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Abstract 10

In this paper, a procedure for segmenting and classifying scanned legume leaves

based only on the analysis of their veins is proposed (leaf shape, size, texture

and color are discarded). Three legume species are studied, namely soybean, red

and white beans. The leaf images are acquired using a standard scanner. The

segmentation is performed using the Unconstrained Hit-or-Miss Transform and

adaptive thresholding. Several morphological features are computed on the seg-

mented venation, and classified using four alternative classifiers, namely Support

Vector Machines (linear and Gaussian kernels), Penalized Discriminant Anal-

ysis and Random Forests. The performance is compared to the one obtained

with cleared leaves images, which require a more expensive, time consuming and

delicate procedure of acquisition. The results are encouraging, showing that the

proposed approach is an effective and more economic alternative solution which

outperforms the manual expert’s recognition.

Keywords: Leaf vein features, Leaf vein images, Legume classification, Leaf 11

vein analysis, Unconstrained Hit-or-Miss Transform 12

1. Introduction 13

The automatic analysis of leaf images aimed at plant classification or plant 14

image retrieval has been addressed by many researchers in the recent literature. 15
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Several approaches have been proposed, including leaf shape [12, 1, 4, 7, 20, 5],1

color information [11, 15] and leaf texture analysis [8, 2].2

Although all these approaches are valid, they are not useful when dealing3

with species having similar leaf size, color, shape and texture features. For4

example, such is the case with individuals from different varieties of the same5

species, which have no clear visual differences in the previously mentioned leaf6

characteristics. Recently, some authors [6, 14, 22] stated that leaf venation prop-7

erties may be of high importance to perform plant recognition. This hypothesis8

is also supported by recent studies [17, 18] which show correlations between9

venation networks and leaf properties (for example, drought and damage tol-10

erance). Under these assumptions, it is feasible to think that the particular11

physiological characteristics of the plants are reflected in their leaf veins, even12

when the leaves have similar appearance.13

In this work an automatic procedure exclusively based on the analysis of leaf14

vein morphological features is proposed for plant recognition. Leaf shape, tex-15

ture, color and size are discarded. Leaf vein segmentation is performed resorting16

to the Unconstrained Hit-or-Miss Transform (UHMT)[19] and adaptive image17

thresholding applied to the gray scale leaf images. The UHMT is a mathematical18

morphology operator similar to template matching. It allows to extract all the19

pixels having a certain foreground and background neighboring configuration.20

Simple morphological features are measured on the segmented veins, and four21

different state-of-the-art classifiers are compared to perform plant identification,22

namely Support Vector Machines (SVM) [23] with linear and Gaussian kernels,23

Penalized Discriminant Analysis (PDA) [10] and Random Forests (RF) [3].24

The whole procedure was used to recognize three classes of legumes, namely25

soybean (Glycine max (L) Merr), red and white beans (Phaseolus vulgaris).26

Red and white beans belong to the same species, presenting similar leaves except27

for their vein color, which is dark for the red bean. However, color is not taken28

into account in this paper. Only vein morphological features are considered on29

gray scale images.30

We report the quantitative performance of the whole procedure, discussing31
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the classification accuracies per class achieved by the automatic classifiers and 1

the advantages of the proposed methodology. The procedure was developed 2

searching also for simplicity and low cost. For this reason, the leaf images were 3

acquired using a standard scanner, without any staining procedure. The results 4

were compared to the performance achieved by human experts. 5

The proposed approach was also compared to the more sophisticated method- 6

ology of analyzing digital photographs of cleared leaves images. This alterna- 7

tive provides with enhanced high contrast leaf veins and higher orders of visible 8

veins, but it is a much more expensive and time demanding procedure given the 9

chemical staining process applied to the leaves. 10

The rest of the paper is organized as follows. In Sections 2.1 and 2.2 the pro- 11

posed vein segmentation procedure is explained. The morphological measures 12

computed on the segmented veins are summarized in Section 2.3. The employed 13

classification algorithms are briefly described in Section 2.4. In Section 3, we 14

describe the leaf images datasets and discuss the obtained results. Finally, some 15

conclusions and future work are presented in Section 4. 16

2. Materials and methods 17

2.1. Unconstrained Hit-or-Miss Transform (UHMT) 18

The UHMT is an extension of the Hit-or-Miss Transform (HMT) for gray 19

scale images [19]. It extracts all the pixels matching a certain foreground and 20

background neighboring configuration. A composite structuring element B is 21

employed, which is a disjoint set formed by one structuring element that specifies 22

the foreground configuration, Bfg, and one structuring element for the back- 23

ground setting, Bbg. The origin of the composite structuring element matches 24

the foreground. 25

The UHMT is defined as 26

UHMTB(Y )(y) = max
{
εBfg

(Y )(y)− δBbg
(Y )(y), 0

}
, (1)
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where Y is a gray scale image with set of pixels y and B is a composite structur-1

ing element. It can be computed as the difference between an erosion with Bfg,2

εBfg
(Y )(y), and a dilation with Bbg, δBbg

(Y )(y), if δBbg
(Y )(y) < εBfg

(Y )(y).3

Otherwise it equals 0.4

2.2. Vein segmentation5

The color information was removed by converting the RGB images to grayscale.6

The color information is discarded since there is interest in detecting vein pat-7

