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Abstract

Weather forecast and earth system models usually have a number of parameters, which are often optimized

manually by trial and error. Several studies have proposed objective methods to estimate model parameters using data

assimilation techniques. This paper provides a review of the previous studies and illustrates the application of

ensemble-based data assimilation to the estimation of temporally varying model parameters in a simple low-resolution

atmospheric general circulation model known as the SPEEDY model. As shown in previous studies, our results

highlight that data assimilation techniques are efficient optimization methods which can be used for parameter

estimation in complex geophysical models and that the estimated parameters have a positive effect on short-to

medium-range numerical weather prediction.
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1. Introduction

State-of-the-art weather forecast and earth system

models (hereafter numerical models) include a set of

parameterizations to represent the effects of processes

that cannot be fully resolved by the model equations,

such as cloud microphysics, turbulence, radiation, and

deep moist convection. These parameterizations

formulate the effects of the unresolved scales as a

function of the model variables on the basis of a

simplification of the underlying physical processes.

The link between the unresolved and resolved scales

can be established on the basis of theoretical

considerations or empirical laws derived from

observations. In either case, a certain number of

parameters appear in the equations that express the

unresolved scale effects on the resolved scales. Some

of the parameters (e.g., parameters related to the

radiative scheme) have a direct physical interpretation

and can be directly measured. However, other

parameters that arise from the simplification of the

underlying physical processes cannot be directly

measured (e.g., numerical diffusion coefficients).
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Thus, the optimal values of some parameters are

intrinsically uncertain.

The values of some parameters have a significant

effect on model performance ranging from short-range

forecasts to climate simulations (Stainforth et al. 2005).
This indicates that the suboptimal setting of model

parameters can account for a significant part of model

errors. The optimal values for a set of parameters can

be defined as the values that most efficiently reduce

model errors in a certain metric. It should be noted that

the optimal value for the parameters depends on the

selected metric. In general, when dealing with an

imperfect model, there is no single optimal value for a

given parameter (Smith 2000). Moreover, in this case,

there are no true model parameters but only optimal

parameters, and the uncertainty represents our lack of

knowledge about these optimal parameter values.

Given the several sources of uncertainties associated

with the parameterization of subgrid processes, an

accurate, efficient, and objective way to estimate the

optimal parameters is highly desirable.

Parameter estimation has several applications in the

context of atmospheric and oceanic sciences. Some of

these applications are listed below:

�Parameter estimation can contribute to adaptive

model optimization, from short-to medium-range

weather forecasts. Optimal parameters in numeri-

cal weather prediction (NWP) models can be a

function of time and location. Parameter estima-

tion can provide a flexible optimization tool to

improve the forecast skill.

�Parameter estimation can provide an estimate of

the uncertainty in the parameters from the

available observations (See a companion paper,

Ruiz et al. 2013b). This information can be used

to design an ensemble forecast that includes

perturbations in model parameters and also in the

design of stochastic parameterizations (Hansen

and Penland 2007).

�Climate models can be optimized using parameter

estimation techniques. Climate simulations are

less dependent on the initial conditions, and hence

parameters play an important role in the

performance of the model (Stainforth et al. 2005).

Parameter estimation is a complex problem which

needs an efficient and objective methodology that can

account for all the sources of parameter sensitivity at a

reasonable computational cost. Moreover, dealing

with the large number of degrees of freedom and

complexity of state-of-the-art numerical models is a

challenge. As will be discussed extensively in this

paper, data assimilation techniques have the potential

to provide a solution to this complex parameter

estimation problem. Several studies have shown that

data assimilation techniques applied to the parameter

estimation problem have the potential to reduce model

errors in applications ranging from high-resolution

forecasts (Tong and Xue 2008) to large-scale decadal

variability representation (Zhang 2011), and even in

the simulations of current and future climate (Annan et

al. 2005) with atmosphere, ocean, and land models as

well as coupled models. These studies have demon-

strated the relevance of parameter estimation techni-

ques and have reinforced the idea that a significant part

of model errors may be associated with a suboptimal

set of some model parameters.

In this paper, a review of the objective techniques

used for parameter estimation in numerical models is

presented, with particular emphasis on the techniques

based on data assimilation methods. The implementa-

tion of one of these techniques is illustrated using the

local ensemble transform Kalman filter (LETKF, Hunt

et al. 2007)with the SPEEDYmodel (Molteni 2003). In
the experiments presented in this work, we restrict

ourselves to the ensemble Kalman filter (EnKF)
methods that could be implemented in operational data

assimilation cycles at a relatively low computational

cost. This paper is organized as follows. Section 2

presents a review of data assimilation techniques for

the parameter estimation problem in NWP and climate

prediction. Section 3 describes the implementation of

parameter estimation in the EnKF framework and

presents some experiments with a simple atmospheric

general circulation model (GCM). Finally, Section 4

summarizes the conclusions of this study.

2. Review of parameter estimation methods using

data assimilation

2.1 Objective methods for parameter estimation
The typical number of parameters that can be

adjusted in a numerical model is at least O (10
2
)

without considering spatial variability. Thus, the cost

of naively exploring the entire parameter space for

optimizing the model performance is prohibitive. If the

evaluation of the model performance for each set of

parameters is conducted over a long period of time, the

associated computational cost would be even larger. In

a typical modeling process, most parameters are fixed

at preset values, and only a small number of

parameters are tuned manually and subjectively.
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During the last few decades, considerable effort has

been devoted to the development of robust and

objective methodologies for parameter estimation for

large and complex systems like the ones used in

numerical weather and climate predictions (Jarvinen et

al. 2010, Liu et al. 2005, Severijns and Hazeleger

2005, Jackson et al. 2004). In these studies, a measure

was defined to objectively quantify model perform-

ance, for instance, a cost function that penalizes model

errors based on the root mean square error (RMSE) of
the model output. If all model runs share the same

initial condition and are performed for the same period,

the cost function is only a function of the parameters

that are being estimated. Therefore, changes in the

total error (cost function) can only be attributed to

changes in model errors associated with different

parameter values. Most of these studies used

minimization methods to find the optimal set of

parameters that gives the minimum of the cost

function, i.e., the parameters that produce the lowest

model error. Simplified methods such as the simplex

method (Press et al. 1992) may require several

evaluations of the cost function, which in this context,

means conducting several simulations with the model.

These methods provide an alternative to the manual

tuning of model parameters. They can obtain optimal

parameters by objectively comparing the model

outputs with observations. However, nonlinear model

responses may produce multiple local minima in the

cost function (Posselt and Bishop 2012), and thus

sophisticated optimization algorithms are required to

find the global minimum corresponding to the optimal

parameters. Such optimization algorithms are usually

too expensive computationally to be employed in

sophisticated models with many degrees of freedom.

In certain applications, a parameterization scheme can

be optimized offline (i.e., without being coupled with

the entire model). This substantially reduces the

computational cost associated with the parameter

estimation, allowing the use of more sophisticated

algorithms (Pulido et al. 2012, Posselt and Bishop

2012, Golaz et al. 2007).

