ORIGINAL ARTICLE

SONOGRAPHIC EVALUATION OF THE COMMON BILE DUCT SIZE IN NORMAL ADULTS AT UNIVERSITY OF MAIDUGURI TEACHING HOSPITAL, NIGERIA

Farate A , U mar UH , A hmadu M S, M ustapha Z, Ahidjo A , Tahir A ${ }^{1}$
Department of Radiology, University of Maiduguri Teaching Hospital, Maiduguri, Borno State, Nigeria.

Correspondences and reprint request to: Dr A bubakar Farate, Department of Radiology, University of Maiduguri
Teaching H ospital, P. M. B. 1414 Maiduguri, Borno State, Nigeria. Email: abu.farati@gmail.com Phone: +2348033581675

Abstract

Background: Despite ultrasound safety, affordability and its widespread use in evaluation of the diseases of biliary tree, paucity of literature on the sonographic measurements of the size of the normal adult common bile duct (CBD) in this environment exists. Objectives: To determine the normal adult diameter of theCBD in this environment using ultrasonography. M ethods: This was a cross-sectional prospective study carried out at the University of Maiduguri Teaching Hospital between January to June, 2011. Results: There were 224(56\%) females and 176(44\%) males aged between 18 and 87 years (M ean \pm SD, 36.88 ± 16.97 years). The mean AP and transverseCBD diameters (\pm SD) were $3.68 \pm 0.82 \mathrm{~mm}$ and $3.89 \pm 0.86 \mathrm{~mm}$, respectively. The average mean for the two measurements (\pm SD) was $3.78 \pm 0.84 \mathrm{~mm}$ (range $=2.0-6.0 \mathrm{~mm}$). The mean transverse diameter was slightly greater than AP diameter ($p=0.0004$).TheCBD diameter was strongly correlated with age ($r=$ $0.798 ; p=0.000 ; r^{2}=0.629$). The least squares regression slope of $0.039 \mathrm{~mm} \pm 0.001$ (mean \pm SD) was obtained suggesting $0.039 \mathrm{~mm} \pm 0.001$ increase in the CBD diameter per year. There was significant correlation between theCBD diameter with weight ($r=0.504 ; p=0.000$) and $\mathrm{BMI}(r=0.454 ; p=0.000)$. No significant difference between the mean CBD diameter in males and females ($p=0.084$)was observed. Conclusion: Themean and range of CBD sizein normal adult population weredetermined and significantly correlated with age, weight, and BMI.

Keywords: Sonography, Common bileduct, Normal adult

INTRODUCTION

The common bile duct (CBD) is a part of network of structures known collectively as biliary tree, which drains bile from the liver into the second part of the duodenum. It

begins at the level where cystic duct joins the common hepatic duct (CHD) and unites distally with the pancreatic duct in a dilated ampulla. The biliary tree also includes the gall bladder, the cystic duct, the right and left hepatic ducts and the common hepatic duct, as well as a series of microscopic biliary ducts within the liver.

Ultrasonography has evolved as the primary imaging modality for measuring
the size of the CBD. The determination of adult CBD duct size and its variations with age, gender, body mass index (BMI), ${ }^{1.7}$ post cholecystectomy ${ }^{8-10}$ and changes with respiration ${ }^{11}$ have been determined in other studies using ultrasound. These studies show wide range of variations and the acceptable upper limit of normal diameter has varied greatly. Literature suggests that the upper limit of up to 7 mm in young adult is considered normal. ${ }^{2}$ This study therefore is aimed at determining the duct diameter in heal thy adult population. The findings of this research would assist clinicians to objectively assess the changes in calibre of CBD in biliary disease.

MATERIALSAND METHODS

This was across-sectional prospective study that was conducted in the Department of Radiology, University of M aiduguri Teaching Hospital. The study cohorts consisted of all eligible subjects who were referred for radiologic examination unrelated to hepatobiliary or pancreatic disease based on clinical and laboratory assessment between January and June2011.
Imaging protocol: A brief history to include previous history of hepatobiliary and pancreatic disease or surgery and physical assessment of the subjects for surgical scars and jaundice not accounted for in the history and laboratory findings of liver function test were done prior to the examination. Clinical parameters which included age, gender, height and weight were recorded for each subject. The body mass index (BMI) which was calculated as the ratio of the measured weight to the square of the measured height ($\mathrm{kg} / \mathrm{m}^{2}$) wasal so cal culated for each subject.
The examinations were performed using a high-resolution Aloka, SSD-3500 ultrasound scan machine equipped with 3.5 and 5.0 MHz
curvilinear array transducer. The 3.5 MHz curvilinear array transducer generally provides optimum resolution while maintaining adequate depth penetration and is suitable for thick subjects. A 5.0 MHz curvilinear array transducer provides greater resolution for slim subjects.
All study participants were asked to fast for at least 6 to 8 hours since fasting state distends thegallbladder and thebileducts and reduces bowel gas that may obscure visualization of the CBD. They were told not to smoke cigarette during the fasting period because nicotineis known to cause smooth musclecontraction.

