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Abstract

In this work, an alternative plant-wide control design approach based on oversizing analysis is presented.

The overall strategy can be divided in two main sequential tasks: 1- defining the optimal decentralized

control structure, and 2- setting the controller interaction degree and its implementation. Both problems

represent combinatorial optimizations based on multi-objective functional costs and were solved efficiently

by genetic algorithms. The first task defines the optimal selection of controlled and manipulated variables

simultaneously, the input-output pairing, and the overall controller dimension in a sum of square deviations

context. The second task analyzes the potential improvements by defining the controller interaction degree

via the net load evaluation approach. In addition, some insights are given about the feasibility (imple-

mentation load) of these control structures for a decentralized or centralized framework. The well-known

Tennessee Eastman (TE) process is selected here for sake of comparison with other multivariable control

designs.
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1. Introduction

Plant-wide control (PWC) design is a very important topic in industrial process control. In general it

involves the selection of controlled and manipulated variables (CVs and MVs), input-output pairing, the

definition of the controller structure, tuning, etc. The solution to these problems will define (restrict) the

future operability degree for the plant under study. In fact, both investment and operating costs can be

seriously affected if the plant-wide control problem is not solved properly (Downs and Skogestad, 2011;

Yuan et al., 2011b; Sharifzadeh and Thornhill, 2012). The best PWC design must be able to meet all the

outlined process objectives and use the minimum number of control loops, i.e. a parsimonious CVs and

MVs selection.

It is clear that some systematic and generalized approach is required for quantifying the optimal solutions

to topics stated previously. Note that, the problem size quickly becomes intractable when the process

dimension increases, i.e. exhaustive search is unpractical. On the other hand, any holistic approach to solve

the PWC problems requires several knowledge bases with different insights which shows the complexity of

an unified (all in one) methodology (Downs and Skogestad, 2011).

There are some approaches for addressing these problems almost systematically and covering the broad

spectrum from strategies based on purely heuristic/engineering judgment (Buckley, 1964; Luyben et al.,

1998) to optimization routines. General topics involved in these proposals include stability and/or control-

lability assessments (Yuan et al., 2011a,b), input-output pairing problems (Bristol, 1966; Chang and Yu,

1990; McAvoy et al., 2003; He et al., 2009; Assali and McAvoy, 2010), operating cost and self-optimizing

(Skogestad, 2000; Alstad and Skogestad, 2007; Downs and Skogestad, 2011), performance and/or robustness

indicators (Grosdidier et al., 1985; Skogetad and Morari, 1987; Skogestad and Postlethwaite, 2005), and

deviation-based indexes or some combination of these into a multi-objective criteria (Downs and Skogestad,

2011; Sharifzadeh and Thornhill, 2012). Usually, the suggested design framework considers all possible de-

grees of freedom in a classical control structure (centralized/full or decentralized/diagonal). A good review

of some relevant techniques and comparisons can be found in previous works of the author: Molina et al.

(2011); Zumoffen et al. (2010, 2011); Zumoffen and Basualdo (2012); and two excellent books as Skogestad

and Postlethwaite (2005) and Khaki-Sedigh and Moaveni (2009).

In this article, an alternative methodology for PWC design based on oversizing analysis is presented. In

fact, this methodology, called extended minimum square deviations (extended MSD), complements signifi-

cantly the approaches suggested in Molina et al. (2011) and Nieto Degliuomini et al. (2012) via a simultaneous

CVs and MVs parametrization. On the other hand, the work recently appeared (succinct) in Zumoffen and

Basualdo (2012) is extended here by adding a complete controller interaction degree analysis, a genetic

algorithms (GA)-based representation, and several controller synthesis evaluations. The overall procedure

is based on a multi-objective optimization (combinatorial) framework by accounting the sum of square de-
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viations (SSD) index in the presence of setpoint changes and disturbances. Initially, the simultaneous CVs

and MVs selection is performed based on the SSD evaluation for uncontrolled variables (UVs). The original

control requisites from process engineering, as well as the degrees of freedom, are parameterized suitably into

the combinatorial problem to perform an oversizing analysis along several PWC designs with different di-

mensions. The second part of the proposed sequential algorithm relies on the so-called controller interaction

design via the net load evaluation (NLE) index. This approach also represents a multi-objective combinato-

rial problem and gives valuable information about the controller interaction degree (diagonal, sparse, or full)

for a servo/regulator trade-off solution as well as the implementation load for internal model control (IMC)

or model predictive control (MPC) contexts. All the combinatorial problem formulations are solved via GA

due to the following two reasons: 1- they provide the optimal and suboptimal set of solutions (Chipperfield

et al., 1994; Molina et al., 2011) and 2- they are less prone to getting trapped in local optima (Sharifzadeh

and Thornhill, 2012). Although the overall strategy is not a holistic approach, it has some systematic and

generalization degree by minimizing the heuristic considerations. The suggested methodology is tested on

the well-known Tennessee Eastman (TE) process giving a complete set of dynamic simulations, performance

indexes and required hardware resources for sake of comparison with other multivariable control designs

(McAvoy and Ye, 1995; Ricker, 1996; Larsson et al., 2001; Banerjee and Arkun, 1995; Molina et al., 2011).