2.2 Parameter estimation and data assimilation
Most data assimilation techniques are based on an

efficient implementation of the minimization of a cost

function, which depends on a large number of

variables, typically O (10
7
). In the classical data

assimilation problem, an a priori estimate of the state

of a system (usually a short-range forecast) is

combined with a set of observations to produce an

optimal estimate of the state. Data assimilation

techniques can be extended to estimate the optimal

model parameters in addition to the system state. Most

parameter estimation techniques based on data

assimilation use an augmented state vector, i.e.,

extension of the state space by adding the parameters

to be estimated so that the parameters are treated as

state variables in the data assimilation system. In this

way, when the cost function is minimized, the

optimum values for the state variables and parameters

are obtained. Parameters are usually assumed to be

constant during the model integration so that the

parameter values only change in the data assimilation

step. Evensen 1998 gives a theoretical framework for

the parameter estimation problem using data assimila-

tion techniques. In this framework, the spatial and

temporal variability of the parameters can be

considered. The model bias estimation problem is thus

discussed as a particular case of parameter estimation.

Inclusion of the parameters in the state vector can

significantly modify the dynamical properties of the

model. Even for a linear model, if the model includes

products between parameters and state variables, the

augmented state will behave as a nonlinear model

(Yang and Delsole 2009). Another source of nonlinear-

ity is the presence of on-off switches in the

parameterizations. In that case, the sensitivity to the

parameters may be nonsmooth. Therefore, a highly

nonlinear model response to parameter changes may

exist.

Most parameters cannot be directly measured;

hence, they might be estimated through correlations

between parameters and state variable errors. This is

analogous to the case of state variables that are not

directly observed but can be estimated from the

observations of other state variables that are somehow

coupled to the observed state variables. If the error

covariance between the observed variables and a

parameter is significant, the parameters have a strong

influence on the observed variables. Then, the

parameter can be accurately estimated from the

observations. In this case, it is said that the parameter is

identifiable (Navon 1997). If the observed variables are

weakly correlated with the parameter value, the

parameter cannot be estimated well. In this case, there

are two possibilities: either the parameters do have a

significant impact on model performance but not on

the observed variables or the model sensitivity to

changes in the parameters is weak. In the latter case,

the model performance is not sensitive to the

parameter values, and therefore parameter estimation

is not essential.

The covariances between observed variables and
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parameters can be highly state dependent. For instance,

in the case of the parameters associated with the

convective scheme, the spatial structure of the error

covariances between the parameters and observed

variables is highly dependent on the activation of the

convective scheme. Data assimilation techniques that

consider the state dependence of error covariances are

necessary for the simultaneous estimation of the model

state and parameters. Examples of these techniques

include the four-dimensional variational (4D-Var)
schemes, EnKF, and particle filters (PFs).

2.3 Parameter estimation based on variational data
assimilation

At the beginning of a certain time period, 4D-Var

data assimilation schemes seek the model state whose

evolution produces the closest fit to the background

state and the observations within the time window.

This is achieved by minimizing the cost function that

measures the differences between the model state and

the observations within the time window and those

between the model state and a prior estimate of the

system state at the beginning of the time window. The

cost function is based on the maximum likelihood and

usually on the assumption that the errors in the state

variables at the beginning of the time window are

Gaussian (this last hypothesis can be relaxed, for

example, see Fletcher and Zupanski 2007). The

minimization of the cost function requires the gradient

of the cost function, which is computed by means of

the adjoint model (Errico 1997).
The variational data assimilation technique can be

extended to find both the initial condition and a set of

parameters that minimize the cost function. Navon

1997, Gong et al. 1998, Zhu and Navon 1999, Pulido

and Thuburn 2005, and Bocquet 2011, among many

others, have used the 4D-Var technique to estimate

model parameters. The adjoint model has to include

the model sensitivity to the parameters. Navon 1997

presented a review of parameter estimation using

variational techniques. Zhu and Navon 1999 success-

fully performed a simultaneous estimation of the

atmospheric state and three model parameters using

the full-physics adjoint of a GCM in a perfect model

scenario. They examined the impact of parameter

estimation on short-range forecasts and determined it

to be positive. In this work, the spatial or temporal

dependence of the parameters was not considered. In

this regard, Pulido and Thuburn 2005, 2006 used a 4D-

Var approach to estimate the spatial distribution of the

forcing associated with the gravity wave drag in the

middle atmosphere. 4D-Var provides an accurate

estimation of the spatial and temporal distribution of

an unknown missing forcing term in the momentum

equations, allowing detection of the regions and times

of the year where the gravity wave drag in the middle

atmosphere is more significant.

The 4D-Var technique is a promising approach for

parameter estimation. However, the extension of the

adjoint models to include parameter sensitivity may

require considerable effort depending on the complexi-

ty of the model and the parameterizations. The success

of 4D-Var depends on the geometry of the cost

function. If the model response to the parameters is

strongly nonlinear, the cost function may have

multiple local minima or a shape that significantly

increases the convergence time of most minimization

algorithms. In this case, the minimization may fail to

find the global minimum. However, this should be

attributed to a limitation of the minimization algorithm

rather than to a limitation of the method formulation.

This issue is also present in the estimation of state

variables because of the nonlinear dynamics of

geophysical systems such as the ocean and the

atmosphere.

Another issue that appears in the simultaneous

estimation of the state and parameters using variational

data assimilation and that is common to other methods

such as the EnKF is that the uncertainty in the value of

the parameters is not known a priori and it is needed to

define the background error covariance matrix of the

augmented state.

2.4 Parameter estimation based on Kalman filter
schemes

Another kind of data assimilation scheme is based

on the Kalman filter (Kalman 1960) equations, which

provides a way to explicitly compute the evolution of

the state error covariances. The Kalman filter estimates

the optimum state of a system using a prior estimate of

the system state (typically a very short-range forecast)
and a set of observations. The errors in the prior

estimate of the system state are assumed to be

Gaussian and the solution is obtained by seeking for

the minimum variance in the analysis error. The

original Kalman filter equations are optimum for linear

models. For nonlinear models, a heuristic extension of

the method known as the extended Kalman filter (EKF)
can be used (Jazwinski 1970). In the EKF, the

evolution of the state variable error covariances is

computed using the tangent linear model. Although

this method can be extended to incorporate the

estimation of the parameters via the augmentation of

the system state, the computational cost and memory
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requirements associated with this scheme makes it

only affordable for relatively small systems. Kondra-

shov et al. 2008 used the EKF for the simultaneous

estimation of the model state and parameters in a

simplified ocean-atmosphere coupled model. They

performed a sequential estimation of parameters and

initial conditions by a procedure similar to that in

operational data assimilation systems. They reported

positive feedback between the state and parameter

estimations. Better parameter values reduce model

errors and produce better state estimates, which in turn

contribute to better parameter estimation. This work

also shows that the EKF approach is adequate to

accurately estimate the covariances between the state

variables and some model parameters, producing an

estimation of the optimal parameters that successfully

reduces model errors. Carrasi and Vannitsem 2011

presented an efficient methodology to incorporate

parameter estimation in a sequential EKF that does not

require an extension of the adjoint model to perform

the parameter estimation. The methodology was

successfully tested for simple models under the perfect

model assumption.

