Fig. 2 e Maximum likelihood phylogenetic trees constructed at the VP2/VP3-VP1 junction of viral genomes from distinct

human polyomaviruses (A) and MCPyVs (B) Sequences reported in this work are shown in bold letters. Sequences from

GenBank are indicated by their accession numbers. Bootstrap values are given for the relevant groups. JCPyV was used as

the outgroup in B. USA: United States; FRA: France; JPN: Japan; BCN: Barcelona, Spain; RJ: Rı́o de Janeiro, Brazil.
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viral indicators (HAdV and JCPyV) were studied in Barcelona

and Rio de Janeiro, two different geographical contexts. Six

samples per laboratory were analyzed during the month of

March. The field samples analyzed represent specific infor-

mation showing the level of viral contamination in the same

period in two very different geographical areas, however, they

may not accurately reflect the viral contamination in other

periods of the year.

RT-nPCR and nPCR assays were designed to detect KV and

ASFLV, by applying a set of specific primers for each virus.
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Although the samples of river water from Barcelona tested

negative for these viruses in the present study, previous tests

on sewage from Barcelona have confirmed the presence of KV

and ASFLV by conventional PCR and deep-sequencing,

respectively (Holtz at al., 2009; Loh at al., 2009). The sporadic

presence of KV and ASFLV in river water was confirmed by the

tests conducted in Rio de Janeiro, where 2/6 and 1/6 positive

results were obtained for KV and ASFLV, respectively. This

data represents the first report of the presence of these viruses

in river water.
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Of the new polyomaviruses studied here, only MCPyV was

detected in Barcelona (3/6) and Rio de Janeiro (3/6), suggesting

that this virus is stable in both sets of environmental condi-

tions, probably similar to other human polyomaviruses such

as BK and JCPyV. Interestingly, recent results describe MCPyV

as an important member of the skin microbiota and so this

virus could be shed from healthy humans via the skin

(Wieland et al., 2009; Schowalter et al., 2010; Moens et al., 2011;

Foulongne et al., 2012). The data described above strongly

suggest that an important transmission route for MCPyV may

be viawater. Bofill-Mas et al. (2010a,b) reported a prevalence of

29% (2/7) for MCPyV in river water, and a much higher prev-

alence in urban sewage 89% (8/9). The positive detection of

MCPyV in Rio de Janeiro represents the first data on the

presence of this virus in Brazil. The identity of the MCPyV

sequences was confirmed by the phylogenetic analysis. The

high divergence of the sequences reported in this work,

compared with the viral genomes for which full-length se-

quences are available in GenBank, could reflect the diversity of

sequences from distinct geographical locations, since most of

the GenBank genomes come from the United States and

France. However, it should also be considered that the se-

quences from the environmental samples could represent the

consensus of multiple viral genomes that are co-circulating in

the population and have been discharged into the environ-

ment. Despite the low bootstrap support, the clustering of the

Brazilian sequences is noteworthy and deserves further study.

Norovirus GGII was themost prevalent genogroup detected

in many studies, especially genotype II.4 (Barreira et al., 2010;

Ferreira et al., 2010; Wyn-Jones et al., 2011; Victoria et al., 2010;

Bull and White, 2011; Prado et al., 2011). Previous studies

showed a prevalence of 96.3% (104/108) for NoV GGII.4 in stool

samples from patients with gastroenteritis in Rı́o de Janeiro

(Ferreira et al., 2010), while in a European study, a total of 1410

samples of water at popular recreational locatins (rivers and

seawater) were positive for NoV: 6.2% for GGII and 3.5% for GGI

(Wyn-Jones et al., 2011). Based on these data, detection of NoV

was only focused on GGII in the present study. The qPCR re-

sults showed a greater prevalence of NoV GGII in Barcelona

83% (5/6) than in Rio de Janeiro 33% (2/6), this is probably

related to the seasonal epidemiology of these viruses, with

higher numbers during periods of lower temperatures. In the

current study, the temperature in Barcelona at the time of

sample collection was lower than in Rio de Janeiro, both in

March 2009. The samples from Rio de Janeiro were not

sequenced, however, selected samples from Barcelona (4/5)

were sequenced and three samples were identified as NoV

GGII.4, which is, as described above, the predominant geno-

type detected in many studies. One river water sample pre-

sented the emerging novel NoV GGII.12 (Vega and Vinjé, 2011).