The paper is organized as follows: Section 2 presents the proposed extended MSD methodology. Subsec-

tion 2.1 analyzes the optimal CVs and MVs selection based on SSD criterion. Subsection 2.2 complements

the above procedure addressing the controller interaction degree analysis via NLE. These sections define

various combinatorial problems which need to be solved efficiently. In this context, Section 3 summarizes

some backgrounds about the GA procedure and the problem representation used in this case. Section 4

shows the case study suggested to check the performance of the extended MSD approach. The main results

are displayed in this section. Conclusions of the work are stated in Section 4 and some additional information

about modeling and tuning are presented in Appendix.

2. Extended MSD methodology

Let’s consider a stable industrial process, P, with m potential controlled variables (CVs), n available

manipulated variables (MVs) and p disturbance variables (DVs). Considering a plant model based on

transfer functions matrix (TFM), G(s) and D(s), with dimension (m × n) and (m × p) respectively, the

process can be partitioned as shown in eq. (1). Here, q ≤ min(m,n) represents the number of variables

which should be controlled (a subset of potential CVs).

y(s) = G(s)u(s) + D(s)d(s) =

 ys(s)

yr(s)

 =

 Gs(s) G∗
s(s)

Gr(s) G∗
r(s)

 us(s)

ur(s)

+

 Ds(s)

Dr(s)

d(s) (1)

The subsystems and signals involved in eq. (1) have the following description: Gs(s) is the square q× q
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Figure 1: Generalized IMC structure

subprocess to be controlled, G∗
s(s), Gr(s), G∗

r(s), Ds(s) and Dr(s) are remaining matrices with dimension

q × (n − q), (m − q) × q, (m − q) × (n − q), q × p and (m − q) × p respectively. On the other hand, u(s)

and d(s) represent the input and disturbance vectors respectively. Note that, us(s) (q × 1) are the selected

MVs subset for controlling the output variables subset ys(s). In this work the remaining input variables

called ur(s) ((n− q)× 1) are not used for control purposes, i.e. they are fixed. Vector yr(s) groups together

the so called uncontrolled variables (UVs). Thus, the CVs and UVs subsets are represented via Ps and Pr

subprocesses respectively as shown in Fig. 1.

Henceforth, the steady-state operation is represented without the Laplace variable s, i.e Gs(s = 0) = Gs.

Considering the internal model control (IMC) theory and steady-state perfect control (ys = ysp
s ), the

following relationships can be stated,

us = G−1
s ysp

s −G−1
s Dsd−G−1

s G∗
sur

yr = GrG
−1
s ysp

s +
(
Dr −GrG

−1
s Ds

)
d +

(
G∗

r −GrG
−1
s G∗

s

)
ur

(2)

where yr consider the UVs deviations from their nominal working points when set points and disturbances

changes were considered (Fig. 1). It is important to note that partitioning in eq. (1) and eq. (2) are

function of “q”, i.e. the number of variables to be controlled which also defines the “controller size”.

In this context, some questions appear: What is the minimum q to fulfill the control requirements?, Is

it necessary to use all the available MVs?, What are the additional CVs?, and MVs?. The answers are

non trivial and require a previous analysis about the potential plant-wide control scenarios and the problem

formulation in each case.
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Figure 2: Plant-wide control alternatives

2.1. Optimal CVs and MVs selection

The potential multivariable control alternatives are defined by the process dimension, m, n, p, and

the control requisites, q = qo + qa. It is worth to perform here the following explanations: the original

process is stable or stabilized (inventory control is not addressed by the extended MSD approach) and qo is

the number of output variables which must be controlled “indefectibly”. The latter represents the process

engineering requirements, i.e. production rate, product quality, etc. On the other hand, qa is the number

of additional output variables which “could/should” be controlled in order to complete the multivariable

controller configuration. In this context, the potential plant-wide control alternatives are divided into four

cases (I to IV) as shown in Fig. 2. Each scenario requires a particular approach for solving the original

problem.

Let’s consider the binary decision variables, cc and cm, which parameterize the CVs and MVs subset

selection respectively, then the PWC problem can be defined via a combinatorial one. Henceforth, A(ci)

represents a particular selection of the steady-state matrix A with the parametrization variable ci and || · ||F
is the Frobenius norm for matrices. Section 3 summarizes some details about the parametrization and

solution based on GA. Before presenting the “extended MSD methodology”, which improves and generalizes
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the basic approach stated in Molina et al. (2011), it is important to analyze the PWC alternatives shown in

Fig. 2 (remember q = qo + qa):

Case I: Optimal MVs Selection. Here, all potential outputs need to be controlled (q = m and m < n),

so Gr = G∗
r = 0 and all entries in cc are one. In this case, the combinatorial problem dimension results

n!/(q!(n− q)!). The functional cost used here is the sum of square deviations (SSD) on MVs from eq. (2):

SSDus(cm) = ||Gs(c
m)−1||2F + ||Gs(c

m)−1Ds(c
m)||2F (3)

Case II: Optimal MVs and CVs Selection. In this case, q < min(m,n) and the problem dimension

results [(m− qo)!/(qa!(m− q)!)][n!/(q!(n− q)!)]. Here, the SSD index on UVs is used to drive the search,

SSDyr
(cc, cm) = ||Gr(cc, cm)Gs(c

c, cm)−1||2F + ||Dr(cc, cm)−Gr(cc, cm)Gs(c
c, cm)−1Ds(c

c, cm)||2F (4)

Case III: Optimal CVs Selection. Here, all potential MVs are used for control purposes (q = n and m >

n), so G∗
s = G∗

r = 0 and all entries in cm are one. In this case, the combinatorial problem dimension results

(m − qo)!/(qa!(m − q)!). Again here, the functional cost is the SSD index on UVs but only parameterized

with cc:

SSDyr (cc) = ||Gr(cc)Gs(c
c)−1||2F + ||Dr(cc)−Gr(cc)Gs(c

c)−1Ds(c
c)||2F (5)

Case IV: There are no possible combinations. Direct pairing based on relative gain array (RGA) or

similar approaches is used.

