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One of the challenges of microalgae biotechnology is the cost of growth media nutrients, with microalgae 
consuming enormous quantities of fertilisers, more than other oil crops. The traditional use of synthetic 
fertilisers in mass cultivation of microalgae is associated with rising prices of crude oil and competition 
from traditional agriculture. The fact that fish farm wastewater (FFW) nutrients are released in the form 
preferred by microalgae (NH3 for nitrogen and PO4

-3 for phosphate), and the ability of microalgae to use 
nitrogen from different sources, can be exploited by using fish farm effluent rich in nutrients (nitrogen and 
phosphorus) in the cultivation of cheaper microalgae biomass for production of biodiesel. The cultivation 
of algae biomass in FFW will also serve as wastewater treatment. We reviewed the benefits and potential 
of fish effluent in algae cultivation for the production of biodiesel. Microalgae can utilise nutrients in FFW 
for different applications desirable for the production of biomass, including the accumulation of lipids, and 
produce a fuel with desirable properties. Also, treating wastewater and reducing demand for fresh water 
are advantageous. The high lipid content and comparable biodiesel properties of Chlorella sorokiniana 
and Scenedesmus obliquus make both species viable for FFW cultivation for biodiesel production.

Significance:

• The cost associated with microalgae growth media nutrients can be saved by using fish farm wastewater, 
which contains nutrients (nitrogen and phosphorus) suitable for microalgae cultivation.

• Fish farm wastewater has lower nutrient concentrations when compared to standard growth media 
suitable for higher lipid accumulation. 

• Microalgae used as a biodiesel feedstock, cultivated in fish farm wastewater, has added benefits, including 
wastewater treatment.

Introduction
The ability of microalgae to adapt in a diverse environment is reflected in the patterns of lipids produced as well 
as their ability to synthesise various unusual compounds.1 The kinetics of microalgae growth, lipid productivities, 
and the amount of biomass vary with the algal strain, culture, and physiological conditions.2 Some species of 
microalgae, such as Dunaliella Salina, Chlamydomonas reinhardtii, Chlorella, and Botryococcus braunii can 
contain more than 60% lipid by dry cell weight.3 However, microalgal species with high lipid accumulation (50–70% 
of dry cell weight) generally have a slow growth rate.4 It is possible to find examples of microalgae that are fast 
growing and have a high lipid accumulation, e.g. Nannochloropsis oculata and Chlorella vulgaris (Table 1), and that 
have been used for biodiesel production.5

Increasing lipid production is possible through the cessation of cell division under environmental stress conditions. 
This switches from the synthesis of carbon dioxide (CO2) to lipid production as energy storage and thereby 
increases the lipid content to 20–50% dry cell weight of mostly triacylglycerol.2,6-9 Environmental stress conditions 
that can lead to lipid production include:

• low nitrogen concentration10,11; 

• low temperature12; 

• high light intensity13; and

• high ion concentrations14.

Microalgae have a higher growth rate when compared to land-based plants19-21 and can be harvested every few 
days22. Microalgae require less land than other oil crops21,23,24 and can be grown on marginal lands not required for 
food cultivation25,26. Microalgae feedstock has a high lipid production advantage with 15–300 times more oil than 
plant-based biomass27,28 (Table 2). Microalgae can make use of nutrients, especially nitrogen and phosphorus, from 
different sources of waste, including concentrated animal feed operations, industrial and municipal wastewater, and 
agricultural run-off.7,29 This offers cost-savings from the purchase of exogenous nutrients such as sodium nitrate 
and potassium phosphate30, reduces the use of fresh water30,31 and provides the additional bioremediation benefits 
of wastewater treatment7,29,32. The production of microalgae biomass offers real opportunities for solving issues of 
CO2 sequestration32, and at the same time, generates economic value through the conversion of CO2 into energy 
and chemical products33, utilising about 1.83 kg of CO2 for the production of 1 kg of microalgae biomass18.
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Table 1: The oil content of some microalgae