terns associated to vein morphology only.8

The binary masks for the leaves were obtained via thresholding (automatic9

iterative threshold selection [21]), holes filling using morphological reconstruc-10

tion [19] and removal of all the connected components except the largest one.11

In order to segment the veins in the scanned images, the UHMTs on 5 dif-12

ferent sized versions of the images, namely at 100%, 90%, 80%, 70% and 60%,13

were computed. Each version is intended to highlight a different level of vein14

detail. Then, each resulting UHMT was resized back to its original size and15

added to obtain the combined UHMT, which highlights both small and large16

visible veins simultaneously. For this purpose, four composite structuring ele-17

ments (foreground and background configurations) were used aimed at detecting18

leaf veins in 4 directions (vertical, horizontal, +45◦and -45◦). These structuring19

elements are shown in Fig. 1. After that, the contrast of the combined UHMT20

was enhanced and then binarized by means of a standard adaptive thresholding21

algorithm. All the connected components with less than 20 pixels were removed.22

For the cleared images, the veins are already highlighted due to the staining23

procedure. For this reason, the segmentation was performed by simply applying24

adaptive histogram equalization followed by standard adaptive thresholding.25

2.3. Vein measurements26

In order to measure vein and areole features without the influence of the27

leaf shape, a central patch was extracted from each segmented scanned and28

cleared leaf, respectively. Ideally, we would like to work with the entire leaf29
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(a) (b) (c) (d)

Figure 1: Flat composite structuring elements used for the UHMT to detect veins in four

directions: (a) Vertical, (b) horizontal, (c) +45◦and (d) -45◦. Foreground and background

pixel configurations are shown in red and green, respectively. The center of the composite

structuring element is marked with a black dot.

venation network. However, in practice we cannot achieve this since we want 1

to discard the leaf shape contour influence in order to analyze exclusively vein 2

features. For this reason, in this paper we chose to extract a patch located 3

at the center of each leaf, which we consider significant in order to capture 4

primary and secondary order veins features, with a size big enough to include 5

higher order veins. Another significant point of analysis could have been the 6

union between the leaf blade and the petiole, or the leaf apex, but the vein 7

characteristics at both locations are very much influenced by the leaf shape, 8

so they were discarded. However, if the patch is too big we risk to touch the 9

leaf contour and include it unintentionally. With these requirements in mind, 10

we selected 100× 100 pixel-sized patches for scanned leaves since this selection 11

accomplished the goal, and 400×400 pixel-sized patches for cleared leaves, since 12

the resolution of the latter is approximately 4 times higher than the former’s. All 13

the traits were computed on these patches, and the same traits were computed 14

for the scanned and cleared leaves. 15

LEAF GUI measures [16] were adapted to extract a set of features of interest 16

for the veins and areoles. For the particular problem of leaf classification, the 17

individual vein/areole measures computed by LEAF GUI are not suitable. For 18

this reason, the median, minimum and maximum measure values were computed 19

for the veins and areoles where it was appropriate. An extra measurement 20

not available in LEAF GUI, namely the vein orientation, was also considered 21
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in this paper. Altogether, 52 measures were computed for each leaf patch.1

In AppendixA, the explanation and computing procedure for each measure is2

provided. Further information can be found in the work by Price et al. [16].3

However, we found that 17 out of these 52 measures had a near zero vari-4

ance across the leaves and therefore were discarded for classification purposes,5

namely: VmL, VmW, VmA, VmSA, VmV, VmO, AmP, AmA, AmCA, Am-6

MaA, AmMia, AmE, AmEq, AmMD, AmVD, VMO and AMS. Thus, only 357

out of the 52 originally computed traits were effectively used as features for8

classification.9

2.4. Classification methods10

In this work we evaluated 4 different classifiers: Support Vector Machines11

with linear and Gaussian kernels, Penalized Discriminant Analysis and Random12

Forests. Each one of them is summarized in the following subsections.13

2.4.1. Support Vector Machines (SVM)14

Support Vector Machines (SVM) [23, 10] is a state-of-the-art classifier which15

assumes that applying an appropriate nonlinear mapping of the data into a16

sufficiently high dimensional space, two classes can be separated by an optimum17

hyperplane. This decision hyperplane is chosen in such a way that the distance18

between the nearest patterns of different classes (i.e., the margin) is maximized.19

Given a dataset D = {(xi, yi)}, formed by pairs of features-label examples,20

with xi ∈ Rd, yi ∈ {−1, 1} and i = 1, . . . , n, consider the case where the training21

examples can be linearly separated. In this case, the two classes can be separated22

by one of many possible hyperplanes given by:23

f(xi) = wTxi + b = 0, (2)

where w ∈ Rd and b ∈ R. A support vector classifier selects the hyperplane24

which maximizes the margin. This optimization problem can be posed as25

min
w,b

||w||, subject to the constraint yi(w
Txi + b) ≥ 1. (3)
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If the classes are not completely separable (there is overlap in feature space), 1

some patterns might be allowed to be on the opposite side of the margin by intro- 2

ducing the slack variables ξ = {ξ1, ξ2, . . . , ξn}, and converting the minimization 3

problem in Eq. (3) into: 4

min
w,b

1

2
||w||2 + C

n∑
i=1

ξi, subject to

 ξi ≥ 0;

yi(w
Tx+ b) ≥ (1− ξi), ∀i,

(4)

where C is a regularization constant. 5

If the decision surface is required to be nonlinear, a kernel function can be 6

used to map the original features into a high dimensional space, where they can 7

be separated by a linear boundary. The kernel κ is related to the transform 8

θ following κ(xi,xj) = θ(xi)θ(xi). In this case, the problem can be stated as 9

f(xi) = wT θ(xi) + b, and an optimization problem similar to Eq. (4) can be 10

derived. 11

In this work, we considered the linear kernel: 12

κ(xi,xj) = xixj + 1 (5)

and the Gaussian kernel: 13

κ(xi,xj) = exp

(
||xi − xj ||2

2σ2

)
. (6)