In fact, case III represents the design scenario used by the classical MSD approach presented opportunely

in Zumoffen et al. (2010, 2011) and Molina et al. (2011). In these works some useful properties about the

minimization of SSDyr
(cc) were analyzed.

The extended MSD methodology is displayed in Algorithm 1 and it groups together all cases, from I to

IV, in a single layout. Note that, for 0 ≤ qa ≤ min(m,n) − qo, Algorithm 1 gives a complete overview of

the potential plant-wide decentralized control structures. In fact, for each qa, selected by the designer, the

extended methodology provides an optimal decentralized control structure by selecting the CVs and MVs

subsets and the corresponding input-output pairing.

Note that, eqs. (3),(4), and (5) can be augmented with diagonal weighting matrices, Λ1 and Θ1, for

including the process control objectives such as set point/disturbance magnitudes (useful when the process

models is not normalized or scaled), and Λ2 and Θ2 weighting the relative degree of importance among the

overall outputs. For example, the weighted version of eq. (5) results

SSDyr (cc) = ||Λ2Gr(cc)Gs(c
c)−1Λ1||2F + ||Θ2(Dr(cc)−Gr(cc)Gs(c

c)−1Ds(c
c))Θ1||2F .

2.2. Sparse controllers: improvements via NLE

If the problem stated in Section 2.1 is solved efficiently, then the subprocess Gs(s) and the corresponding

decentralized input-output pairing are already defined. The problem to be addressed now is the controller

6
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Algorithm 1: Extended MSD methodology

Data: G, D, m, n, original control requisites qo
Result: Gs, RGA, decentralized pairing, model parametrization Γ

1 for qa = 0 to min(m,n) − qo do
2 q = qo + qa;
3 case = f(m,n, q);
4 switch case do
5 case I “Optimal MVs Selection”
6 mincm [SSDus(cm)];
7 endsw
8 case II “Optimal MVs and CVs Selection”
9 min(cc,cm) [SSDyr (cc, cm)];

10 endsw
11 case III “Optimal CVs Selection”
12 mincc [SSDyr (cc)];
13 endsw

14 endsw
15 Save: cc and cm for each qa;

16 RGA = Gs(cc, cm) ⊗
(
Gs(cc, cm)−1

)T
;

17 end
18 Analyze “min(m,n) − qo + 1” optimal decentralized control structures;
19 Evaluate potential improvements via NLE for selected (qa) control policy;
20 minΓ [NLE(Γ)];

structure design (lines 19 and 20 in Algorithm 1). In fact, note that the controller structure may be diagonal

(decentralized/without interaction), full (centralized/full interaction) or sparse (partial interaction).

Considering again Fig. 1, the controlled outputs can be represented as

ys(s) = G̃s(s)Gc(s)y
sp
s (s) +

(
I− G̃s(s)Gc(s)

)
ynet
s (s), (6)

with

ynet
s (s) = A(s)ysp

s (s) + B(s)d∗(s) (7)

where A(s) = f(Gs(s), G̃s(s),Gc(s)) and B(s) = g(Gs(s), G̃s(s),Gc(s)) are the net load matrices with

specific structure. B(s)d∗(s) is the so called net load effect (Chang and Yu, 1992) and ynet
s (s) the augmented

form considering references and disturbances changes (Nieto Degliuomini et al., 2012). In the latter work

only a “sparse suboptimal control policy” was evaluated in a decentralized context.

There are two ways to avoid the adverse effects of ynet
s (s) on ys(s): 1- to adjust the controller tuning

for fast responses ((I − G̃s(s)Gc(s)) → 0 quickly) or 2- to minimize the multivariable gain of ynet
s (s) at

steady state. The former is limited by stability and robustness issues. The second option is selected here

and depends on the plant-model mismatch adopted. In fact, at steady state, the net load matrices reduce

to A = I− G̃sG
−1
s and B = G̃sG

−1
s Ds, respectively. From eq. (7) it is clear that if G̃s = Gs (if full IMC

controller is used) then A = 0 and B = Ds, so changes in the references do not affect ynet
s (s) (and therefore

the CVs) but, in contrast, disturbances are not attenuated.

7
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A specific process model selection, G̃s(Γ), could generate a trade-off solution between servo and regulator

behaviors by minimizing a new scalar index called net load evaluation, NLE(Γ) = ||ynet
s (Γ)||2F in a SSD sense.

In this context, the combinatorial problem can be stated as follows,

min
Γ

NLE(Γ) = min
Γ

[
‖∆2(I− G̃s(Γ)G−1

s )∆1‖2F + ‖Ξ2G̃s(Γ)G−1
s DsΞ1‖2F

]
(8)

subject to

G̃s(Γ) = Gs ⊗ Γ

Re
[
λi

(
GsG̃s(Γ)−1

)]
> 0, with i = 1, . . . , q

(9)

where Γ is a binary parametrization matrix for selecting specific parts of Gs, “⊗” is the element-by-element

product, and the inequality in eq. (9) is the stability/robustness criterion developed by Garcia and Morari

(1985) for multivariable control structures based on IMC theory. Re[·] is the real part function and λi(·) is

the i-th eigenvalue. Again here, ∆1, ∆2, Ξ1 and Ξ2 are diagonal weighting matrices which allow to define

the process control objectives according to their relative importance in the system, in particular when the

process model used is not normalized. The optimization defined in eq. (8) has 2(q×q) potential solutions.