Microalga
Oil content 

(% dry wt)
Source

Achnanthes sp. 42.8–46.2 Doan et al.15

Ankistrodes falcatus 21.78–59.6 Singh et al.16

Chorella sorokiniana 26–39.1 Guldhe et al.17

Crypthecodinium cohnii 20 Chisti et al.18

Cryptomomas sp. 28–29.2 Doan et al.15

Cylindrotheca sp. 16–37 Chisti et al.18

Dunaliella primolecta 23 Chisti et al.18

Isochrysis sp. 25–33 Chisti et al.18

Monallanthus salina N 20 Chisti et al.18

Nannochloris sp. 20–35 Chisti et al.18

Nannochloropsis sp. 37.6–46.5 Doan et al.15

Neochloris oleoabundans 35–54 Chisti et al.18

Nitzschia sp. 45–47 Chisti et al.18

Phaeodactylum tricornutum 20–30 Chisti et al.18

Schizochytrium sp. 50–77 Chisti et al.18

Tetraselmis sueica 15–23 Chisti et al.18

Table 2: Average productivities of some common oilseed crops 
compared to those of microalgae

Oil source Yield (L/m2/year) Reference

Algae 4.7 to 14 Sheehan et al.34

Palm oil 0.54 Mata et al.26

Jatropha 0.19 Sazdanoff35

Rapeseed 0.12 Sazdanoff35

Sunflower 0.09 Sazdanoff35

Soya 0.04 Sazdanoff35

Source: Griffiths et al.36

Microalgae growth requirements
The use of wastewater to efficiently grow microalgae is dependent on 
different variables, including the concentration of essential nutrients 
(such as nitrogen, phosphorus, organic carbon), temperature, pH of the 
medium, availability of light, CO2, and oxygen.37

Nutrients
Microalgae require nutrients for growth, particularly carbon (in the 
form of CO2), nitrogen and phosphorus18,38 (Table 3). To provide these 
nutrients, different recipes for algae culture media exist (Table 4). The 
concentrations of nitrogen and phosphorus in the algae growth medium 

are considered fundamental factors affecting algae growth kinetics 
directly and are closely related to lipid accumulation and nutrient 
removal.6 The main mechanism for nutrient removal by microalgae is 
by uptake into microalgae cells6,39, while the rate of nutrient removal is 
directly affected by the microalgae population growth rate6.

The usual carbon source for microalgae photosynthetic culture is 
CO2, supplied either continuously or intermittently, from industrial 
exhaust gases, atmospheric CO2, or chemically fixed CO2 in the form 
of soluble carbonates, e.g. NaCO3 and NaHCO3.

30,40 The efficiency at 
which microalgae cells use carbon through photosynthesis is directly 
proportional to the microalgal biomass production rate.41 The pH change 
in microalgae cultures is predominantly from the consumption of CO2, 
while changes due to degradation of metabolites excreted or from the 
uptake of other nutrients are minimal.42 Increasing the concentration of 
CO2 can result in higher production of biomass and a decrease in pH 
which can cause harm to the microalgae physiology.43

The next most important element required for the nutrition of microalgae 
is nitrogen.44 Nitrogen is directly involved with primary metabolism as 
it constitutes protein and nucleic acids.40,45 The nitrogen content of the 
biomass can vary from 1% to above 10% (even within the same species) 
and depends on the type and availability of the nitrogen source.46 
Microalgae cultivation utilises a higher amount of chemical fertilisers 
(N-fertiliser), about 8–16 tons N/H, than other oil-bearing terrestrial 
plants.47 The use of nutrients from wastewater, especially agricultural 
sources rich in inorganic pollutants (nitrogen and phosphorus), can be 
one alternative to traditional chemical fertiliser sources.47

Ammonia is the preferred form of nitrogen for micro-organisms.46 
Nutrients released from aquaculture are most suitable for the cultivation 
of algae as nitrogen is released as NH3 and phosphorus as PO4

-3.48 On the 
other hand, microalgae species with a fast growth rate prefer the primary 
source of nitrogen in the form of ammonia over nitrate49, although they 
can grow well with different sources of nitrogen46,47,50.