For nonlinear models with a large number of state

variables, the EnKF (Evensen 1994) provides an

affordable way to estimate the evolution of error

covariances. In this case, an ensemble of forecasts is

used to provide a prior estimate of the system state and

its uncertainty (see Section 3 for further details). The
error covariances among state variables are computed

directly from the ensemble of forecasts. The forecast

ensemble is obtained by perturbing the model initial

conditions, and at the end of the data assimilation

process, a new ensemble of initial conditions is

obtained with the appropriate error covariances of the

analyzed system state. In the case of simultaneous

estimation of the model state and parameters, not only

initial conditions but also model parameters are

perturbed. In this way, the error covariances between

model parameters and observed variables can be

derived from the ensemble forecasts. The adjoint or

tangent linear model is not required in this case; hence,

the complexity associated with the implementation is

significantly reduced. Another important advantage of

EnKF-based methods is that the algorithms can be

highly parallelized. As in the case of 4D-Var, some a

priori knowledge of the uncertainty associated with the

parameter values is needed. One of the main

limitations of the Kalman filter framework is that

posterior perturbations, which represent the uncertain-

ty in the parameters, are linear combinations of the

prior perturbations. Therefore, these algorithms cannot

capture nonlinear transitions in the shape of the

probability distribution function (PDF) of the parame-

ters (e.g., transition from one to multiple modes in the

PDF) (Posselt and Bishop 2012).
Several studies have explored the implementation of

the EnKF technique for parameter estimation (Ander-

son 2001, Annan et al. 2005, Hacker and Snyder 2005,

Aksoy et al. 2006, Zupanski and Zupanski 2006,

Orescanin et al. 2009, Koyama and Watanabe 2010,

Tong and Xue 2008a, Skachko et al. 2009, Hu et al.

2010). Annan et al. 2005 and Annan and Hargreaves

2007 have proposed a parameter estimation method

based on an EnKF to find the parameter values that

produce the best representation of the system

climatology in an intermediate complexity earth

system model. The method employs an ensemble of

relatively long model simulations for optimization on

the climatological scale. This method only allows

estimating time-independent parameters.

For a simple model, Yang and DelSole 2009

successfully estimated parameters that appear as

additive terms in the model equations (additive
parameters) as well as parameters that multiply the

state variables in the model equations (multiplicative

parameters). They showed that using the EnKF, the

parameter estimation problem can be expressed as two

separate estimations: one for the state variables and the

other for the parameters. In particular, the implementa-

tion of parameter estimation within existing sequential

data assimilation cycles based on the EnKF is

straightforward.

More recently, Aksoy et al. 2006, Koyama and

Watanabe 2010, Kang 2009, Tong and Xue 2008a, and

Hu et al. 2010 proposed methods for parameter

estimation that can be implemented in a sequential data

assimilation cycle to provide both optimal initial

conditions and parameter values. Koyama and

Watanabe 2010 introduced an extension of the EnKF

that can be applied to the parameter estimation; this

extension consists of two separate ensembles: one for

the parameter estimation and the other for the state

estimation. Using twin experiments with Lorenz 96

and a state-of-the-art GCM, they found that the

technique successfully estimates several model

parameters associated with different schemes and that

the optimal parameters have a positive impact on the

estimation of initial conditions as well as short to

medium-range forecasts. They also showed that the

technique can capture the temporal variability of the

optimal parameters. Kang 2009 and Kang et al. 2011

used a parameter estimation technique based on the

LETKF and successfully estimated the spatial
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distribution and seasonal variation of CO2 surface

fluxes.

Hu et al. 2010 applied a parameter estimation

methodology based on the EnKF to a mesoscale model

and successfully estimated parameters related to the

planetary boundary layer scheme using real observa-

tions. The parameter estimation led to a reduction of

the model bias near the surface. These results show

that parameter estimation can reduce model errors

even for real data cases in which there are many other

sources of model errors.

As shown in these studies, inclusion of parameter

estimation within a data assimilation cycle has a

positive feedback loop; namely, it improves the model

itself and thus reduces model errors, and it reduces the

analysis errors due to improvement in the short-range

forecasts. Another advantage is that the optimal

parameter uncertainty is explicitly included in the

ensemble forecasts.

2.5 Parameter estimation based on particle filters
PFs (Van Leeuwen 2009, Doucet et al. 2000) have

also been applied to estimate model parameters

(Vossepoel and Van Leeuwen 2007, Kivman 2003,

Ambadan and Tang 2005). PFs consider a general PDF

without the Gaussian assumption and provide a more

accurate estimation when the response of the model to

the estimated parameters is strongly nonlinear,

overcoming one of the main limitations of 4D-Var and

the EnKF methods. Kivman 2003 and Ambadan and

Tang 2005 performed experiments using a simple

highly nonlinear model and showed that PFs

outperform the EnKF, particularly for the estimation of

model parameters. Vossepoel and Van Leeuwen 2007

used PFs to estimate the spatial distribution of a mixing

parameter for an ocean GCM. They successfully

reconstructed the main characteristics of the spatial

distribution of this parameter as well as its uncertainty.

They also found that the PDF associated with this

parameter is strongly nonGaussian and might produce

suboptimal estimations if other data assimilation

techniques such as the EnKF and 4D-Var are

employed. Results obtained with PFs are promising,

particularly in terms of a better representation of the

optimal parameter uncertainty under strongly nonlin-

ear regimes. So far, an accurate estimation of the

model state and parameters with most PFs requires a

large number of particles (i.e., model simulations).
Therefore, PFs are usually too expensive to be

employed for operational data assimilation and/or

parameter estimation in high-dimensional systems.

However, recent developments suggest that PFs can be

applied to realistic geophysical problems at an

affordable computational cost (Van Leeuwen 2010).
Alternatively, PF methods can be used only for

estimating model parameters by implementing online

algorithms such as the one proposed by Jarvinen et al.

2012 and Laine et al. 2012; thus, the dimension of the

problem is significantly reduced. As stated before, this

is true only when the two-or three-dimensional

distribution of the parameters is not considered.

2.6 Parameter estimation and model errors
The data assimilation techniques for parameter

estimation have also been used for the estimation of

model errors. Model errors are among the most

difficult issues in geoscience applications owing to the

complexity of the models and the large number of

variables involved. A review of methods to include the

effect of model errors within data assimilation

schemes is out of the scope of this paper. Since some

studies attempted to estimate model errors as if they

were parameters using the state augmentation ap-

proach, in this subsection, some techniques based on

parameter estimation concepts that are used for model

error estimation are discussed.

Dee and Da Silva 1998 and Dee and Todling 2000

presented a two-step analysis scheme that includes the

online estimation of the spatial distribution of the

forecast bias. Bias correction is applied after the model

run and before the data assimilation step. The error

covariance matrix for the bias is assumed to be the

forecast error covariance matrix multiplied by a

coefficient smaller than one. Thus, the estimated bias

changes slowly with time.