According to the problem size, this minimization can be done by exhaustive search or implementing some

mixed-integer optimization routine (deterministic or stochastic). Additional details about the approach used

to solve the combinatorial problem are given in the following section.

3. Solution via genetic algorithms

The number of potential solutions in the problems defined in Sections 2.1 and 2.2 increase suddenly with

the size of the system. Indeed, a purely heuristic approach quickly becomes impractical (Yuan et al., 2011b;

Sharifzadeh and Thornhill, 2012). A methodology based on genetic algorithms (GA) is selected here to

solve these problems for the following two reasons: 1- it provides an optimal and suboptimal set of solutions

(Chipperfield et al., 1994; Molina et al., 2011) and 2- it is less prone to getting trapped in local optima

(Sharifzadeh and Thornhill, 2012). Genetic algorithms are defined as stochastic global search methods

which mimic natural biological evolution. Thus, the individuals are merged, mate, and mutate along the

generations in order to find the best population according to some particular fitness function (environment).

Specific details about how these algorithms can be used to solve combinatorial problems (parametrization

and tuning) can be found in Zumoffen and Basualdo (2010) and Molina et al. (2011).

Each individual, ci = [c1i , c
2
i , . . . , c

nc
i ], is represented with a particular alphabet which parameterizes the

decision variables. In this case, cji belongs to the binary alphabet (0 or 1) indicating the absence or presence

of the signal j, being nc the individual length. The following parametrization is particularly useful to solve

the optimization problem stated in Section 2.1,

ci = [cci , c
o
i , c

m
i ] (10)

8
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with

cci =
[
cc1i , c

c2
i , . . . , c

c(m−q0)
i

]
, coi =

[
co1
i , c

o2
i , . . . , c

cq0
i

]
, cmi =

[
cm1
i , cm2

i , . . . , ccni
]

(11)

where cci and cmi are the decision variables parametrization for selecting the CVs and MVs subsets respec-

tively. On the other hand, the original control requisites are included in the vector coi , which is not used as

decision variable, but has a direct influence on the functional cost. Vectors in eq. (11) have the following

lengths: m− q0, q0, and n, respectively. Hence nc = m− q0 + n.

Without loss of generality, let us consider case II, which is the most complex of the scenarios considered.

For each qa ∈ [0,min(m,n)− qo] the optimization problem stated in eq. (12) must be solved subject to the

constraints in eq. (13). Note that Gs, Gr, Ds, and Dr are functions of the parametrization ci = [cci , c
o
i , c

m
i ].

min
(cc

i ,c
m
i )
SSDyr (cci , c

o
i , c

m
i ) (12)

subject to

||cci ||1 = qa, ||cmi ||1 = qa + qo, det(Gs) 6= 0 (13)

Restrictions in eq. (13) guarantee the invertible square subprocess selection of q × q, called Gs. Note

that || · ||1 is the 1-norm for vectors, i.e. the sum of the absolute values.

For addressing the problem stated in Section 2.2 it is necessary the following considerations: 1- perform

a decentralized pairing for the selected Gs, 2- reorder Gs for diagonal pairing, and 3- use this diagonal

control structure as a starting point for the NLE approach. Then, the parametrization shown in eq. (14) is

useful for solving the optimization problem stated in eqs. (8) and (9),

G̃s(Γi) = Gs ⊗ Γi = Gs ⊗


1 c1i · · · cq−1

i

cqi 1 · · · c
2(q−1)
i

...
...

. . .
...

c
(q−1)(q−1)+1
i · · · c

q(q−1)
i 1

 (14)

where cNLE
i = [c1i , c

2
i , . . . , c

nc
i ] is the individual representation in this case with nc = 2(q×q)−q. Thus, the

NLE approach defines the best controller interaction level by selecting (or not) specific off-diagonal elements

in the process model, considering the decentralized structure as a base case (Zumoffen et al., 2011; Nieto

Degliuomini et al., 2012).

In this context, it is also useful to know how the NLE index evolves/degrades when the individual

parametrization is constrained to take fewer controller components with respect to the optimal solution.

Thus, if the best solution (cNLE
op ) to the problem stated in eqs. (8), (9), and (14) presents nop additional

9
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Table 1: TE process variables
no. Inputs var. no. Outputs var.
u1 D Flow [kg/h] XMV (1) y1 Recycle flow [kscmh] XME(5)
u2 A Flow [kg/h] XMV (3) y2 Reactor flow [kscmh] XME(6)
u3 A/C Flow [kscmh] XMV (4) y3 Reactor temp. [oC] XME(9)
u4 Compressor rec. valve [%] XMV (5) y4 Separator temp. [oC] XME(11)
u5 Purge valve [%] XMV (6) y5 Separator pressure [kPa] XME(13)
u6 Stripper steam valve [%] XMV (9) y6 Stripper pressure [kPa] XME(16)
u7 RCWO temp. set point [oC] XME(21)sp y7 Stripper temp. [oC] XME(18)
u8 CCW Flow [m3/h] XMV (11) y8 Compressor work [kW] XME(20)
no. Disturbances var. y9 Reactor pressure [kPa] XME(7)
d1 Composition stream 4 (A/C) IDV (1) y10 Production rate [m3/h] XME(17)
d2 Composition stream 4 (B) IDV (2) y11 B comp. purge [mol%] XME(30)

y12 G/H comp. ratio XMEG/H

off-diagonal elements, now the problem can be redefined as

for k = 1 to (nop − 1)

min
Γi

NLE(Γi)

subject to

G̃s(Γi) (eq. 14)

Re
[
λj

(
GsG̃s(Γi)

−1
)]

> 0, with j = 1, . . . , q

||cNLE
i ||1 ≤ k

end

(15)

and a complete NLE profile from decentralized to full control structures is obtained.