Both the standard deviation σ for the Gaussian kernel and the regularization 14

parameter C were optimized using inner validation during the training. 15

Binary classification using SVM can be performed by means of the following 16

classification rule 17

ŷi = sign(f(xi). (7)

For the multiclass problem considered in this work, the one-vs-one strategy 18

was followed. In this strategy, k(k − 1)/2 binary classification problems are 19

formulated between all pairs of the k classes. The final result is obtained using 20
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a max-wins criterion: the example is preliminary assigned to one of two classes1

by each binary classifier, the corresponding class adds a vote, and the pattern2

is finally classified into the class with the maximum number of votes.3

2.4.2. Penalized Discriminant Analysis (PDA)4

Fisher’s Linear Discriminant Analysis (LDA) [10] is a classical classifier and5

dimension reduction tool which searches for linear combinations of the features6

in such a way that the class means of the linear combinations are maximally7

separated relative to the intra-class covariance.8

Let D = {(xi, yi)} be a labeled dataset with i = 1, . . . , n input/output9

examples. Every d-dimensional vector xi is associated to one of K possible10

class labels yi ∈ {1, 2, . . . ,K}. Let mk ∈ Rd be the centroid of class k (with11

k = 1, . . . ,K), pk ∈ R be the estimated proportion of class k in the whole12

dataset, ΣW be the pooled within-class covariance matrix of the inputs and13

m̄ =
∑

k pkmk be the dataset mean. LDA finds β ∈ Rd such that:14

βTΣBβ = βT
∑
k

pk(mk − m̄)(mk − m̄)Tβ (8)

is maximized subject to the constraint βTΣWβ = 1, where ΣB =
∑
k

pk(mk −15

m̄)(mk − m̄)T denotes the inter-class covariance matrix.16

Each β vector is a scaled eigenvector of Σ−1
W ΣB representing each one of the17

directions in which the class means are most separable in the transformed space18

relative to the within-class covariance.19

The classification of new observations is performed by assigning them to20

the closest centroid in the transformed space according to a distance metric21

(typically the Mahalanobis distance), as depicted by:22

ŷ(xtest) = argmin
k

(xtest −mk)
TΣ−1

W (xtest −mk)− 2log pk. (9)

The first term is the Mahalanobis distance between the descriptor and every23

class mean, whereas the second term is the adjustment for the class size.24
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Fisher’s LDA presents several advantages, such as robustness to non-Gaussian 1

distributions and moderately different class covariances. However, it does not 2

perform well when there is a large number of highly correlated variables, leading 3

to overfitting. 4

In order to face this problem, Penalized Discriminant Analysis (PDA) was 5

proposed by Hastie et al. [9]. PDA is a regularized version of LDA, which adds 6

a penalty term to the intra-class covariance matrix. PDA is useful for image 7

classification problems with large number of noisy features. 8

PDA proceeds exactly in the same manner as LDA, except for replacing ΣW 9

by the penalized within covariance matrix Σ′
W = ΣW +Ω, with Ω ∈ Rd×d such 10

that βTΩβ is large for β’s having large Euclidean norm. 11

The penalty term can be defined as Ω = λId, with Id being the d×d identity 12

matrix. In this definition, λ is a free parameter which controls the shrinkage 13

level of the ||β||’s, similar to standard Ridge Regression [10]. The effect of 14

adding a constant to the diagonal elements of ΣW is to make rounder constraint 15

ellipsoids in hyperparameter space and avoid their shape degeneration. In this 16

work this parameter was automatically selected using a validation set in the 17

training phase. 18

2.4.3. Random Forests (RF) 19

Random Forests (RF) [3] is a state-of-the-art ensemble algorithm where the 20

individual classifiers are a set of de-correlated trees. They perform comparably 21

well to other state-of-the-art classifiers and are also very fast. Random Forests 22

also allows to estimate the importance of input variables (in their original di- 23

mensional space). 24

The algorithm constructs a set of unpruned trees from B random samples 25

with replacement (bootstrap versions) of the original training dataset D = 26

{(xi, yi)}, with i = 1, . . . , n. For each node of each random forest tree, fb, 27

a random sample of m variables from the full set of p variables (m ≤ p) is 28

selected to split the data and grow the decision tree. Given xi, the final clas- 29

sification result (F (xi)) is the class corresponding to the majority vote of the 30

9



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: (a) Soybean leaf. (b) Vein segmentation for (a). (c) 100 × 100-pixel central patch

from (b). (d) White bean leaf. (e) Vein segmentation for (d). (f) 100×100-pixel central patch

from (e). (g) Red bean leaf. (h) Vein segmentation for (g). (i) 100× 100-pixel central patch

from (h).