Routine ultrasound of the liver was carried out before starting CBD evaluation. Subjects were excluded from the study if they had an incidental hepatomegaly (liver span $\geq 15 \mathrm{~cm}$). The CBD was imaged in subcostal or intercostal approach with the patient either in supine, right anterior oblique, left posterior oblique, left lateral decubitus or upright positions as needed. Both longitudinal and transverse imaging planes were used. The choice of optimal technique depended on differences in anatomy, body habitus, and overlying bowel gas.

Since the CHD and the proximal CBD courses in a plane that is somewhat perpendicular to theright costal margin, a parasagittal plane with transducer angled from theright shoulder to the left hip was done to enhance their visualization. Turning the subject up toward his or her left side (into a left posterior oblique position) using liver as an acoustic window was also helpful for easy identification. This transducer angulation allowed visualization of the proximal

CBD anterior to the main portal vein in most cases. If the duct was still not well visualized, the subject wasturned all theway on his or her side into a left lateral decubitus position and then imaged.

The axis of the CBD usually changes from oblique to sagittal at the superior margin of the pancreas. The distal CBD was then demonstrated in the sagittal plane, angling under the duodenum if necessary, to see the proximal intrapancreatic portion. At this point the duct curves laterally and eventually disappears into thesphincter of Oddi.

Where gas in the duodenum and antrum obscured thedistal CBD, placing the patient in an erect right posterior oblique position helped to displace the air. If bowel gas interferencestill existed, thesubject was asked to drink about 35cl to 50cl of water and restina right lateral decubitus position for at least 2 to 3 minutes. This helped to displace the gas in the duodenum and also provided an acoustic window.

The best way to evaluate the CBD is in the long-axis view anterior to the portal vein. However, transverse view was obtained by rotating the transducer 90 degrees from its long axis view without changing the position of the transducer to give a typical 'Mickey Mouse' sign. The CBD and hepatic artery forming the ears of the Mickey Mouse while the large portal vein represents the face. Suspicious tubular structures were traced to their origin to ensurethat they werepart of the bile ducts and not arteries. Colour or pulsed Doppler interrogation was also employed to determine whether a structure was a vessel or aduct.

The CBD internal diameter in long axis and transverse views were measured. The AP diameter from anterior to posterior wall was obtained fromthelongitudinal images(Figure 1). The transverse diameter from medial to lateral wall was obtained from the transverse
images (Figure 2). The average of the two measurements was used to determine the final duct size. All measurements were made from inner wall to inner wall of the ducts using electronic caliper at a fixed measurement point at least 2 cm above the head of the pancreas. The most easily identified part of theCBD.

D ata analysis

The data obtained from the structured data sheet was entered into a computer system and analysed using Statistical Packagefor Social Science Software (SPSS version 16.0Chicago, IL, USA). Theresults were expressed as mean \pm standard deviation (SD) and presented in the form of tables, charts and graphs as appropriate.

Statistical significance was assessed using student t-test to compare the mean CBD diameter between two sexes and to compare the difference between the mean AP and transverse CBD diameters. Correlation between the CBD diameter with weight, BMI and height were evaluated using Pearson's correlation test. Simple linear regression was used to correlate patient age and CBD diameter. The mean CBD diameter was used as a dependent variable, and age was used as an independent variable. P valueless than 0.05 was considered statistically significant.

RESULTS

A total of 400 hundred subjects (224 women and 176 men) were prospectively evaluated with ultrasound. They were aged between 18 and 87 (mean age: $36.9 \pm$ 16.97)[Figure3]. M ore than a half of study population (62\%) were between the ages

Table 1: Age group \& gender distribution of the sample population

Age group(years)	Females \mathbf{N} (\%)	Males \mathbf{N} (\%) Total \mathbf{N} (\%)	
$18-27$	$98(24.50)$	$50(12.50)$	$148(37.00)$
$28-37$	$55(13.75)$	$45(11.25)$	$100(25.00)$
$38-47$	$30(7.50)$	$26(6.50)$	$56(14.00)$
$48-57$	$20(5.00)$	$16(4.00)$	$36(9.00)$
$58-67$	$9(2.25)$	$19(4.75)$	$28(7.00)$
$68-77$	$7(1.75)$	$13(3.25)$	$20(5.00)$
$78-87$	$5(1.25)$	$7(1.75)$	$12(3.00)$
Total	$224(56)$	$176(44)$	$400(100)$