4. Case study: Tennessee Eastman process

The Tennessee Eastman (TE) process is a well-known benchmark simulation case from the process control

community for testing new developments. In this section, only basic details are given about the process (see

Downs and Vogel (1992) and Molina et al. (2011)). The TE process is open-loop unstable, so a stabilizing

control structure is required before applying the extended MSD methodology. In this paper, the stabilizing

control policy opportunely suggested by McAvoy and Ye (1995) is adopted, which consists of flow (inner)

and level (cascade) controllers for the reactor, the separator, and the stripper units. Table 1 summarizes

the remaining CVs and MVs. In this case, m = 12 outputs and n = 8 inputs (case II, Fig. 2). In addition,

IDV (1) and IDV (2) disturbance scenarios are considered for the extended MSD approach, i.e. p = 2. These

perturbations represent composition changes in the fresh feed entering to the stripper unit. The normalized

steady-state model used here is shown in Table 2.

Considering the original control requisites, stated by Downs and Vogel (1992), it is required to control

the following variables: y9, y10, y11 y y12 (gray background in Table 1), which means that qo = 4 and 0 ≤

qa ≤ min(m,n)− qo = 4. In this context, there are “max(qa) + 1 = 5” optimal multivariable servo/regulator

10
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Table 2: Normalized steady-state process model
G D

u1 u2 u3 u4 u5 u6 u7 u8 d1 d2

y1 -0.39 -0.03 -0.12 0.07 -0.13 -0.03 0.78 -0.08 0.59 0.55
y2 -0.37 -0.01 0.10 0.10 -0.13 -0.03 0.70 -0.09 0.65 0.50
y3 0.27 0.03 0.60 -0.09 0.04 0.06 -0.78 0.01 -1.02 -1.05
y4 0.38 0.07 0.22 -0.11 0.08 0.04 -0.80 -0.04 -0.95 -1.09
y5 -0.44 -0.13 0.43 0.10 -0.21 0.01 0.56 -0.05 0.98 1.09
y6 -0.44 -0.13 0.44 0.08 -0.21 0.01 0.55 -0.05 0.98 1.09
y7 0.38 0.06 0.23 -0.10 0.08 0.10 -0.79 -0.08 -0.97 -1.08
y8 -0.38 0.04 -0.01 0.20 -0.11 -0.04 0.78 -0.14 -1.29 0.97
y9 -0.44 -0.13 0.43 0.10 -0.21 0.01 0.56 -0.05 0.99 1.09
y10 -0.02 0.03 0.70 -0.02 0.02 0.02 -0.11 -0.00 -0.20 -0.06
y11 0.44 0.01 0.26 -0.13 -0.19 0.01 -0.84 0.06 -1.04 1.07
y12 0.60 -0.03 -0.53 0.03 -0.01 -0.01 -0.00 -0.01 0.56 0.09

control structures with dimensions: (4 × 4), (5 × 5), (6 × 6), (7 × 7), and (8 × 8). In this case, the overall

combinatorial problem dimension is 216 = 65536 with only 1820 feasible solutions. For avoiding the heuristic

evaluation of all these solutions, the extended MSD approach (GA parameterized with eqs. (12) and (13))

is applied here for obtaining the optimal selection of CVs and MVs. The GA setting is shown in Table 3,

where the following parameters were defined: initial population (ni), number of generations (ng), crossover

probability (pc), mutation probability (pm), individual length (nc), selection and crossover methodologies,

weighting matrices, and the number of additional control loops (qa).

Table 4 displays the optimal solutions, [ccop, c
o, cmop], to the problem stated previously for each qa. Note

that, coi = [1, 1, 1, 1] is fixed for variables y9, y10, y11, and y12 (Table 1) according to the original control

requisites. Extreme cases called qa = 0 and qa = 4 represent the optimal selection of MVs and CVs

alone respectively. Intermediate cases qa = 1, 2, 3 constitute a simultaneous MVs and CVs combinatorial

problem. The functional cost profiles, SSDyr(cci , c
m
i ), are shown in Fig. 3. For improving the visualization

a logarithmic scale is used. Note that, when qa increases the achievable SSD index value decreases. In fact,

when the dimension (q = qo + qa) of the control structure increases, the number of UVs decreases (m− q).

On the other hand, the RGA-based decentralized input-output pairings for each optimal solution qa are

shown in Table 5.

It is worth mentioning, that the dimension of the final control policy is (v + q) × (v + q) with v being

the number of stabilizing control loops. In this case, v = 7, qo = 4, and qa = 0, 1, 2, 3, 4, which generate five

optimal control structures with size (11 × 11), (12 × 12), (13 × 13), (14 × 14), and (15 × 15) respectively.

Note that, the overall PWC problem was reduced from 1820 feasible solutions to testing only 5 optimal

decentralized policies. These latter alternatives are dynamically evaluated (servo and regulator) under the

most challenging scenarios suggested by Downs and Vogel (1992): A- Set point changes for XME(7),

XME(17), XME(30), and XMEG/H (called here sp1, sp2, sp3, and sp4), and B- Disturbances: IDV 1,

IDV 2, IDV 4, IDV 8, and IDV 12/IDV 15 simultaneously (called here d1, d2, d3, d4, and d5).