ensemble of trees:1

F (xi) = majority vote {fb(xi)}Bb=1 . (10)

In this work, 500 trees and a standard value of m =
√
p for the number of2

variables randomly sampled as candidates at each split, were used.3

10



3. Results and discussion 1

3.1. Leaf images datasets 2

Two datasets were used in this paper, provided by the National Institute 3

of Agricultural Technology (INTA, Oliveros, Argentina). The images in both 4

datasets correspond to the first foliage leaves (pre-formed in the seed) after 12 5

days of seedling grow. First foliage leaves were selected for the analysis since 6

their characteristics are less influenced by the environment. The first dataset 7

corresponds to the one employed in our previous work [13] and consists of leaf 8

images scanned using a standard scanner. The second dataset is composed by 9

images of chemically cleared leaves which were acquired with a fixed mounted 10

digital camera. Next, both datasets are described in detail. 11

The scanned images dataset consists of a total number of 866 RGB first- 12

foliage-leaf images. They correspond to 433 specimens (211 soybean plants, 136 13

red bean plants and 86 white bean plants). The images were obtained via a 14

fast, inexpensive and simple imaging procedure (neither chemical nor biological 15

procedures were used to physically enhance the leaf veins). The leaves were 16

acquired using a Hewlett Packard Scanjet-G 3110 scanner, at a resolution of 17

200 pixels per inch and stored as 24-bit RGB TIFF images. This dataset is 18

divided in the following way: 422 images correspond to soybean leaves, 272 19

images to red bean leaves and 172 to white bean leaves. 20

The cleared images dataset is composed by a total number of 150 RGB first- 21

foliage-leaf images (50 soybean leaves, 50 red bean leaves and 50 white bean 22

leaves). The images were clarified by immersion of the Petri dishes in boiling 23

alcohol 96% for 16-18 hours. After that, staining was performed by immersion 24

in saturated Safranin solution for one hour. The images were acquired using 25

a fixed mounted Nikon D90 digital camera with a resolution of 900 pixels per 26

inch, on a Hama Lightbox LP 554. 27

3.2. Performance evaluation 28

Three scanned exemplars corresponding to a soybean leaf, a white bean leaf 29

and a red bean leaf, are shown in Figures 2(a), (d) and (g), respectively. The 30
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: (a) Cleared soybean leaf. (b) Vein segmentation for (a). (c) 300× 300-pixel central

patch from (b). (d) Cleared white bean leaf. (e) Vein segmentation for (d). (f) 300 × 300-

pixel central patch from (e). (g) Cleared red bean leaf. (h) Vein segmentation for (g). (i)

300× 300-pixel central patch from (h).

combined UHMT images segmented according to Section 2.2 are depicted in1

Figures 2(b), (e) and (h). In Figures 2(c), (f) and (i) the 100×100-pixel central2

patches used for feature extraction are included. It can be noticed from these3

figures that only the primary order veins can be extracted for the scanned leaves.4

The higher order veins (e.g. terminal veins) are not segmented since they are5

not visible in plain sight (no staining nor amplification procedures were used for6

this set of images, as it was described previously).7

Similarly, three cleared leaves of the same legumes are exemplified in Fig-8

ures 3(a), (d) and (g), respectively. The segmentation results after adaptive9

histogram equalization and adaptive thresholding are depicted in Figures 3(b),10
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(e) and (h). Additionally, the 400× 400-pixel patches extracted from the center 1

of the segmented images are shown in Figures 3(c), (f) and (i). It is evident from 2

these figures that veins of higher orders are clearly detected, in comparison with 3

the scanned leaves, due to the help of the staining chemical procedure which 4

highlights many more details of the venation structure. 5

Estimation errors at any step of the analysis affect the final accuracy of 6

the whole process. For this reason, we evaluated the performance of the whole 7

procedure (image segmentation, feature extraction and classification) by means 8

of computing the final classification accuracies, which we discuss in the following 9

paragraphs. 10

In Table 1, the average total accuracy obtained by the four considered classi- 11

fiers are reported both for scanned and cleared leaves. The accuracies reported 12

for each classifier were obtained by computing the mean over 10 independent 13

runs of 10-fold cross validation (CV) of the percentages of the total number 14

of correctly classified leaves using the 35 features described in Section 2.3 and 15

AppendixA (standard deviations are also included). 16

The two datasets described in Section 3.1 were randomly sampled in order 17

to generate two balanced datasets with number of examples per class equal to 18

the one of the smallest class (172 specimens and 50 specimens per legume class 19

for the scanned and cleared leaves, respectively). The best average performance 20

corresponds to PDA, followed by SVM with linear kernel for scanned leaves 21

and SVM with Gaussian kernel for cleared leaves. The lowest accuracy for 22

scanned leaves corresponds to Random Forests, though it is over 85%. The 23

usage of scanned leaves combined with PDA diminishes slightly the average 24

performance against using cleared leaves. However, the standard deviation is 25

almost the double in the last case. This may be due to the fact that less samples 26

are considered for cleared leaves. The increase in the number of examples for 27

scanned leaves allows to achieve lower standard deviations. 28

The reason for PDA to perform better is probably related to the characteris- 29

tics of the features taken into consideration. Some of these features are linearly 30

correlated to one another, as it can be noticed from the correlation matrices of 31

13



Table 1: Mean total accuracy and standard deviation for the four classifiers under consider-

ation using scanned vs. cleared leaves, balanced datasets and 10 times 10-fold CV. The best

results are highlighted in bold.