Rotaviruses was quantified and detected in 67% (4/6) of the

samples from Rio de Janeiro. The qPCR assays used do not

discriminate between pathogenic and vaccine derived strains,

however, the strains detected should be considered as path-

ogenic viruses since previous studies (Fumian et al., 2011)

have shown that vaccine strains are not detected in urban

wastewater from Rio de Janeiro.

The standard fecal indicators, E. coli and enterococci, are

used to monitor fecal pollution in accord with public health

regulations related to the quality of river water, groundwater
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and seawater (WHO, 2003; USEPA, 2004, 2006/160/EC). Never-

theless, the occurrence of bacterial indicators does not

necessarily correlated with the presence of viral pathogens,

which are more stable than bacteria in the environment (de

Roda Husman et al., 2009), and does not provide information

on the potential origin of the contamination. Some studies

have reported substantial levels of enteric viruses in water

that complies with regulations regarding the levels of bacte-

rial fecal indicators (Brownell et al., 2007; Colford et al., 2007;

Calgua et al., 2008; Wyn-Jones et al., 2011). To overcome this

lack of correlation, several studies have proposed the use of

HAdV and JCPyV as human fecal indicators (Pina et al., 1998;

Bofill-Mas et al., 2000; Albinana-Gimenez et al., 2006; McQuaig

et al., 2006; Miagostovich et al., 2008; McQuaig et al., 2009;

Wyn-Jones et al., 2011). In the present study, 100% (12/12) of

the samples were positive for both viral these proposed in-

dicators, HAdV and JCPyV, and in concentrations similar to

those found in previous studies (Bofill-Mas et al., 2000;

Albinana-Gimenez et al., 2006; McQuaig et al., 2006;

Miagostovich et al., 2008; , McQuaig et al., 2009; Wyn-Jones

et al., 2011). Although the number of samples is not high,

these data support the stable distribution of both viruses in

different geographical areas and the fact that their presence

might be an accurate indication of human fecal contamina-

tion, and therefore also indicates the potential presence of

other pathogenic viruses, such as the viruses detected in the

present study.

The SM-flocculation procedure is based on the adsorption

of the viruses to the flocs of skimmedmilk. This concentration

procedure was previously developed to concentrate viruses

from seawater (Calgua et al., 2008). Fresh water and seawater

differ in conductivity; fresh water having a conductivity of

40e2000 mS/m and seawater having a conductivity of

4500e5000 mS/m, which may affect adsorption of viral parti-

cles to flocs. Using a pre-flocculated skimmed milk solution,

and artificial seawater either undiluted or in serial 10-fold di-

lutions, the effect of conductivity on the flocs and therefore

viral recovery was assessed (data not shown). Based on the

results, any water sample with levels of conductivity�1.5 mS/

cm should be conditioned by adding e.g. artificial sea salt

(Sigma, Aldrich Chemie GMBH, Steinheim, Germany), to reach

conductivity values �1.5 mS/cm, prior to concentrating the

viruses using the skimmed-milk flocculation procedure. Dur-

ing validation assays, to avoid underestimation of viral re-

covery caused by the specific composition of the concentrates

from the water matrices (samples), viral recovery was esti-

mated using as a reference, data on viruses quantified in

concentrated water matrices following direct spiking of the

viruses into the concentrate, similar to the procedure

described by Lambertini et al. (2008). The endogenous virus

strains of those used in the recovery assays (HAdV 2, JCPyV,

NoV GGII and RV) were subtracted from the values of the vi-

ruses recovered in the recovery assays, the concentration of

endogenous viruses were 102e104 GC/L (data non show), low

values in comparison with the spiked viruses. Validation as-

says were performed with the water matrices analyzed in the

study and no inhibition problemswere observed in the 10-fold

diluted samples. Non-template and inhibition controls were

included in each run. The inhibition controls were extra ali-

quots of the nucleic acids extracted from one sample with
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spiked standard DNA. Nucleic acid extractions of all samples