Figure 4 summarizes the normalized integral absolute tracking error (IAE) for the main process variables

11
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Table 3: GA parameter settings for CVs and MVs optimal selection
ni ng pc pm nc Selection Crossover Λ1,Λ2,Θ1,Θ2 qa
500 60 0.7 0.7/nc 16 roulette-wheel double-point equally-weighted [0, 4]

Table 4: Optimal CVs and MVs selection
ccop co cmop

qa y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 u1 u2 u3 u4 u5 u6 u7 u8

0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 1 0
1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 1 0
2 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0
3 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1
4 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(original control requisites) and the process operating cost for each control structure under the nine scenarios

mentioned previously. From Figs. 4(a) to 4(e) the following observations can be made:

A- The smallest control structure, (11×11), does not have an appropriate behavior because it violates the

high pressure limit for d1. The remaining structures, (12×12) to (15×15), fulfill all the specifications.

B- The IAE decreases when the controller size increases, only for d5. Figures 4(a) to 4(d) show that IAE

for the structures (12× 12) to (15× 15), under scenarios sp1 to d4, remain quite similar.

C- Figure 4(e) shows that the operating cost increases with the control structure dimension for cases sp1,

sp2 and sp4. For scenarios sp3, d1, d2, d3, and d4 the operating costs have practically the same IAE.

D- Hence, the best solution to avoid a plant-wide control oversizing is the optimal control structure

(12 × 12), which presents a suitable trade-off between dynamic performance and operating cost as

shown in Fig. 5.

Figure 5 shows the pareto profile for the mean normalized IAEs from Figs. 4(a) to 4(d) versus the

mean normalized cost from Fig. 4(e) for each feasible control structure and considering all the simulation

scenarios. The (12 × 12) control structure improves the operating cost about ≈ 10.2% and resigns ≈ 16%

in the overall mean performance.

On the other hand, Table 6 shows a comparison of the hardware requirements among different control

structures proposed in the literature. While all these control policies fulfill the main objectives, there are

significant differences related to the number of measured variables, control loops and composition measure-

ments needed. Therefore, the configuration (12× 12) (or qa = 1 in Table 4) is proposed here as the optimal

decentralized plant-wide control structure for the TE process.

The next step in the extended MSD approach (lines 19 and 20 in Algorithm 1) is the analysis of potential

improvements via the NLE methodology. In fact, the controller interaction degree (decentralized, sparse or

full) for servo-regulatory control loops can be evaluated and defined. Considering the previously selected

control policy with dimension (12 × 12) (5 servo/regulatory + 7 stabilizing control loops) the procedure

stated in eqs. (8), (9), and (15) is applied here. Note that, the combinatorial problem dimension is

12
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Figure 3: Functional cost profiles - SSDyr(cci , c
m
i )

Table 5: Decentralized pairings for optimal solutions
Structures - qa

0 1 2 3 4
u1 − y12 u1 − y12 u1 − y12 u1 − y12 u1 − y12

u3 − y10 u2 − y9 u2 − y9 u2 − y9 u2 − y9

u5 − y11 u3 − y10 u3 − y10 u3 − y10 u3 − y10

u7 − y9 u5 − y11 u4 − y8 u4 − y8 u4 − y8

u7 − y8 u5 − y11 u5 − y11 u5 − y11

u7 − y1 u7 − y1 u6 − y7

u8 − y7 u7 − y1

u8 − y4

2(5×5−1) = 220 = 1048576. Initially, the optimal solution cNLE
op is found via GA with ni = 2000, ng = 50,

nc = 20, ∆2 = diag([1, 1, 1, 1, 1]), ∆1 = diag([0, 1, 1, 1, 1]), Ξ2 = diag([1, 1, 1, 1, 1]), and Ξ1 = diag([1, 1]).

The remaining GA parameters are the same as those shown in Table 3. The next procedure, stated in

eq. (15), is the NLE index profile evaluation when individual parametrization is constrained to take fewer

model/controller components with respect to the optimal solution, cNLE
op . The results of these optimization

problems applied to the TE process are shown in Fig. 6. All the NLE profiles are displayed in Fig. 6(a).

The optimal case (�) provides cNLE
op which selects only nop = 14 specific model components with the

structure Γop shown in eq. 16. The remaining profiles represent suboptimal cases with constraints from

||cNLE
i ||1 = 1 to ||cNLE

i ||1 = nop − 1 = 13. Figure 6(b) provides a comparison of the NLE index for several

different model components selections. In fact, any suboptimal-constrained solution (Γi) with fewer/more

components than the optimal one (Γop) degrades its performance until reaching the NLE value corresponding

to the decentralized/full case (Γd/Γf ). Solutions with more components than Γop are not considered here

13
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(a) Reactor pressure (b) Production rate (c) B composition in purge

(d) G/H ratio in product (e) Operating costs

Figure 4: Normalized IAEs - Decentralized control structures

Figure 5: Pareto: Performance / Cost / Control structure size

14
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Table 6: Hardware requirements

Approaches Total Control Composition
Measurements loops Measurements

McAvoy and Ye (1995) 22 22 4
Larsson et al. (2001) 22 17 3
Ricker (1996) 16 19 3
Banerjee and Arkun (1995) 15 16 5
Molina et al. (2011) 15 15 3
Proposed here 12 12 3

because they increase the controller’s complexity without improving the performance. In this case, it is

important to evaluate this complexity when several model parametrizations (Γi) are used in the context of

IMC controller design. Figure 6(c) shows the relationship between the optimal model components selection

and the final number of controller elements. This evaluation allows to define some complexity degree in the

controller design and decide about the implementation policy, i.e. decentralized or centralized. It is clear

that any model parametrization above Γ3 introduces several elements in the controller design which leads

to a complex and tedious design if a decentralized context is considered. For these control structures an

implementation based on MPC policies is more convenient and feasible.