Classifier Mean accuracy ± Standard deviation

Scanned leaves Cleared leaves

SVM (Gaussian kernel) 87.0± 4.5% 86.8± 8.5%

SVM (Linear kernel) 87.2± 4.6% 85.0± 8.7%

Random Forests 85.5± 4.8% 86.1± 8.6%

PDA 87.3± 4.6% 89.1± 8.6%

Table 2: Mean accuracy per class for legume classification (scanned and cleared leaves) using

different classifiers, balanced datasets and 10 times 10-fold CV. The best result per class is

highlighted in bold.

Classifier SB WB RB

Scanned leaves

Manual classification 98.3% 66.4% 69.4%

SVM (Gaussian kernel) 95.5% 83.2% 82.3%

SVM (Linear kernel) 95.5% 82.9% 83.2%

Random Forests 92.8% 82.8% 80.7%

PDA 94.4% 83.6% 84.1%

Cleared leaves

SVM (Gaussian kernel) 95.8% 80.8% 83.8%

SVM (Linear kernel) 97.6% 80.6% 76.8%

Random Forests 97.4% 77.8% 83.2%

PDA 98.0% 81.0% 88.4%

the 35 features for the scanned and cleared leaves, which are depicted in Fig-1

ures 4 and 5, respectively. In both figures, in part (a) the Pearson correlation2

variations are represented in colors from blue (-1) to red (1), whereas in part3

(b) the absolute values of the correlation coefficient are depicted, ranging from4

0 (black) to 1 (white).5

In Table 2, the classification accuracy per class for the different alternative6

classifiers, the scanned and the cleared leaves for the three different legume7

species are reported, considering balanced datasets and 10 times 10-fold CV.8
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Figure 4: Correlation matrix for the 35 features computed on the scanned leaves. (a) Corre-

lation values ranging from -1 (blue) to 1 (red). (b) Absolute values of the correlation matrix,

ranging from 0 (black) to 1 (white).

This accuracy is the percentage of successful classifications in every class relative 1

to the number of examples in the corresponding class. The mean over the 100 2

15



V
N

E

V
N

N

V
T

N
L

V
M

e
L

V
M

e
W

V
M

e
A

V
M

e
S

A

V
M

e
V

V
M

e
O

V
M

L

V
M

W

V
M

A

V
M

S
A

V
M

V

A
N

A
M

e
A

A
M

e
C

A

A
M

e
E

A
M

e
S

A
M

e
P

A
M

e
E

q

A
M

e
M

a
A

A
M

e
M

iA

A
M

e
M

D

A
M

e
V

D

A
m

S

A
M

A

A
M

C
A

A
M

E

A
M

P

A
M

E
q

A
M

M
a
A

A
M

M
iA

A
M

M
D

A
M

V
D

AMVD

AMMD

AMMiA

AMMaA

AMEq

AMP

AME

AMCA

AMA

AmS

AMeVD

AMeMD

AMeMiA

AMeMaA

AMeEq

AMeP

AMeS

AMeE

AMeCA

AMeA

AN

VMV

VMSA

VMA

VMW

VML

VMeO

VMeV

VMeSA

VMeA

VMeW

VMeL

VTNL

VNN

VNE

(a)

V
N

E

V
N

N

V
T

N
L

V
M

e
L

V
M

e
W

V
M

e
A

V
M

e
S

A

V
M

e
V

V
M

e
O

V
M

L

V
M

W

V
M

A

V
M

S
A

V
M

V

A
N

A
M

e
A

A
M

e
C

A

A
M

e
E

A
M

e
S

A
M

e
P

A
M

e
E

q

A
M

e
M

a
A

A
M

e
M

iA

A
M

e
M

D

A
M

e
V

D

A
m

S

A
M

A

A
M

C
A

A
M

E

A
M

P

A
M

E
q

A
M

M
a

A

A
M

M
iA

A
M

M
D

A
M

V
D

AMVD

AMMD

AMMiA

AMMaA

AMEq

AMP

AME

AMCA

AMA

AmS

AMeVD

AMeMD

AMeMiA

AMeMaA

AMeEq

AMeP

AMeS

AMeE

AMeCA

AMeA

AN

VMV

VMSA

VMA

VMW

VML

VMeO

VMeV

VMeSA

VMeA

VMeW

VMeL

VTNL

VNN

VNE

(b)

Figure 5: Correlation matrix for the 35 features computed on the cleared leaves. (a) Correla-

tion values ranging from -1 (blue) to 1 (red). (b) Absolute values of the correlation matrix,

ranging from 0 (black) to 1 (white).

runs is reported. The average classification accuracy obtained by 5 experts1

who manually classified the same central patches for the scanned leaves is also2
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included for reference. The manual classification for the cleared leaves is not 1

relevant since the proposal of this work is to use scanned leaves instead of the 2

cleared ones, and to compare its performance against the more costly procedures 3

of using cleared leaves or doing manual classification. 4

From the accuracies described in Table 2, it is noticeable that for all the clas- 5

sification algorithms under consideration and using both cleared and scanned 6

leaves, the recognition for soybean is much easier than for red and white beans 7