Baek et al. 2006 implemented three different bias

estimation algorithms in a simple model. In their study,

the bias was treated as a parameter and the LETKFwas

used to estimate it. The magnitude of the variance of

the bias error was assumed to be small and constant in

time. The bias was augmented to the state vector and

the augmented state error covariance matrix evolved

according to the square root filter equations. This

augmented state error covariance matrix included the

covariances between errors in the state variables and in

the bias. In that work, the size of the bias state was the

same as the state space. Miyoshi 2005 tried to estimate

the bias for a larger numerical model and found that the

scheme leads to filter divergence. In that case, a low-

order representation of the bias that can significantly

reduce the number of parameters being estimated can

be implemented (e.g., Miyoshi 2005, Zupanski and

Zupanski 2006, Danforth et al. 2007). The main

disadvantage of a reduced model error space is that it
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requires some a priori knowledge about the model bias.

Zupanski and Zupanski 2006 used the maximum

likelihood ensemble filter for the simultaneous

estimation of the model state, some model parameters,

and the bias. They found that estimating the model bias

and model parameters reduced the analysis error. They

proposed a different formulation for the bias. The bias

is represented by model errors at each model time step.

In this framework, the bias is estimated through the

covariances between bias errors and errors in the state

variables. Variational assimilation has also been used

to estimate a model bias that is spread in the

assimilation window; for example, Pulido and

Thuburn 2008 estimated model errors as a forcing term

in the momentum equations.

Several methods have been developed to account for

model errors in 4D-Var. These methods are usually

referred as weak constraint 4D-Var and involve an

extension of the control space to include model

parameters (Navon 2009, and references therein).
Tremolet 2007 presented a weak constraint 4D-Var

algorithm that relies on the augmentation of the state

vector to include model errors within the assimilation

window. This algorithm is also computationally

efficient. Moreover, the estimation of the model error

covariance matrix was also discussed. It was shown

that using a model error covariance matrix with the

same structure as the forecast error covariance matrix

is not an appropriate choice.

Estimating optimal model parameters within a data

assimilation scheme or estimating the model bias

cannot account for all sources of model errors. For

instance, limitations in the representation of complex

physical processes using parameterizations cannot be

corrected by finding optimal values for model

parameters. This is why parameter estimation is

potentially a good complement to other schemes that

consider model errors within a data assimilation cycle.

Further research is needed to assess how parameter

estimation methods can be optimally combined with

methods designed to represent other sources of model

errors within a data assimilation cycle, such as

adaptive inflation (Miyoshi 2011), additive inflation

(Li et al. 2009), multi-model ensembles (Krishnamurti

et al. 1999, Meng and Zhang 2007), stochastic physical
tendencies perturbations (Buizza et al. 1999), and

stochastic kinetic energy backscatter (Shutts 2005).
Several parameter estimation schemes have been

developed and successfully tested, some of which can

be applied to operational data assimilation systems at a

relatively low computational cost. Most techniques

have been tested independently; hence, there is little

information about their relative strengths and weak-

nesses. Most of these tests have been performed using

the twin experiment approach, in which the only

source of model errors is assumed to be the error

associated with the estimated parameters. There are,

thus, many open questions with regard to the impact of

parameter estimation in the presence of other sources

of model errors.

In the next section, we discuss the implementation

of parameter estimation in a data assimilation cycle

based on the EnKF. The potential impact of parameter

estimation on the improvement of the analysis and

medium-range forecast is also discussed.

3. Sequential state and parameter estimation

based on the EnKF

In a sequential data assimilation cycle, the system

state is updated using the available observations at

certain time intervals depending on the applications.

Usually, global operational data assimilation systems

assimilate observations every 6 h. Smaller scale

applications, i.e., mesoscale and convective scale

analysis, are usually performed using shorter assimila-

tion cycles, typically from a few minutes to 1 h.

A sequential data assimilation cycle for state and

parameter estimation based on the EnKF can be

summarized in the following steps:

�The data assimilation cycle is started with an

ensemble of augmented states, S
a
i being the i−th

ensemble member at the beginning of the

assimilation cycle. The augmented state s
contains the state variables and parameters, i.e.,

s =[xxp], where x is the state variable vector (as
used in standard data assimilation) and xp is a

vector containing model parameters that are being

estimated. s
a
is the augmented state ensemble

mean. S
a
is an N × k matrix representing the

augmented state ensemble perturbations, where N
is the size of the augmented space (the total

number of state variables plus the total number of

estimated parameters) and k is the ensemble size.

The i − th column of S
a
contains the i − th en-

semble perturbation.

�Each ensemble member is propagated forward in

time using the model. The model simulation

corresponding to each ensemble member uses a

different initial condition and a different set of

parameters. Though the sensitivity to the

perturbations in the initial conditions and in the

parameters are propagated forward in time using
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the nonlinear model, the Kalman filter equations

assume that the error distribution is Gaussian.

This is why the integration step should be short

enough to guarantee that error growth from one

assimilation step to the next is approximately

linear. As an example, in the experiments

presented later, the model integration time is 6 h.

Usually, it is assumed that parameters remain

constant during the model integration, i.e., a

persistence model is assumed for the parameters.

�After the model integration, an ensemble of

forecasts is obtained. Let s
f
i be the i− th member

of the forecast ensemble. s
f
is the forecast

ensemble mean and S
f
the N × k forecast

perturbation matrix. The forecast error covariance

matrix can be estimated from the ensemble

sample as follows:

P
f
s =

1

(k−1)
(S

f
)(S

f
)
T
, (1)

where P
f
s is the augmented state forecast error

covariance matrix. This matrix contains the

covariances between the errors in different state

variables and the cross-covariances between

errors in the parameters and state variables. As

stated before, observations of the state variables

can provide information about the optimal

parameters on the basis of these covariances.

�Observations can be optimally combined with the

first guess in order to obtain the augmented state

analysis (i.e., the optimal estimation of state

variables and model parameters). The Kalman

filter analysis equations (Jazwinski 1970) are used
in this step:

s̄a = s̄f + Kg(yo−h(s̄f)), (2)

where yo is the observation vector, whose size is

equal to the total number of observations to be

assimilated (l), h is the observation operator, i.e., a

function that maps the state space into the

observation space. Usually, h can be a very

complex function. Kg is an N× l matrix, usually

referred as the Kalman gain matrix and is defined

as follows:

Kg = P
f
sH

T
(HP

f
sH

T
+R)

−1
, (3)

where H is the tangent linear model of the

observation operator and R is the observation

error covariance matrix. If h is linear, then h(sf) =
Hsf. In most applications, the parameters are not

directly observed, so that h(sf) = h(xf).

�The Kalman filter equations provide an estimate

of the uncertainty of the augmented state after the

assimilation of the observations:

P
a
s = (I− KgH)P

f
s, (4)

where P
a
s is the estimated error covariance matrix

for the augmented state analysis and I is the

identity matrix of size N×N. The new analysis

perturbation matrix S
a
that will be used in the next

data assimilation cycle should satisfy the

following relationship:

P
a
s =

1

(k−1)
(S

a
)(S

a
)
T
. (5)

Different implementations of the EnKF may have

a different way of computing the posterior

perturbations. In the ensemble square root

approach (Hamill and Whitaker 2002), the

analysis perturbations are obtained using a square

root factorization of the analysis error covariance

matrix:

S
a
= (k−1)(P

a
s )

1/2
. (6)

A common issue of the ensemble-based data

assimilation schemes is the lack of dispersion in the

background and analysis ensembles in comparison to

their actual errors. To avoid filter divergence

associated with this particular issue, multiplicative

inflation (Anderson and Anderson 1999) is usually

applied to the state variables. If the number of

ensemble members is small compared to the total

number of variables in the augmented state, then

sampling errors will affect the estimation of the

forecast error covariance matrix. This can significantly

degrade the analysis quality. Usually, to avoid this

problem, the estimated covariance between two state

variables is multiplied by a function of the physical

distance between them. In this way, only the

observations that are near a certain grid point can

correct the value of the state variables at that point

(Hunt et al. 2007). This procedure known as error

covariance localization can be applied in several ways.