Assimilation of either NH4
+ or NO3

- is related to the pH of the growth 
medium. The pH of the growth medium could drop during active algal 
growth when ammonia is used as the only nitrogen source. This is due 
to the release of H+ ions. On the other hand, pH increases when nitrate is 
used as the only nitrogen source in the growth medium. At high pH, nitrate 
could be lost due to volatilisation. However, it is important to ensure 
an adequate supply of this important nutrient to achieve a high growth 
rate. Culture media are formulated to supply nutrients in excess to avoid 
nutrients becoming a limiting factor, except in specific applications.46

Another important nutrient for microalgae growth is phosphorus, 
even though it forms less than 1% by mass.46 According to Kumar et 
al.40, phosphorus is the third most important nutrient for microalgae 
growth and is required in significantly excess supply because not all 
compounds of phosphorus are bioavailable, especially those combined 
with metal ions18,46,51. Microalgae store excess phosphorus in phosphate 
bodies, which they can use when phosphorus becomes limiting. The 
ratio of N:P in the growth medium is important, both in determining the 
growth potential and maintaining the dominance of cultured species in 
the culture.46 

In Mostert and Grobbelaar’s52 study, nitrogen was supplied at 
concentrations between 25 mg/L and 5000 mg/L for Scenedesmus 
sp., Chlorella sp. and Monoraphidium, with a suggested optimal 
nitrogen concentration for maximum productivity of between 2 mg/L 
and 619 mg/L and a variation on phosphorus of between 0.98 mg/L 
and 179 mg/L. Studies with Chlorella vulgaris at different ammonia 
concentrations obtained algae growth at all concentrations of algae. Low 
algae growth was obtained at very high ammonia concentrations (above 
750 mg/L) and very low ammonia concentrations (below 10 mg/L) while 
maximum cell density was obtained at nitrogen concentrations between 
20 mg/L and 250 mg/L, with no difference in specific growth rates. The 
growth rate in the different ammonia media studied was comparable 
to growth in commercial Bristol medium in which nitrate was the 
nitrogen source.53
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Table 3: List of nutrients required by algal cells for growth

Elements Compounds

Sodium Several inorganic salts, NaCl, Na2SO4, Na3, PO4

Potassium Several inorganic salts, KCl, K3PO4, K2SO4

Calcium Several inorganic salts, CaCO3, Ca2- (as chloride)

Hydrogen H2O, organic molecules, H2S

Oxygen O2, H2O, organic molecules

Sulfur Several inorganic salts, MgSO4.7H2O, amino acids

Magnesium Several inorganic salts, CO2
3-, SO4

2-, or Cl- salts

Chlorine As Na+, Ca2+, K+ or NH4
+ salts

Iron Fe(NH4)2SO4, FeCl3, ferric citrate

Zinc SO4
2- or Cl- salts

Manganese SO4
2- or Cl- salts

Bromine As Na+, Ca2+, K+ or NH4
+ salts

Silicon Na3SiO3.9H2O

Boron H3BO3

Molybdenum Na+ or NH4
+ molybate salts

Vanadium Na3VO4.16H2O

Strontium SO4
2- or Cl- salts

Aluminium SO4
2- or Cl- salts

Rubidium SO4
2- or Cl- salts

Lithium SO4
2- or Cl- salts

Copper SO4
2- or Cl- salts

Cobalt Vitamin B12, SO4
2- or Cl- salts

Iodine As Na+, Ca2+, K+ or NH4
+ salts

Selenium Na2SeO3

Adapted from Grobbelaar46 

Table 4: Recipe of some selected growth medium for different algae 

Substrate* BG11 (g) Modified Allen’s (g) Bold’s Basal (g)