(the accuracies rise to, at least, 95.5% for scanned leaves and 98.0% for cleared 8

leaves). When using cleared leaves, the identification of red bean leaves seems 9

to be a slightly easier problem than for white bean leaves for all the classifiers, 10

except for SVM with linear kernel which solves the white bean recognition bet- 11

ter. However, when considering the scanned leaves, the four classifiers obtain 12

similar performances both for red and white beans. Additionally, this table 13

shows that there is little advantage in using cleared leaves over scanned leaves: 14

the accuracies are slightly higher for soybean, but are lower for white bean. In 15

the case of the red bean, the performance is also slightly better when using 16

cleared leaves, except for the SVM with linear kernel which improves 6.4% with 17

scanned leaves. 18

The usage of cleared leaves partially improves the accuracies over their coun- 19

terparts obtained with the scanned leaves, but at the expense of an increase in 20

the time and cost of the image acquisition process. It requires the leaves to be 21

chemically treated in a laboratory for several hours, and it cannot be imple- 22

mented directly in the field. The best results for the cleared leaves are obtained 23

by PDA for all the legume species, and it provides an improvement of 2.5% 24

and 4.3% over the best results for soybean and red bean for the scanned leaves 25

(obtained using SVM both with Gaussian and linear kernels in the first case, 26

and PDA for the second), respectively. For white bean, the best performance is 27

obtained by PDA with cleared and scanned leaves, but an improvement of 2.6% 28

is achieved by using scanned leaves. 29

In addition, the recognition accuracies achieved by using the scanned leaves 30

are superior in more than 11% to manual identification for the two bean vari- 31
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eties, considering any of the accounted classifiers (improvements of 17.2% for1

white bean and 14.7% for red bean using PDA in both cases). In the case2

of soybean, the classification accuracy slightly decreases (2.8%) versus manual3

classification when using SVM with Gaussian and linear kernels (the best au-4

tomatic recognition rates). The other automatic classifiers have slightly lower5

recognition rates in this particular case. However, for soybean and all the con-6

sidered classifiers the accuracies are at least 92.8%. It is noticeable that Random7

Forests, which was recently proposed in our previous work [13] to discriminate8

between soybean, white bean and red bean, is the classifier with the lowest9

performance.10

A more detailed analysis about the performance can be developed by an-11

alyzing the confusion matrices for the scanned and cleared leaves using each12

one of the considered alternative classifiers (Table 3), where the true labels are13

represented in the rows. It is noticeable that for both the scanned and cleared14

leaves, the percentages of correct classifications are high for the three legume15

species, and most of the misclassifications are between the white and red bean16

classes (two varieties from the same species). This fact repeats for all the clas-17

sifiers. Also, a smaller number of mistakes appears between white bean and18

soybean, showing that the considered classifiers tend to confound these two19

classes. Minor errors are reported between red bean and soybean, indicating20

that the classifiers find stronger differences in the measures computed on the21

venation of these two species. This indicates that the white and red bean classes22

are partially superimposed on each other in feature space, whereas soybean is23

more separated.24

The inclusion of more examples per class helps to improve the overall classifi-25

cation accuracy, as shown in Table 4, where the whole dataset of scanned leaves26

was taken into account. Again, 10 runs of 10-fold CV were implemented and27

the per-class and average ± standard deviation accuracies were computed. The28

results depicted in this table can be compared to the ones reported in Table 129

and Table 2 for scanned leaves. Both the soybean and red bean classes (the30

two major classes) are the species which experiment the largest improvements31
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Table 3: Confusion matrices for the scanned and cleared leaves using the four classifiers under

analysis (Rows correspond to the true labels). Percentage values are reported. Percentages of

correct classification are highlighted in bold.

Scanned leaves Cleared leaves

SVM (Gaussian kernel) SVM (Gaussian kernel)

SB WB RB SB WB RB

SB 95.5% 4.5% 0.0% SB 95.8% 3.8% 0.4%

WB 3.9% 83.2% 12.9% WB 2.0% 80.8% 17.2%

RB 0.1% 17.6% 82.3% RB 0.0% 16.2% 83.8%

SVM (Linear kernel) SVM (Linear kernel)

SB WB RB SB WB RB

SB 95.5% 4.4% 0.1% SB 97.6% 1.8% 0.6%

WB 4.8% 82.9% 12.3% WB 3.2% 80.6% 16.2%

RB 0.9% 15.9% 83.2% RB 1.8% 21.4% 76.8%

Random Forests Random Forests

SB WB RB SB WB RB

SB 92.8% 6.6% 0.6% SB 97.4% 1.6% 1.0%

WB 3.1% 82.8% 14.1% WB 1.6% 77.8% 20.6%

RB 1.3% 18.0% 80.7% RB 0.0% 16.8% 83.2%

PDA PDA

SB WB RB SB WB RB

SB 94.4% 4.7% 1.0% SB 98.0% 1.6% 0.4%

WB 3.8% 83.6% 12.6% WB 0.0% 81.0% 19.0%

RB 0.0% 15.9% 84.1% RB 0.0% 11.6% 88.4%

for all the classifiers: between 1.6% and 3.5% for soybean and between 2.3% 1

and 4.4% for red bean. On the contrary, the classification performance of the 2

white bean class (which has the lowest number of examples) diminishes between 3

3.1% and 10.9% no matter which classifier is used. However, the best classifier 4