One important difference between parameter

estimation and state-only estimation is that the

parameters may be global, i.e., the parameter is

independent of the location, and thus can be correlated

with state variables at any location. Different

approaches to consider localization in the parameter

estimation problem can be found in the literature.

Aksoy et al. 2006, Hu et al. 2010, and Fertig et al. 2009
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applied a spatial localization scheme for global

parameters in the same way as for state variables. In

this approach, the global parameters are transformed to

a uniform two-dimensional horizontal field prior to the

assimilation step. Spatial localization is applied to

estimate the parameters at each location during the

assimilation step. Finally, the estimated local parame-

ters are averaged horizontally, and the global values

are used in the forecast step. Alternatively, Koyama

and Watanabe 2010 estimated global parameters

without applying spatial localization. They showed

that spatial localization is not necessary for the

estimation of global parameters. It should be pointed

out that localization is necessary in the case of the

estimation of local parameters (i.e., parameter values

changing from one grid point to another), as in the case

of bias estimation (Baek et al. 2006) or CO2 surface

fluxes (Kang 2009).
Another important issue of parameter estimation is

how to represent uncertainty in the optimal parameters,

which is usually a priori unknown. This issue is

discussed in Ruiz et al. 2013.

Finally, the estimated parameter values for each

individual ensemble member should remain within a

realistic physical range. This restriction is similar to

the case of some state variables, for example, specific

humidity that cannot be less than 0 and not much

greater than 100. Hu et al. 2010 used a transformation

for the parameters that avoids this issue. In their work,

a hyperbolic tangent was used to map the parameter

range to the interval [−∞; ∞]. A logarithmic

transformation has also been used by Annan et al. 2005

for positive definite parameters. These approaches

guarantee that the estimated parameters will always be

within the physical meaningful limits. However, these

types of transformations may introduce additional

nonlinearities in the parameter estimation problem.

3.1 Experimental setting
Twin experiments were performed in this study to

illustrate how parameters can be estimated using the

LETKF approach. In the twin experiments, a nature

run (or true evolution) was generated by running the

model for a relatively long period of time, and

synthetic observations were produced by introducing a

random observational Gaussian error of covariance R

around the nature states.

The SPEEDY model (Molteni 2003) was used in the

experiments. The SPEEDY model is an atmospheric

GCM with a T30 spectral resolution transformed to a

Gaussian grid with 96 points in the west̶east direction

and 48 points in the south̶north direction. It has seven

vertical sigma levels and a set of simplified physical

parametrizations. Although the SPEEDY model has

simpler physical schemes compared to the state-of-the-

art models, it has all major components of a GCM. The

SPEEDY model has been used in several previous

studies for testing data assimilation schemes (Miyoshi

2005, Kang 2009, Kang et al. 2011, Harlim and Hunt

2007, Fertig et al. 2009, Miyoshi 2011).
First, two nature runs were generated using the

SPEEDY model with certain sets of parameters that

will be referred to as true model parameters. One

nature run was generated using parameters that are

constant in time, and the other used temporally varying

parameters. The true parameter values used in the

constant parameter nature run are summarized in Table

1. These values are chosen to be the standard settings

of the SPEEDY model. Both nature runs were from

January 1
st
to May 30

th
of the same year.

The parameter values in the nature run with time-

varying parameters are specified as follows:

xp(t) = a cos(Ωt) + xp(0) (7)

where a is the amplitude of the parameter oscillations,

which is unique to each parameter, t is time, Ω is the

frequency of parameter oscillations, which is the same

for each parameter, and xp(o) is a reference parameter

set, which in these experiments is equal to the set of

parameters used in the constant parameter nature run

(Table 1). Ω =
2π

80 day
−1

is used in the experiments.

Time-varying true parameters are introduced because

in practice, the value of certain parameters can be a

function of time of the year or the weather regime.
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RHBL [%]

ENTMAX [unitless]

0.16 0.50 0.50

True value Initial value Imperfect-model value

TRCNV [hr
−1
]

Parameter

Table 1. True, initial and imperfect-model parameter values used in the experiments. The selected

parameters are: the inverse of the convective adjustment time scale (TRCNV), the boundary layer

relative humidity threshold for convection initiation (RHBL), and the maximum lateral entrainment

rate (ENTMAX).

0.80

0.30

0.80

0.30

0.90
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Therefore, the ability of the parameter estimation

methods to capture the temporal variations needs to be

assessed. This can also be an improvement of current

forecasting systems in which parameters remain

constant. In this case, even when the true parameters

are time-varying, the parameter estimation problem

assumes that the parameters remains constant within

each assimilation window (i.e., the parameter remains

constant during the forecast with the model).
In this study, we aim to optimize the parameters of

convective parameterizations. The diabatic heating

associated with convection produces strong and

remote effects on atmospheric circulation. Convection

itself is intermittent in space and time and is more

frequent in tropical regions, introducing additional

challenges to the estimation of optimal parameters. It is

also associated with strong and fast instabilities (1̶3

h). The convective scheme is also associated with the

skill of quantitative precipitation forecast, which is one

of the most unreliable variables derived from

numerical weather and climate predictions.

Three parameters associated with the convective

parameterizations are evaluated. The convective

parameterization of the SPEEDY model is a mass flux

scheme; for further details, see Molteni 2003. The

selected parameters are as follows: the inverse of the

convective adjustment time scale (TRCNV), the

boundary layer relative humidity threshold for

convection initiation (RHBL), and the maximum

lateral entrainment rate (ENTMAX). There are two

other tunable parameters in the convective scheme

associated with the representation of shallow convec-

tion (SMF and RHIL), but early experiments showed

that changes in these parameters resulted in weak

sensitivity to the model state (i.e., they are not

identifiable and thus they cannot be accurately

estimated).
The simulated observing network has a regular

spatial distribution with observations located at every

other grid point and at every vertical level of the model

grid, which approximately corresponds to a 7.5

degrees horizontal resolution and a vertical resolution

of 150 hPa. Observations are available every 6 h,

which is equal to the time between two assimilations.

Independent Gaussian random errors are added to the

nature states at the observed grid points. The standard

deviation of the observational errors are chosen to be

1.0 ms
−1

for wind components, 1.0 K for temperature,

1.0 gkg
−1

for specific humidity, and 1.0 hPa for

surface pressure.