NaNO3 1.5 1.5 0.25

K2HPO4.3H2O 0.04 0.039 0.075

KH2PO4 0.175

MgSO4.7H2O 0.075 0.075 0.075

CaCl2.2H2O 0.036 0.025 0.084

Ca(NO3)2.4H2O 0.02

Na2SiO3.9H2O 0.058

Citric acid 0.006 0.006

Fe-Ammonium citrate 0.006

FeCl3 0.002

FeSO4.7H2O 0.00498

EDTA, 2Na-Mg salt 0.001 0.001 0.005

Na2CO3 0.02 0.02

NaCl 0.025

KOH 0.031

H3BO4 (µg/L) 2.86 2.86 11.42

MnCl2.4H2O (µg/L) 1.81 1.81 1.44

ZnSO4.7H2O (µg/L) 0.222 0.222 8.82

Na2MoO4.2H2O (µg/L) 0.391 0.391

CuSO4.5H2O (µg/L) 0.079 0.079 1.57

Co(NO3)2.6H2O (µg/L) 0.0494 0.0494 0.049

MoO3 (µg/L) 0.71

Adjusted pH 7.4 7.8

Adapted from Grobbelaar46 

*All concentrations are in g/L and quantities are for 1 litre of culture solution.

Under nitrogen-rich conditions, rapid cell division and chlorophyll 
accumulation occur. Under depleted nitrogen conditions, no cell division 
occurs, but there is high lipid biomass accumulation for several more 
days, together with a rapid drop in chlorophyll.34 At 2.5 mg/L nitrogen 
limitation, Scenedesmus sp. LX1 accumulated up to 30% lipids and up to 
53% at phosphorus limitation of 0.1 mg/L.6 Other studies have cultivated 
microalgae in different nitrogen and phosphorus concentrations. One 
example is Aslan and Kapdan54 with 13.2–410 mg/L ammonia, 7.7–
199 mg/L phosphorus and 25–200 mg/L urea.

Light
Light is an important requirement in microalgae growth, and should 
be delivered optimally to all microalgae cells within the culture. The 
highest photosynthetic efficiencies are realised at low light, as high light 
intensities not only cause inefficient use of absorbed light energy but 
also cause biochemical damage to photosynthetic machinery (photo-
inhibition), as well as a reduction in dry weight.3 Generally, the light 
intensity requirement of microalgae cultivation is lower than the light 
intensity needed for higher plants.40 Microalgae photosynthesis and 
productivity is equal to the efficiency of light conversion when the only 
limiting factor is light.55,56 Generally, specific growth increases with an 
increase in irradiance to a maximum point beyond which inhibition may 
occur due to any further increase.55

Temperature
One of the major factors controlling cellular, physiological, and 
morphological responses of microalgae is temperature. Generally, 
an increase in temperature increases the rate of metabolism, while a 
decrease in temperature decreases the growth of algae. Environmental 
parameters such as light intensity affect optimal temperature, with 20–
25 °C reported as optimal for some species, and highest cell density 
occurring at 23 °C.40

Fish farm wastewater
Globally, aquaculture has been one of the food production sectors with 
rapid development and production growth, significant investment, and 
technical innovation.57 The main pollutants of concern in fish farm 
wastewater (FFW) are particulate and dissolved nutrients (nitrogen 
and phosphorus), and specific inorganic and organic compounds.58 
The volume of waste discharged from aquaculture depends on the 
feeding regime, stocking density, and feeding rate, as these three factors 
determine the quantity of feed used.59

Nitrogen
Transformations of nitrogen are key biochemical processes in 
aquaculture systems, with protein as the major form of nitrogen in 
the fish feed.45 In every ton of fish produced, approximately 132.5 kg 
nitrogen and 25.0 kg phosphorus are released to the environment.59 
Fish feed consumed is converted partially into fish biomass, egested 
as faeces or excreted through the gills as un-ionised ammonia, a major 
product of protein metabolism.45,60,61

Most ammonia produced in fish occurs in the liver and is voided through 
the epithelial surface and renal routes. Production of ammonia also 
occurs in the kidney, intestine, and muscle due to the presence of the 
amino acid deamination enzyme in the tissues.62 Ammonia in fresh 
water is from excretion via passive NH3 diffusion across the branchial 
epithelium. Next to the gill, this NH3 subsequently gets trapped as NH4

+ 
in an acidic boundary layer, which maintains the partial pressure gradient 
of blood-to-gill water NH3.

63 Urea is produced through argininolysis or 
hepatic uricolysis and is excreted through the gills, kidneys, skin or 
faeces.