(PDA) achieves accuracies of over 80% for the three classes. The best average 5

accuracy in combination with the lowest standard deviation is also achieved by 6

PDA (89.9 ± 2.7%) followed by SVM with linear kernel (89.7 ± 2.7%), rein- 7

forcing the idea that the linear dependency between the features influences the 8

better performances of these methods. The worst result is obtained by Random 9
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Table 4: Accuracies for legume classification using scanned leaves, different classifiers, non-

balanced datasets and 10 times 10-fold CV. The arrows ↑ and ↓ indicate an increment or

decrement in the accuracies, respectively, relative to the accuracies depicted in Table 2 for the

scanned leaves. The best result is highlighted in bold.

Scanned leaves

Classifier SB WB RB Average

(422 images) (172 images) (272 images) accuracy

SVM (Gaussian kernel) 97.4% (↑ 1.9%) 74.4% (↓ 8.8%) 86.7% (↑ 4.4%) 89.5± 2.8%

SVM (Linear kernel) 97.1% (↑ 1.6%) 77.3% (↓ 5.6%) 86.1% (↑ 2.9%) 89.7± 2.7%

Random Forests 96.3% (↑ 3.5%) 71.9% (↓ 10.9%) 84.7% (↑ 4.0%) 87.8± 3.2%

PDA 96.0% (↑ 1.6%) 80.5% (↓ 3.1%) 86.4% (↑ 2.3%) 89.9± 2.7%

Forests, which also presents the highest standard deviation (87.8± 3.2%).1

The CPU times associated to the different stages of the proposed procedure2

are the following: 3.95 seconds both for leaf and vein segmentation of a scanned3

leaf (in MatLab), 0.32 seconds to compute the whole set of 52 features on the4

central patch (in MatLab), and 0.01 seconds to classify the exemplar (in R).5

4. Conclusions6

In this work, an automatic procedure aimed at recognizing legume species7

is proposed. The procedure discards any leaf shape, size, color or texture infor-8

mation, since the interest is focused exclusively in detecting differences in the9

leaf vein morphology. The images are acquired using a standard scanner, which10

is an economic and easy procedure which requires no delicate manipulation of11

the exemplars. The veins are segmented resorting to the UHMT and adaptive12

thresholding. A set of 35 morphological measures are obtained from a central13

patch extracted from the segmented veins, and these features are used to per-14

form classification using four alternative classifiers, namely SVM with linear and15

Gaussian kernels, PDA and RF. The central patch is used to exclude the leaf16

shape from the analysis.17

20



The performance of the proposed procedure is compared to the one obtained 1

with cleared leaves, whose veins are stained and more clearly visible in higher 2

order levels. Even though the classification accuracies achieved by using the 3

cleared leaves are slightly higher, the acquisition procedure is more expensive 4

and time consuming, requiring much more care in the handling of the leaves. 5

In contrast, the proposed procedure using scanned leaves is much more simple, 6

could be extendable to field work, and obtains very good average classification 7

accuracies of over 87% with the PDA classifier. Even more, this accuracy can 8

be easily improved in field work using measurements over several leaves of the 9

same batch/field. 10

The comparison against manual classification is also performed. The re- 11

sults show an improvement over the expert’s performance for two of the three 12

legumes (white bean and red bean). Even though soybean vein characteristics 13

are better recognized by humans, the automatic algorithm achieves at least 92% 14

of accuracy for this species and all the classifiers under analysis when consid- 15

ering the balanced datasets. Overall, the proposed automatic method based 16

on scanned leaves improves the results manually obtained by the experts, with 17

clear advantages in confiability and repeatability. 18

Current work is being developed to extend this procedure to the identifica- 19

tion of different cultivars from single species. 20

Appendix A 21

The considered measures encompass traits computed both on the veins (edge 22

segments in the segmented vein image) and the areoles (background spaces 23

enclosed by veins). In Figures A.6(a) and A.6(b), schemes including some two- 24

dimensional vein and areole measures are respectively presented. These schemes 25

are provided as reference to better understand the measurement calculation 26

procedure. 27

According to Price et al. [16] and their supplemental material, the skele- 28

ton (medial axis) of the binary image is first computed for vein measurement. 29
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Figure A.6: (a) Two-dimensional vein measures computed on a disconnected edge. (b) Areole

measures.

The skeleton branchpoints and tips are obtained, and the disconnected edges1

are extracted by removing the branchpoint pixels and performing connected2

components labeling. Next, a distance transform is computed on the original3

binary image in order to measure the Euclidean distance between each vein pixel4

(foreground) and its nearest areole pixel (background). The distance transform5

is multiplied pixel by pixel to the skeleton, in order to obtain the Euclidean6

distance of each skeleton pixel to the nearest areole.7

For the individual measures of vein/areoles computed by LEAF GUI, we8

calculated the minimum, median and maximum values of all the vein/areoles in9

the patch. We also measured the minimum, median and maximum orientation10

of edges in each image patch (not available in LEAF GUI). Following, the ex-11

planation for each one of the considered 52 measures is provided. We suggest12

the reader to use Fig. A.6 as reference. Additional information can be found in13