Using the observations generated from the nature

runs, data assimilation and parameter estimation

cycles are performed using an assimilation window of

6 h. The model used to obtain the first guess starts the

cycle using the set of parameters shown in Table 1 as

initial values. Apart from the values of the parameters

being estimated, the model is exactly the same as the

one used in the nature runs. This implies that though

the model used in the data assimilation system is

imperfect, the imperfection is purely due to the

differences in the three parameters. The initial

conditions to start the data assimilation cycles are

chosen randomly from the nature runs, so that only

climatological information is considered at the

beginning of the cycles. The same initial ensemble is

used in all the experiments.

The LETKF algorithm is used for the simultaneous

estimation of the model state and parameters. The

algorithm is thoroughly described by Hunt et al. 2007.

The implementation is similar to that presented in

Miyoshi et al. 2007. This implementation has been

applied to several numerical weather prediction

models, including the Japan Meteorological Agency

(JMA) regional and global models (Miyoshi and

Aranami 2006, Miyoshi et al. 2010), the atmospheric

GCM for the Earth Simulator, (Miyoshi and Yamame

2007), and most recently, the Weather Research and

Forecasting (WRF) model (Miyoshi and Kunii 2012).
This algorithm has also been employed for the

estimation of model parameters by Kang 2009 and

Ruiz et al. 2013. The additional computational cost

associated with the estimation of global parameters is

O (k
2
l), because the analysis update is computed in the

subspace spanned by the ensemble members.

In the experiments presented in this paper, a time-

independent multiplicative inflation factor is applied to

all state variables. Only global parameters are

estimated so that no spatial localization is used.

Namely, a Kalman gain is computed for the parameters

using the nonlocalized forecast error covariance

matrix. This Kalman gain is used only to update the

values of the parameters and not to update the state

variables.

3.2 Model sensitivity to the parameters
The sensitivity of the model to the parameters is

examined following Crook 1996 and Tong and Xue

2008b. The sensitivity is explored individually for

each parameter with the other parameters fixed at their

true values. The model is integrated for 6 h using 40

different parameter values within their meaningful

physical range (p
(1)
, …, p

(j)
, …, p

(40)
). The same initial

condition is used for all the model simulations. Then, a

cost function similar to the one used by Tong and Xue
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2008b is defined:

J(p
( j)
)=(y

o
− y

( j)
)
T
R

−1
(y

o
− y

( j)
) (8)

where J(p
(j)
) is the cost function at a given time for the

p
( j)
parameter value. The vector y

( j)
is the forecast in the

observational space, i.e., y
( j)
= H(x

( j)
), where x

( j)
is the

model state obtained using that parameter value.

The relative cost function (Jr) is defined as the cost

function for each parameter value divided by the cost

function for the optimal parameters. The initial

condition that we use is the analysis ensemble mean

from a data assimilation cycle performed with the true

parameters. Because of the errors in the initial

conditions and observations, the cost function

associated with the true parameters is not equal to 0.

Using Jr , the relative magnitude of the errors

associated with model parameters can be compared to

the errors associated with the uncertainty in the initial

conditions and observations.

Figure 1 shows the time-mean relative cost function

as a function of the parameter values. The time average

is performed over 15 days (60 forecasts). The

parameters that are highly sensitive are RHBL and

TRCNV, while ENTMAX shows much weaker

sensitivity (on the order of 1 % of the total forecast

error). RHBL and TRCNV show a nonlinear response

(most evident for RHBL), while ENTMAX shows a

quadratic cost function; therefore, the model response

to the parameter is linear.

The sensitivity is not the same for all variables and

locations. The strongest sensitivity for wind speed is

found at upper and lower levels (with a relative

minimum at mid levels) and in the latitudinal range 40

S to 40 N. The temperature shows strongest sensitivity

at mid levels but is confined within the range 20 S to 20

N. The specific humidity shows stronger sensitivity at

low levels as expected and the surface pressure also

shows strong sensitivity to the parameters within the

same latitude range. This variable dependence and

spatial distribution of the stronger sensitivity is

consistent with the response of the atmospheric

circulation to changes in the intensity or frequency of

the convective activity, which is more frequent in the

tropics. The spatial and vertical distribution of the

model sensitivity to the parameters is important to

design an error covariance matrix localization for the

parameter. In this case, for instance, observations from

higher latitudes seem to have a weak covariance with

the parameters. This means that observations at those

latitudes do not have a significant amount of

information about the optimal value of the parameter,

and hence they can be neglected. This can also be used

to design a variable localization approach as in Kang et

al. 2011.

The time-mean sensitivity to the initial condition

perturbations is also shown in Fig. 1. This sensitivity is

measured as the relative cost function of one of the

ensemble runs with perturbed initial conditions and
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Fig. 1. Time-averaged normalized cost function for the three parameters associated with the convective scheme in the

SPEEDY model as a function of the parameter value: TRCNV (circles), ENTMAX (squares), and RHBL (triangles).

Time-averaged sensitivity to initial condition perturbations is also included for reference (grey dashed line).



true parameters and is computed in the same way as the

sensitivity to the parameters. As the sensitivity is

examined globally, the relative cost function for some

parameter values exceeds that associated with the

initial conditions perturbations. This is the case for the

TRCNV and RHBL but not for ENTMAX.

The optimal parameters, i.e., those that give the

minimum of the cost function, are close to the true

parameter values. Figure 2 shows the value of the

parameters corresponding to the minimum of the cost

function at each time instant and for each parameter as

a function of time. Errors in the initial conditions and

observations produce significant deviations from the

true parameter values. The uncertainty in the

determination of the optimal parameters is, as

expected, larger for ENTMAX, which shows weaker

sensitivity. RHBL also shows a behavior consistent

with the shape of its cost function. The error in the

position of the minimum is usually found at higher

values with respect to the true parameter, because for

higher values, the model shows weaker sensitivity to

this parameter. In some cases, the cost function

computed for a particular time instant exhibits multiple

local minima (in this case only, the global minimum

has been considered for the plot shown in Fig. 2).
These multiple local minima may arise from

nonlinearities in the model response to changes in the

parameter.

3.3 Estimation of parameters with LETKF
In this section, some experiments of parameter

estimation using the LETKF method are described.

Figure 3a shows the estimated parameter evolution

for temporally fixed true parameters. The parameter

ensemble spread evolves with time owing to the

implementation of the online estimation of the

parameter ensemble spread (See Ruiz et al. 2013 for

further discussion on this issue). The estimated

parameter values converge to the true parameter values

in less than 20 days; after that, the estimated

parameters oscillate around the true value. This

oscillation is mostly associated with the uncertainty

originating from errors in the state and in observations

as well as sampling errors in the computation of the

covariances between the observed variables and

parameters.

Figure 3b shows the estimated parameter evolution

for time-varying parameters. The method can ade-

quately capture the evolution of the parameters.

However, even when the frequency of the parameter

oscillation is low, there is a temporal lag between the

estimated parameters and their true evolution. When

the frequency of the true parameter increases, the

temporal lag usually grows. For a time frequency that

is six times larger than the one presented in this

experiment, filter divergence occurs for the parame-

ters. These issues are partly because persistence is

assumed for the parameter evolution during the
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dashed line), ENTMAX (light grey dashed line), and RHBL (dark grey dashed line).



forecast step. If the true parameter changes rapidly

with time, the corresponding forecast model for the

parameter needs to be considered. The problem is that,

in general, the dynamics of the parameter evolution are

ignored simply because they are unknown most of the

time.