were analyzed undiluted and 10-fold diluted and although low

levels of inhibition were observed in some assays with undi-

luted samples, robust results were obtained in the 1:10 dilu-

tion. Intra- and inter-laboratory assays showed about 50%

viral recovery for the viruses tested, values similar to the re-

coveries obtained by themethod based on organic flocculation

of skimmed milk for HAdV in seawater reported by Calgua

et al. (2008). Available data of viral recovery values of

different methods described in the literature may be difficult

to compare. Concentration and quantification protocols

(infectivity cell culture assays or qPCR), volume and type of

watermatrix used in the study have a strong influence on final

results. Katayama et al. (2002), reported a concentration

method (electronegative cellulosemembrane and elutionwith

NaOH), for seawater based on two-step procedures, which

showed a viral recovery of poliovirus about 82e95% obtained

by plaque assays when they concentrate 50 mLe5 mL (viruses

10-fold concentrated), and 62% when 1 L of sample was

concentrate to 5 mL. Wyn-Jones et al. (2011) described mean

recoveries of HAdV using PFU and a protocol with glass wool

filtration with elution using beef extract and flocculation of

57.1% (range 34.2e78%). Recoveries using qPCR for the quan-

tification of adenoviruseswere described using 10 L samples of

freshwater by Albinana-Gimenez et al. (2009) with a protocol

based on ultrafiltration in the range between 3 and 6%. Girones

et al. (2010) showed a comparison of concentration methods

for fresh and seawater for HAdV, where a low variability was

observed with an one-step protocol for seawater, while high

variability was observed with two step glass wool and

electronegative-nitrocellulose membranes. The method for

river water, similarly to themethod for seawater (Calgua et al.,

2008), does not require specialized equipment andwould fulfill

the conditions for a fitting method for routine public health

laboratories: reproducibility, reliability, straightforwardness

and cost-effectiveness.

In the present study, the inter-laboratory assays validated

the use of the low-cost one-step procedure described above

for the analysis of viruses in river water, detecting important

viral pathogens such as RV, NoV andHAdV, aswell as new and

emerging viruses that are potentially transmitted through

water, and confirming the global distribution of the proposed

human viral indicators: HAdV and JCPyV.
5. Conclusions

� This study is the first description of the recently described

viruses ASFLV and KV in river water and the first report of

the presence of MCPyV in the environment in Brazil.

� The presence of MCPyV in rivers in Rio de Janeiro (3/6

samples) and Barcelona (3/6 samples) demonstrates that

these viruses are abundantly excreted by the human pop-

ulation in different geographical areas.

� The RT-nPCR and nPCR developed here for the detection of

KV and ASFLV, respectively, are specific molecular assays

which could be applied in future clinical or environmental

studies.

� The viral indicators HAdV and JCPyV are useful as markers

of human fecal/urine contamination in water from diverse
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geographical areas since they show a high worldwide

prevalence and stable concentrations.

� The results obtained in the inter- and intra-laboratory as-

says support the applicability of the one-step virus con-

centration procedure reported here as a routine protocol for

virus quantification and for improving control of the

microbiological quality of both seawater and fresh water.

� Gastroenteritis viruses such as NoV and RV, which are of

great importance as pathogens in the regions studied, were

quantified using the method described, and show highly

variable concentrations in river samples in accordance with

the reported epidemiology of these viruses.
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Calvo, M., Bofill-Mas, S., Girones, R., 2013. Newmethods for the
concentration of viruses from urban sewage using quantitative
PCR. Journal of Virological Methods 187 (2), 215e221.

Calgua, B., Mengewein, A., Grunert, A., Bofill-Mas, S., Clemente-
Casares, P., Hundesa, A., Wyn-Jones, A.P., López-Pila, J.M.,
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