the paper about LEAF GUI [16].14

Total number of edges (VNE), computed as the count of existing vein segments.15
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Each vein segment is internally assigned a unique code number from 1 to the 1

number of disconnected edges. Therefore, VNE can be computed as the maxi- 2

mum vein code number. 3

Total number of nodes (VNN). A node is a branchpoint of two or more veins. 4

Each node is also assigned a unique code number from 1 to the number of nodes. 5

VNN is computed as the maximum code number. 6

Total network length (VTNL). Total distance along the skeleton of the vein 7

image patch. The image resolution is used to scale the total distance in pixels 8

in order to obtain VTNL expressed in mm. 9

Median/min/max vein length (VMeL/VmL/VML). The length of a single vein 10

is the distance along its skeleton. The distance between two 4-neighbor pixels 11

of the skeleton is 1, whereas the distance between two diagonal neighbor pixels 12

is
√
2. The length in pixels is next scaled to obtain the measure expressed in 13

mm. 14

Median/min/max vein width (VMeW/VmW/VMW). Each vein is modeled as 15

a series of connected cylinders, each cylinder having length equal to 1 pixel 16

and diameter (width) equal to two times the value of the distance transform at 17

each vein skeleton pixel. The width for a single vein is obtained as the mean 18

of the widths computed at each vein skeleton pixel. The vein width in pixels is 19

appropriately scaled in mm. 20

Median/min/max vein 2D area (VMeA/VmA/VMA). The vein 2D area (in 21

mm2) is the sum of the widths computed at every skeleton pixel of the current 22

edge times the length of one pixel. 23

Median/min/max vein surface area (VMeSA/VmSA/VMSA). The surface area 24

(SA, in mm2) of the cylinder centered at the edge skeleton is computed as the 25

sum of the individual surface areas for each skeleton pixel of the current edge, 26

as
∑

i SAi = 2π(di/2)li, where di is the diameter (width) and li is the length 27

for a skeleton pixel i. 28

Median/min/max vein volume (VMeV/VmV/VMV). The vein volume (V , in 29

mm3) corresponds to the volume of the same cylinder as in surface area, and is 30

computed as
∑

i Vi = π(di/2)
2li. 31
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Median/min/max vein orientation (VMeO/VmO/VMO). A 2D ellipse having1

the same second central moments as the vein is constructed, and the angle (in2

the range [-90◦, 90◦]) between the x-axis and the major axis of this ellipse is3

measured. This angle corresponds to the orientation of a single vein.4

For areoles, the complement of the original binary image is computed. Con-5

nected components labeling is developed to isolate each areole.6

Total number of areoles in the image patch (AN). Labeling of areoles assigns a7

unique code to each areole from 1 to the number of areoles. AN can be computed8

as the maximum areole code number.9

Median/min/max areole perimeter (AMeP/AmP/AMP). The areole perimeter10

is calculated as the distance (in pixels) along the pixels of the border of the11

areole. This value is next scaled to express it in mm.12

Median/min/max areole area (AMeA/AmA/AMA). The areole area is com-13

puted as the number of pixels in each areole times the area of one pixel (in14

mm2).15

Median/min/max areole convex area (AMeCA/AmCA/AMCA). The convex16

area is measured as the area of the convex hull (smallest convex polygon which17

encloses the areole). This value is scaled by the image resolution in order to18

express it in mm2.19

Median/min/max areole solidity (AMeS/AmS/AMS). The solidity is a dimen-20

sionless parameter between 0 and 1 which measures the proportion of the pixels21

in the convex hull that are also in the area. It is computed as the ratio between22

the areole area and the convex area.23

Median/min/max areole major axis (AMeMaA/AmMaA/AMMaA). An ellipse24

having the same normalized second moments as the areole is constructed. The25

major axis of this ellipse is expressed in mm.26

Median/min/max areole minor axis (AMeMiA/AmMiA/AMMiA). The minor27

axis (in mm) of the same ellipse explained in the preceding paragraph.28

Median/min/max areole eccentricity (AMeE/AmE/AME). The eccentricity is29

a dimensionless parameter between 0 (a circle) and 1 (a line), which measures30

the ratio of the distance between the foci of the previously fitted ellipse and its31
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major axis. 1

Median/min/max areole equivalent diameter (AMeEq/AmEq/AMEq). The equiv- 2

alent diameter (in mm) is the diameter of a circle having the same area as the 3

areole. It is computed as
√

4 ·Area/π. 4

Median/min/max areole mean distance (AMeMD/AmMD/AMMD). In order 5

to obtain this measure, a distance transform is computed which measures the 6

Euclidean distance (in pixels) between the pixels of each areole and the nearest 7

vein pixel. The areole mean distance for a single areole is the mean value of all 8

these distances, appropriately scaled in mm. 9

Median/min/max areole variance distance (AMeVD/AmVD/AMVD). The vari- 10

ance distance for a single areole (in mm) is obtained as the variance of the 11

Euclidean distances computed in the same way as explained in the previous 12

paragraph. 13
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•We develop an automatic procedure to classify legume species using scanned leaves.
•The method is based exclusively on the analysis of the leaf venation images.
•We analyze the advantages over the usage of cleared leaves.
•Different state-of-the-art classifiers are compared.
•The proposed method outperforms human expert classification.