Nitrogen loading in fish farms can be generally grouped into three 
sources59,61: 

1. feed wasted due to poor management and farm practice;

2. poor feed quality, leading to poor feed stability and rapid dissolution 
of fish feed in water; and
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3. low absorption and retention of food ingested that can be due to 
poor food digestibility of fish metabolism.

Large amounts of nitrogen in FFW are dissolved, with only 7–30% 
occurring in the form of particulates.64 Nitrogen in aquaculture is 
predominantly excreted as ammonia65 and only about 20–40% of total 
nitrogen is excreted as urea62. Ammonia nitrogen build-up is the second 
most limiting factor to an increased level of production in intensive 
aquaculture after dissolved oxygen.66 Even at very low concentrations, 
ammonia – especially un-ionised (NH3) ammonia – is toxic to fish, with 
maximum concentrations below 0.0125 mg/L seen as acceptable.67

In flow-through aquaculture systems, most of the total nitrogen in 
the system is produced as ammonia while recirculating systems with 
biofilters produce mostly nitrates.68 As the most reactive nitrogenous 
species, the pelagic microbial community quickly take ups ammonia 
and produces other nitrogenous species such as nitrate.69 The rate 
of ammonia reaction in water is rapid, having a half-life of fewer than 
50 ms for interconversion of NH4

+ to NH3.
70 However, temperature, pH, 

and salinity of the water affect the relative proportion of the two forms 
of ammonia.70 In natural water, ammonia exists as a component of pH 
and temperature-dependent equilibrium. Aqueous ammonia, an ionised 
form of ammonium (NH4

+), is favoured within equilibrium pH (6.5 to 
8.0), while a high pH >9 favours un-ionised form of ammonia (NH3).

71

Phosphorus
Phosphorus is a limiting nutrient in a freshwater ecosystem72,73 and 
is excreted through urine in fishes74. Excretion of phosphorus, usually 
60–86% of dietary phosphorus, is related to the source of origin, 
which different species use in different ways.65 Water quality can be 
influenced by phosphorus from aquaculture75, as elevated levels of 
phosphorus cause premature eutrophication73. Soluble phosphorus is 
not produced when feed with low phosphorus levels is consumed.76 The 
particulate total phosphorus and particulate total nitrogen fractions of 
effluent from a salmonid farm range from 30% to 84% and 7% to 32%, 
respectively.64,77,78

Phosphorus is usually not lost in an aquatic environment but remains 
conserved in a series of fractions as a result of dissolution, adsorption, 
and precipitation.79 This changes the form of phosphorus availability 
from dissolved orthophosphates to phosphorus attached to the 
suspended load.80 This makes phosphorus a useful indicator of the 
environmental impact of fish effluent.81 Modern agriculture relies on 
non-renewable phosphate from rocks for phosphorus supply, which 
is estimated to run out in 50–100 years with the estimated increase 
in phosphorus use.82 This makes it essential to recycle phosphorus in 
wastewater sources, manure, and even within production processes of 

biofuels to eliminate direct competition for phosphorus between algae 
cultivation and conventional agriculture.83

Impact of aquaculture discharge to the environment
Aquaculture’s impact on the environment depends on feed type, 
stocking density, species, culture method, and farm practices.84 The 
concentration or total amount of effluents released and the capacity of 
the environment to assimilate the particular constituent also affects the 
impact of aquaculture on the environment.58 Nitrogen and phosphorus 
as major constituents of fish loading can affect the environment as a 
whole as well as the rearing of the fish.65 The introduction of organic and 
inorganic materials through feed for fishes has significantly impacted the 
nutrient and organic matter loading in coastal waters. 