Indeed, eq. 16 summarizes four different model parametrizations which define four multivariable control

structures for the TE process. The decentralized control policy is represented with Γd and it does not consider

additional model components, i.e. a controller without interaction. Selection Γ3 is the sparse suboptimal

control structure by adding only 3 model components, this provides a partially interacting controller with

4 additional off-diagonal elements and designed via IMC concepts. The third plant-wide control policy

considers the optimal model parametrization Γop which generates a strongly interacting sparse controller

with 20 additional off-diagonal components. Finally, the classic full control structure is considered where

Γf gives a complete interaction degree. In the last two cases the controller is implemented via the MPC

philosophy without constraints and the former ones are designed based on a decentralized PID approach.

Γd =



10000

01000

00100

00010

00001


, Γ3 =



10001

01010

00100

00010

00101


, Γop =



10101

11111

11110

10111

10101


, Γf =



11111

11111

11111

11111

11111


(16)

Figure 7 shows the dynamic behavior of the closed-loop TE process (five main variables) when servo-

regulatory control loops are implemented according to eq. 16. Similarly to Fig. 4, the normalized IAE index

was selected here for simplifying the visualization. In fact, several simulation scenarios were suggested by

accounting 4 reference changes (sp1 to sp4), 5 disturbances (d1 to d5) and 4 control structures (eq. 16),

which summarize 36 dynamic responses.
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(a) Optimization profiles (b) NLE index comparison

(c) Model vs controller components

Figure 6: Controller interaction degree - NLE approach

All control structures have similar servo performances. Γop and Γf -based control structures improve the

set point tracking for sp2 and sp4 (Figs. 7(b) and 7(d)), and Γd and Γ3-based ones improve the sp1 and

sp3 (Figs. 7(a) and 7(c)) cases. Servo interaction of sparse and full controllers can be observed clearly in

Fig. 7(a) for the reactor pressure. Although the performance is affected, this degree of interaction is useful

to give a suitable trade-off solution between servo-regulator behaviors. In fact, disturbance d1 is critical

because it produces harmful excursions near the upper operation limit for the reactor pressure. It is clear

that decentralized control (Γd) and sparse suboptimal one (Γ3) are not the best structures for rejecting this

effect (Fig. 7(a)). The optimal sparse multivariable control based on Γop has the best performance for the

disturbance d1, and it improves the behavior for the disturbances d2, d4, and d5. The production rate in Fig.

7(b) has virtually the same performance for all control structures. Similarly to Fig. 7(a), the composition

of B in purge at Fig. 7(c) shows that the Γop-based control structure has significant improvements under
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(a) Reactor pressure (b) Production rate (c) Purge B composition

(d) Product G/H ratio (e) Operating costs

Figure 7: Normalized IAEs - Control structures based on Γd, Γ3, Γop, and Γf

disturbances d1, d2, d4, and d5. The G/H ratio in the product (Fig. 7(d)) displays similar normalized IAE

values for all scenarios. In fact, optimal sparse control improves the sp2, sp4, d2, and d4 cases only. On the

other hand, Fig. 7(e) summarizes the operating costs for all the simulation instances evaluated here. It is

clear that the Γop-based multivariable control structure presents good performance for scenarios sp1, sp2,

d1, d2, and d5, maintaining similar values of the IAE index for the remaining cases.

Summarizing, sparse optimal plant-wide control based on Γop parametrization is selected here because it

provides the best rejection performance for the challenging d1 scenario (Γd and Γ3 have the worst indices).

Moreover, this control structure represents a good trade-off solution for the remaining simulation instances

without degrading the operating costs. Figure 8 shows the TE process layout and both, the decentralized

and centralized control policies. The Γd-based and Γop-based MPC control approaches are displayed in Fig.

8(a) and 8(b) respectively.

Finally, all the simulations and evaluations were performed in a PC with the following characteristics:

Intelr CoreTM i5 3.1 GHz, 3 GB RAM, Matlabr 6.5, and the Genetic Algorithms Toolbox for Matlab

(Chipperfield et al., 1994). The main oversizing analysis (lines 1 to 17) in the Algorithm 1 applied to the
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(a) Decentralized (b) Centralized

Figure 8: TE process and control layouts

TE process takes ≈ 11.1720 seconds to give all the solutions displayed in Table 4.

Conclusions

The extended MSD approach provides a complete evaluation of several multivariable control sizes to

select the optimal CVs and MVs simultaneously, i.e. an overzising analysis. Thus, for example, the PWC

problem suggested by the TE process with 216 potential solutions is reduced to testing the performance of 5

optimal decentralized control policies only. The optimal control structure from this procedure gives a more

consistent framework for applying the NLE approach. In addition, a feasibility (implementation) analysis is

given based on the number of controller components required to be tuned when this parametrization moves

from diagonal to full selection passing through the optimal one. This information supports the decision

about the sparse controller synthesis in the context of decentralized policies (PID) or centralized advanced

structures (MPC). The overall procedure suggested here provides a systematic and generalized methodology

for PWC design, minimizing the heuristic considerations. Additionally, the hypothesis “specific interaction

via Γ-based model parameterizations could improve dynamic performance” was tested also in the MPC

context. Future work will be focused on deepening this last topic.