The effect of parameter estimation on the error in the

state variables is also analyzed. The analysis error for

the state variables is computed using an RMSE

normalized by the typical error magnitude of each

variable:

RMSE =


1

N
(x

a
−x

t
)
T
A

−1
(x

a
−x

t
) . (9)

where A is a diagonal matrix of size N × N that

contains the typical error magnitudes of each state

variable. The typical error magnitudes are chosen to be

equal to the observational errors of each variable. This

definition considers the relative order of the magnitude

of the different variables involved. Only the model

state variables are considered for the computation of

the analysis RMSE.

A perfect model experiment, i.e., a data assimilation

cycle using the true parameter values, and an imperfect

model experiment were also performed. For the

constant parameter case, the imperfect model experi-

ment consists of a data assimilation cycle using the

model with an incorrect set of parameters, as shown in

Table 1. In the case of the time-varying parameters, the

imperfect model consists of a data assimilation cycle

that uses the time average of the true time-varying

parameters. In this case, the imperfect model does not

consider the time variability of the true parameters;

however, the selected value for the parameters is one

of the most reasonable choices that can be implement-

ed.

In Figure 4a, the analysis error in the imperfect

model experiment is significantly larger than in the

perfect model experiment after the spin up of the filter.

In the parameter estimation experiment, the analysis

error is almost as low as in the perfect model case. This

indicates that parameter estimation can find the

optimal values for the parameters and effectively

removes model errors associated with the uncertain

parameters. The fluctuations observed in the estimated

parameters do not significantly affect the quality of the

analysis.

Figure 4b shows the time evolution of the analysis

RMSE in the experiment with time-dependent

parameters. In this case, the analysis error in the

imperfect model experiment shows time fluctuations

that coincide with the frequency of the oscillation of

the true parameters. These oscillations are not present

in the parameter estimation experiment because the

temporal dependence of the parameters is adequately

captured by the method. This shows that even if a

reasonable value for the parameters is used (i.e., the
time average of the true parameter), the analysis error

can be relatively large. However, the impact of

including the temporal dependence of the parameters

will depend on the amplitude of the oscillations of the

optimal parameters and the model sensitivity to the

parameters. In these experiments, the temporal lag

between the estimated parameters and the true
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Fig. 3. (a) Time evolution for the constant true parameter experiment of the three estimated parameters: TRCNV (black

solid line), ENTMAX (light grey solid line), and RHBL (dark grey solid line). The shade around the estimated parameters

indicates the ensemble spread (one parameter ensemble perturbation spread). The true parameter values evolution are

also indicated: TRCNV (black dashed line), ENTMAX (light grey dashed line), and RHBL (dark grey dashed line). (b)

Time evolution of the estimated parameters for the time-dependent true parameter experiment.



parameters does not seem to significantly degrade the

analysis. This may be because the temporal frequency

of the true parameters is relatively low compared to the

typical frequency associated with changes in the state

variables and also low compared to the observing

frequency.

These simple experiments illustrate some results

that have been previously discussed in the literature

and highlight the importance of parameter estimation

as a method to estimate and partially correct model

errors. It should be noted that these experiments are

over optimistic in the sense that uncertainty in the

optimal value of the estimated parameters is the only

source of model errors.

3.4 Parameter estimation impact on ensemble
forecast skill

In this section, the effect of parameter estimation on

forecast skill is quantified following the framework of

the simple twin experiments presented so far. Several

experiments were performed using the SPEEDY

model to generate 15-day ensemble forecasts with 20

members. The forecast experiments started on

February 1
st
and ended on March 31

th
of the same year.

Temporally fixed true parameters were used in these

experiments. Here, four different experiments using

different initial conditions and parameters will be

presented:

�Perfect model (PM): Perfect parameter values are

used for the forecasts. The initial conditions are

obtained from the data assimilation experiment

that uses the perfect parameter values.

�Imperfect model (IM): The imperfect parameter

values shown in Table 1 are used for the forecasts.

The initial conditions are obtained from the data

assimilation experiment that uses the imperfect

parameter values without parameter estimation.

�Imperfect initial conditions with perfect model in

the forecasts (IICPM): The analyses resulting

from imperfect parameter values (same as IM) are
used as the initial conditions. The forecasts are

produced with the perfect model.

�Estimated parameter (EP): The initial conditions

are obtained with a data assimilation experiment

that includes an augmented state so that both the

state and parameters are estimated. Each forecast

ensemble member uses parameter values taken

from the corresponding estimated parameter

ensemble. In this way, the ensemble represents

the uncertainty in the initial conditions as well as

the uncertainty in the optimal value for the

parameters.

The time-mean RMSE is used as a measure of the

forecast skill. The evolution of the RMSE as a function

of forecast lead time for the different experiments is

shown in Fig. 5a. As expected, the best results are

achieved by the PM experiment and the worst results
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Fig. 4. Total analysis RMSE as a function of time for the perfect model experiment (black solid line), imperfect model

experiment (black dashed line), and parameter estimation experiment (grey solid line). (a) For the constant true

parameters case and (b) for the time dependent true parameters case.



by the IM experiment. The reduction in the error

growth rate at the end of the 15-day period in the IM

experiment suggests nonlinear saturation of errors.

The EP experiment shows excellent results with

RMSE values very close to those for the PM

experiment, indicating an effective reduction of model

errors associated with the optimization of the

parameters values. The differences between IICPM

and IM are smaller than those between PM and IICPM,

suggesting that the parameter errors in the forecast

model are less important in this case. Instead, model

imperfections introduce errors in the initial conditions,

and the impact of the initial condition errors is more

important than the impact of model errors during the

forecast. The impact of model errors on initial

conditions depends on the kind and number of

observations available; therefore, this particular result

might be sensitive to the number and distribution of the

available observations.

Another important aspect of ensemble forecasting,

which is strongly related to model errors, is the

relationship between the ensemble spread and forecast

error. Ideally, for a perfect ensemble system, there

should be a relationship between the ensemble spread

and ensemble mean error (Kalnay 2003). If the

ensemble spread is large, the ensemble mean is

expected to be far from the true state. When

perturbations in the initial conditions are used to

generate the ensemble, only the initial condition

uncertainty is considered. However, as model error is

also present, the growth of the perturbations during the

forecasts may fail to capture the magnitude of the

forecast error. In other words, model errors reduce the

ability of an initial condition ensemble to estimate

forecast uncertainty.

The relationship between day-to-day changes in the

ensemble mean error and ensemble spread is not

strictly linear or even deterministic because a larger

spread means that the probability of having a large

error is larger but not that the error will actually be

large. However, the linear correlation coefficient has

been extensively used to measure the strength of this

relationship. In this work, the linear correlation

coefficient between the ensemble mean error and

ensemble spread was used to measure the impact of

including parameter estimation in the data assimilation

cycle. Linear correlations between the time series of

spread and error were computed at each grid point for

the entire forecast period and then averaged over the

globe and over the different model variables. Figure

April 2013 J. J. RUIZ et al. 93

Fig. 5. (a) Globally and temporally averaged ensemble mean RMSE as a function of the forecast lead time for the perfect

model (black dashed line), imperfect model (grey dashed line), imperfect initial conditions with perfect model (dark grey

solid line with circles), and estimated parameter (light grey solid line with squares) experiments (see the text for details).