Rapidly growing intensive aquaculture systems would lead to various 
adverse effects on the environment. These effects might include:

• increased release of nutrients, which leads to eutrophication of 
coastal waters85–88;

• shortage of drinking water resources as a result of release of 
toxic chemicals, including ammonia (NH3) and nitrite (NO2) from 
aquaculture, especially in intensive systems of fish culture89;

• reduction of wild-fish supplies which can affect the ecosystem 
through large input of wild-fish feed used in feeding carnivorous 
species, and also habitat modification for some aquaculture 
systems90;

• competition for land and disturbance of wild ecosystems from 
escaped farmed fish91; 

• pollution from drug residues used in the prevention and treatment 
of diseases in aquaculture can lead to a change in biodiversity92; 
and 

• environmental concerns from the use of chemicals (including 
antifoulants, vitamins) and the introduction of new genetic strains 
and pathogens. Cleaning of fouled cages can also add to the 
organic loading of the water.84

Microbial nitrification and denitrification are reactions common in 
aquaculture systems, which lead to the release of nitrous oxide 
(N2O), a major greenhouse gas with 310 times more global warming 
potential than CO2 over a lifespan of 100 years (Figure 1). Nitrous oxide 
destroys the ozone and has a lifespan of 114 years. It is estimated that 
aquaculture N2O emissions will contribute roughly 5.72% anthropogenic 
N2O-N emissions by 2030 if aquaculture maintains the current annual 
development rate of about 7.10%.45

Source: Reproduced with permission from Hu et al.45

Figure 1: Nitrous oxide (N2O) emissions from aquaculture. 
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Benefits of utilising microalgae in FFW nutrient recovery
The use of algae for nutrient removal, especially nitrogen and 
phosphorus, has been demonstrated and has numerous advantages. 
These advantages include:

• low operating costs30,54,89 by saving money for the purchase of 
exogenous nutrients such as potassium phosphorus and sodium 
nitrate;

• saving of freshwater resources89;

• a suitable growth material with high tolerance89;

• pollutant conversion and effluent conversion to clean water93;

• extra income when economic important species are used87;

• increased productivity by eliminating pollutant nutrients84; and

• recycling nitrogen and phosphorus trapped in algae biomass as 
fertiliser avoids problems of sludge handling and oxygenated 
effluent discharge into the receiving water body.54

The use of algae for nutrient removal is not environmentally dangerous as 
it follows the principles of the natural ecosystem and also does not lead 
to secondary pollutants as long as the biomass produced is reused.94 
Furthermore, the process is attractive for the treatment of secondary 
sludge as it has no carbon requirement for nitrogen and phosphorus 
removal.54 Moreover, the use of wastewater from agricultural, industrial, 
and municipal activities can provide a sustainable and cost-effective 
means of cultivating algae for biofuels.37 An alternative to synthetic 
fertiliser and eliminating the traditional use of synthetic fertilisers in 
the mass cultivation of algae is beneficial because of the rising prices 
of crude oil.95 The use of residual nutrient and nutrient recycling can 
overcome the high cost of algae biomass production – a major 
drawback in algae biotechnology for biodiesel production.96 Cultivation 
of microalgae also benefits the fish farmer by savings associated with 
the treatment of aquaculture wastewater before discharge, reducing 
demand for fresh water, and supplying algae biomass fish feed for the 
cultivation of fish.97

Microalgae cultivation in FFW
Recently, studies using FFW have been carried out for different 
purposes.97–106 Most of the studies98–100,102,105 focused on the growth 
rate of algae in aquaculture wastewater, the rate of nutrient removal, 
the effect of aquaculture wastewater on algae composition, enhancing 
microalgae harvesting through bioflocculation by co-cultivation of 
microalgae with fungus and feed production. A few studies97,101,103,104 
determined the lipid content of the microalgae grown in FFW while fewer 
studies97 went further to determine the fatty acid composition of the lipid 
accumulated. Enwereuzoh et al.106 determined the quality of biodiesel 
from the FAME obtained from microalgae cultivated in FFW. However, 
most of the studies reviewed characterised the FFW used, determined 
biomass yield, and nutrient removal.