Note that, for the case study addressed here, the extended MSD provides a (12 × 12) (7 stabilizing

+ 5 servo/regulatory control loops) decentralized plant-wide control structure against the (15 × 15) (7

stabilizing + 8 servo/regulatory control loops) one suggested in Molina et al. (2011). Furthermore, sparse

optimal plant-wide control based on Γop parametrization and MPC is selected here because it provides the

best rejection performance for the challenging d1 scenario and a good trade-off solution for the remaining

simulation instances, without degrading the operating costs.

18
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Table A.7: PI controller tuning based on Γd and Γ3 parametrizations
e8 e9 e10 e11 e12

u7 K11 = 0.2 K13 = 1.1 K15 = 7.8
τ11
i = 2 τ13

i = 2 τ15
i = 2

u2 K22 = −0.2 K24 = 13.8
τ22
i = 10 τ24

i = 10
u3 K33 = 1.5

τ33
i = 1

u5 K44 = −2.7
τ44
i = 2

u1 K53 = 1.4 K55 = 9.5
τ53
i = 1 τ55

i = 1

Table A.8: Reduced and Normalized TE process model - Gs(s) for qa = 1

u7 u2 u3 u5 u1

y8
−0.94

(0.5s+1)
0.13

(s+1)
0.36

(0.5s+1)
−0.12
(s+1)

−0.18
(0.5s+1)

y9
−0.68

(0.5s+1)
(−10s+1)(−0.12)

(10s+1)
0.71

(5s+1)
−0.18
(s+1)

−0.31
(0.5s+1)

y10
0.1

(0.1s+1)
8×10−3

(s+1)
0.6

(0.5s+1)
0.01

(5s+1)
−0.04

(0.5s+1)

y11
0.96

(0.5s+1)
−0.05

(0.5s+1)
−0.10

(0.5s+1)
(−5s+1)(−0.21)

(15s+1)
0.24

(s+1)

y12
−0.02

(0.1s+1)
−9×10−3

(0.1s+1)
−0.56
(2s+1)

(−20s+1)(−0.02)
(15s+1)

0.61
(2s+1)
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AppendixA. Modeling and tuning

Table A.7 shows the tuning parameters used for implementing the decentralized (Γd) and suboptimal

sparse (Γ3) PI-based control structures. These settings are computed based on the IMC theory. The

decentralized control uses the parameters placed diagonally in Table A.7. On the other hand, the Γ3-

based control structure adds four off-diagonal controller components, displayed with gray background, to

the original decentralized one. Note that, ei represents the tracking error between the CV yi and its

corresponding reference. The time and gain units are given according to the Table 1. Table A.8 shows

the reduced and normalized TE process model used here for implementing the MPC structures based on

Γop and Γf . For these cases the tuning parameters are: prediction horizon [hw, hp] = [5, 50] samples,

control horizon hu = 4 samples, prediction error weights [q1, q2, q3, q4, q5] = [1, 1, 1, 1, 1], ∆u penalties

[r1, r2, r3, r4, r5] = [0.15, 0.1, 3, 0.05, 1.7], and sampling time Ts = 5 minutes.

19



Page 20 of 30

Acc
ep

te
d 

M
an

us
cr

ip
t

AppendixB. Comments on reliability

The extended MSD methodology presented here uses scalar functional costs based on a linearized model of

the process under study. In this case, no dynamic implications are considered and only a steady-state model

is required. Obviously, like any model-based control approach (RGA, IMC, MPC, etc), the performance

and confidence of the extended MSD methodology are bounded by the validity zone of the process model

itself. The model may not be valid due to multiple factors and basically if the process model is wrong the

decisions obtained by any model-based methodology also will be unreliable.

The extended MSD methodology can deal with unscaling and unnormalized processes by augmenting

the functional cost with diagonal weighting matrices as commented at the end of Sections 2.1 and 2.2.

Eventually, the scaling procedure suggested by (Skogestad and Postlethwaite, 2005, Chap. 1) is very useful

in this case. On the other hand, if the plant changes its operating point it is likely that the process model

will be no longer valid due to changes in the inner relationships among variables. These changes will be

severe or not depending on the nonlinearity of the process under study. A clear example of these effects

are displayed in an earlier work of the author Molina et al. (2011) (preliminaries of the MSD approach)

where control structures for the TE process were designed at two operating points, i.e. base and optimal

cases. The final control policies are different, mainly, due to the severe changes in some steady-state gains

of the process model which leads to different solutions from the SSD functional cost and RGA points of

view. Recent analysis about the properties of the SSD-based optimization can be found in Zumoffen and

Basualdo (2013).

Summarizing, modifications in the linearized steady-state process model can generate different solutions

from the MSD point of view as well as input-output pairing problems. If these changes are severe, not

necessarily in magnitude (Grosdidier et al., 1985; Skogetad and Morari, 1987), it is recommended a new

steady-state model identification for reliable conclusions.
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Highlights 
 

• Oversizing analysis for decentralized plant-wide control design. 
• Problem reduction. It is required to test few optimal solutions only. 
• Improvements based on sparse multivariable control structures. 
• Implementation load analysis based on IMC theory. 
• Sparse plant-wide control implementation based on MPC. 
• Hardware requirements comparison with other multivariable control structures. 

 
 
 

*Highlights
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