(b) As in (a) but for the globally and temporally averaged correlation between the ensemble mean error and ensemble

spread.



5b shows the linear coefficient between the ensemble

mean error and spread as a function of the forecast lead

time. The strongest relationship is achieved between 6

and 10 days, which is in close agreement to the results

obtained by Grimit and Mass 2007. The PM and EP

experiments show the strongest correlation coefficient

as expected, indicating a good relationship between the

ensemble spread and forecast uncertainty. It is worth

mentioning that the inclusion of parameter perturba-

tions among the ensemble members in the EP

experiments does not produce significantly better

results than when the parameter ensemble mean is used

in all the members (not shown). This suggests that

considering optimal parameter uncertainty in the

ensemble forecast does not produce an improvement of

the error-spread relationship in this particular case.
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Fig. 6. 24 h forecast of accumulated precipitation, RMSE (shaded) and bias (contours) (mm6hr
−1
). Bias contours are −3,

−2, −1, −0.5, 0.5, 1, 2, and 3. Positive values are shown with solid lines and negative values with dashed lines. (a)

Imperfect model experiment and (b) Estimated parameters experiment.



This might be because only three parameters

associated with the convective scheme are being

perturbed.

Figure 5b also shows that the error-spread

relationship in the IM case is significantly weaker than

in the case of estimated parameters, indicating that

model errors have an important impact on the error-

spread relationship. The major part of this degradation

comes from errors in the forecasts initial conditions.

It is also interesting to show how the precipitation

forecast is affected by the estimation of the parameters,

given that the estimated parameters are from the

convective parameterization in the model. Figure 6

shows the RMSE and bias of the 24 h forecast of the

total precipitation. The total precipitation is obtained

as the sum of precipitation produced by the convective

scheme and also from the parameterization of large-

scale condensation. In this figure, parameter estima-

tion has a positive impact on the short-range

precipitation forecast. The bias in the precipitation

forecast produced by the imperfect parameter values is

almost completely removed and the RMSE of the

precipitation forecast is also reduced. The RMSE

values obtained in the parameter estimation experi-

ment are close to the ones obtained in the perfect

model experiment (not shown). Note that RMSE is

usually not a good measure for assessing the forecasted

precipitation skill. Other measures of skill were

evaluated in the experiments, including scores for the

probabilistic quantitative precipitation forecast, and in

all cases, we obtained the same conclusions.

4. Conclusions

Various methods for parameter estimation have

been reviewed, with particular focus on the ones based

on data assimilation. Data assimilation methods are

promising since they provide an efficient and objective

way to constrain the values of different model

parameters on the basis of the available observations.

Parameter estimation can be implemented using many

kinds of data assimilation methods that include the

time evolution of the forecast error covariance matrix,

e.g., 4D-Var schemes and Kalman filter- and particle

filter-based methods. Parameter estimation can be

more easily implemented in ensemble-based methods

since they do not need an adjoint model. Some of the

methods for parameter estimation can be implemented

at very low additional computational cost, making

them appealing for their operational implementation.

Experiments using a method for parameter estima-

tion based on the LETKF in a simple GCM were

presented. Three parameters associated with the

convective scheme of the GCM were estimated

simultaneously with the state variables. Although the

response of the model to perturbations in these

parameters showed some nonlinearities, the LETKF

could estimate the true value of the parameters in the

absence of other model error sources. More experi-

ments should be performed to investigate the

performance of Kalman filter-based methods under

stronger nonlinear responses to changes in the

parameters and also their relative skill compared with

other methods such as particle filter-based methods

that are designed to account for nonlinearities.

One important issue regarding parameter estimation

using ensemble-based data assimilation is how to

represent the uncertainty in the optimal parameters,

which is not known a priori. In this paper, the

uncertainty in the optimal parameters, was assumed to

be constant in time. This particular issue is further

discussed in Ruiz et al. 2013, in which a new approach

is proposed for the estimation of optimal parameter

uncertainty.

The experiments presented in this work as well as

several experiments discussed in the literature show

the potential of the parameter estimation techniques to

obtain the temporal and spatial distribution of the

optimal model parameters. This is particularly

important in the context of short-to medium-range

weather forecasting because it would allow for a

flexible and computationally efficient model optimiza-

tion (Wu et al. 2012).
The experiments show that estimating parameters in

a data assimilation system has the potential to improve

the short-to medium-range forecasts. The greatest

improvement is found in association with the

improvement of the initial conditions. The results

show that a small improvement is associated with the

reduction of model errors during the forecasts.

Parameter estimation efficiently reduces model errors

associated the value of the convective parameteriza-

tion parameters, leading to an improvement of the

spread-error relationship. In the experiments, the

inclusion of parameter perturbations in the forecast

ensemble does not lead to a significant improvement of

the forecast, i.e., neither a reduction of RMSE nor an

increase in the error-spread correlation. This could be

because model errors are only associated with the

optimal values of the convective scheme parameters in

this case and the parameter estimation process

successfully removes them by an accurate estimation

of these values. Thus, the incidence of including this

source of uncertainty in the forecast is small.

Parameter estimation also has the potential to
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improve model climatology. This can be of great

importance for climate and climate change studies.

Model parameters can be trained during relatively

short periods (i.e., a couple of years) using a data

assimilation cycle, and then the estimated parameters

can be used for climate simulations.

Although parameter estimation techniques are very

promising, there are still some issues that need more

attention before this method can be used operationally

for tuning complex numerical models. One of the main

problems would be the effect on the estimated

parameters of other sources of model errors not

directly related with the parameters being estimated. In

the experiments presented in this work, the model

imperfections were directly related to the value of the

convective scheme parameters. In real world applica-

tions, the sources of model errors are diverse, such as

different parameterizations and limited resolution. The

presence of other sources of model errors can

contaminate the estimated parameters because other

sources of errors can project onto directions defined by

the model sensitivity to the parameters. This is one of

the main issues that need to be further explored as well

as the impact of errors related to the formulation of the

observation operator (Youngsun et al. 2010). In the

presence of model errors, the optimum parameters

from the viewpoint of global model errors can be

different from those parameters that produce an

optimal representation of a particular subgrid scale

phenomenon (e.g., convection or boundary layer

turbulence). This can lead to suboptimal or even

nonphysical representation of subgrid scale phenom-

ena. In this sense, parameter estimation based on data

assimilation is a very efficient tool that has an

enormous potential but has to be used with caution in

order to avoid getting the right answer based on the

wrong reasons. Moreover, the knowledge of tuning

experts and model developers will still be crucial for

the success of the parameter estimation in order to

determine the key parameters to be estimated, identify

the appropriate bounds for these parameters, and verify

that the result is physically meaningful and it is not just

an attempt of the method to correct other sources of

errors that are not related to the parameters.
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