The characteristics of the FFW (Table 5) specific growth rate, biomass 
yield, biomass productivity, and lipid content (Table 6) are provided. All 
the studies utilising FFW for microalgae cultivation agree that FFW has 
sufficient nutrients to support microalgae cultivation. The concentration 
of nutrients in FFW were 0.48–433 mg/L for ammonia, 0.13–157 mg/L 
for nitrate, 0.14–28 mg/L for nitrite and 0.42–16.9 mg/L for phosphorus. 
These ranges are lower than concentrations obtained in standard growth 
media. For instance, the higher range of 157 mg/L obtained in FFW is 
only about 10% of the concentration of nitrate in both BG11 and Modified 
Allen’s media and 62.8% in Bold’s Basal standard media (Table 3). The 
lower biomass yield and productivity obtained in FFW when compared to 
the yield obtained in standard growth media have been attributed to the 
lower concentrations of nutrients in FFW.100 

In this review, the highest biomass yield of 2.96 g/L and biomass 
productivity of 160.96 mg/L/d were obtained in Ankistrodesmus 
falcatus – cultivated in FFW with 5.32 mg/L ammonia, 40.67 mg/L 
nitrate and 8.82 mg/L phosphorus – are lower than the biomass yield 
and productivity obtained in the same species cultivated in standard 
growth media.104 Biomass yield and productivity in the same study 

increased with increased supplementation of nutrients. These findings 
also confirm that nutrients in FFW support the growth of microalgae 
but are not sufficient for comparable biomass yield and productivity 
obtained with standard growth media. The high biomass productivity 
of Ankistrodesmus falcatus obtained in FFW cultivation may suggest 
that the species be included in future studies aimed at high biomass 
productivity with FFW. Most studies utilising FFW for cultivation have 
focused on Scenedesmus sp. and Chlorella sp.

Microalgae utilised nutrients in FFW for growth and accumulation of 
biochemical compounds and biomass production. The accumulation 
of more lipids by Scenedesmus obliquus, Chlorella sorokiniana and 
Ankistrodesmus falcatus cultivated in FFW104 and in most species 
cultivated in FFW97 when compared to the lipid content of the same 
species in standard growth media suggest that FFW is more desirable 
for cultivating microalgae for improved lipid content. The nutrient load 
of FFW reduced significantly after microalgae cultivation, indicating the 
suitability of the use of microalgae in the removal of nutrients in FFW. 
Nutrient removal efficiencies of up to 80% were recorded in studies in 
which nutrient removal was determined. In studies using Scenedesmus 
obliquus, Chlorella sorokiniana and Ankistrodesmus falcatus, nutrient 
removal of 98.21% of ammonia, 80.85% of nitrate and 100% of 
phosphate was obtained.104

Additionally, FFW supported the accumulation of desirable fatty acid 
methyl esters in cultivated Tetradesmus obliquus, Heterochlorella 
luteoviridis and Chlamydomonas reinhardtii.106 Better biodiesel properties 
were produced in Chlamydomonas reinhardtii cultivated in FFW than in 
standard growth media, and comparable biodiesel properties to those 
in standard growth media were produced in Tetradesmus obliquus and 
Heterochlorella luteoviridis in FFW. Ankistrodesmus falcatus had the 
highest biomass yield and productivity, but not the highest lipid content 
(25.2%), with Chlorella sorokiniana (31.85%) and Scenedesmus 
obliquus (30.85%) both accumulating more lipids. This makes Chlorella 
sorokiniana and Scenedesmus obliquus better producers of lipids, which 
is required for biodiesel production. Both species, when cultivated in 
FFW, have shown comparable biodiesel properties to the same species 
cultivated in standard growth media.

Conclusion
With an increasing world population and increased dependence on 
aquaculture for fish supplies, fish farm effluents are expected to grow. 
These effluents could provide nutrients for microalgae cultivation. 
Several studies have shown that the cultivation of microalgae in 
aquaculture wastewater is suitable for microalgae growth and biomass 
productivity coupled with efficient nutrient removal. The replacement of 
inorganic fertilisers with nutrient-rich fish farm effluent would eliminate 
the cost of purchasing fertiliser. This should lead to cheaper cultivation 
of microalgae biomass production for biodiesel production. When high 
costs – one of the major setbacks of algae biotechnology – are eliminated, 
the potential of microalgae biodiesel will be enhanced. Fish farm effluent 
nutrient recycling for microalgae cultivation for biodiesel production will 
at the same time eliminate numerous negative environmental effects 
associated with nutrient-rich effluent discharge to the environment, while 
also reducing the volume of water used.
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