Table 2: Mean CBD sizes in various age groups

Agegroup (Years)	AP-diameter (mm) (Mean \pm SD $)$	Transversediameter(mm) (Mean \pm SD)	Averagediameter (mm) (Mean \pm SD)	Wall thickness (M ean \pm SD)
$18-27$	3.02 ± 0.48	3.20 ± 0.51	3.12 ± 0.48	1.04 ± 0.17
$28-37$	3.55 ± 0.45	3.75 ± 0.51	3.64 ± 0.47	1.14 ± 0.21
$38-47$	4.00 ± 0.47	4.25 ± 0.50	4.13 ± 0.47	1.19 ± 0.20
$48-57$	4.32 ± 0.53	4.49 ± 0.55	4.41 ± 0.54	1.15 ± 0.17
$58-67$	4.52 ± 0.56	4.76 ± 0.57	4.63 ± 0.59	1.22 ± 0.21
$68-77$	5.10 ± 0.61	5.35 ± 0.63	5.23 ± 0.62	1.18 ± 0.21
$78-87$	5.11 ± 0.82	5.41 ± 0.83	5.26 ± 0.83	1.13 ± 0.17
O verall	3.68 ± 0.82	3.89 ± 0.86	3.78 ± 0.84	1.12 ± 0.20

SD = standard deviation AP =anteroposterior
Table 3: Correlation between the mean CBD diameter with BMI, height and weight.

	Pearson Correlation Correlation Coefficient(r)	
BMI	0.454	P-value
Weight(kg)	0.504	0.000
Height(m)	0.152	0.000

Table 4: Gender and the overall mean and range of the CBD size

Sex(N)		APD (mm)	TRD (mm)	AveD (mm)
Females (224)	Mean(\pm SD)	$3.61+0.82$	3.82 ± 0.86	3.72 ± 0.84
	Range	$2.0-6.0$	$2.0-6.2$	$2.0-6.0$
Males(176)	Mean(\pm SD)	3.76 ± 0.82	4.00 ± 0.85	3.86 ± 0.83
	Range	$2.1-5.9$	$2.3-6.1$	$2.2-6.0$

$\mathrm{APD}=$ anteroposterior diameter, TRD =transverse diameter A veD $=$ average diameter

Figure 1: Longitudinal sonogram of the CBD showing method of measurement of the anteroposterior diameter from anterior inner wall to proximal inner wall (arrows).

Figure 2: Transverse sonogram of the CBD showing method of measurement of thetransversediameter from medial inner wall tolateral inner wall (arrows).

Figure3: Gender distribution of thestudy population

Figure 4: Scatter plot diagram showing correlation between theCBD diameter and ageof thesubjects.

The range of AP diameter of the CBD was 2.0 to 6.0 mm (mean $=3.68 \pm 0.82 \mathrm{~mm}$) and that of transverse diameter was 2.0-6.2 mm (M ean $=3.89 \pm 0.86 \mathrm{~mm}$). The average mean transverse diameter was slightly greater than the mean AP diameter ($\mathrm{P}=$ 0.0004). The overall range of CBD diameter was $2.0-6.0 \mathrm{~mm}$ (mean $=$ $3.78 \pm 0.84 \mathrm{~mm}$).

There was gradual increase in the CBD diameter with increasing age. The mean CBD diameter increased from $3.12 \mathrm{~mm} \pm 0.48$ in the age group 18 -27 years to $5.26 \mathrm{~mm} \pm 0.83$ in the age group 7887years(Table 2).A simple linear regression analysis showed strong positive correlation between the mean CBD diameter and the age ($r=0.798 ; p=$ $0.000 ; r^{2}=0.629$). The least squares regression slope of $0.039 \mathrm{~mm} \pm 0.001$ (mean \pm SE) was obtained suggesting a gradual increase in the CBD diameter by $0.039 \mathrm{~mm} \pm 0.001$ per year $(0.39 \mathrm{~mm} \pm 0.01$ per decade)[Figure4]

There was statistically significant correlation between the CBD diameter
with weight ($r=0.504 ; \mathrm{p}=0.000$) and $\mathrm{BMI}(r=$ $0.454 ; \mathrm{p}=0.000$) with no significant relationship noted with height of subjects ($r=$ $0.152 ; p=0.002$) [Table3].

The mean CBD diameter was $3.72 \mathrm{~mm} \pm 0.84$ (range $=2.0-6.0 \mathrm{~mm}$) in females and 3.86 ± 0.83 mm (range $=2.2-6.0 \mathrm{~mm}$) in males. There was no significant difference between the average mean CBD diameter in males and that of females ($p=0.084$) [Table4]. Thewall thickness of the of the CBD measured between 0.7 mm and 1.5 mm (mean $=1.12 \pm 0.2 \mathrm{~mm}$).

DISCUSSION

Themeasurement of common bile duct diameter is an important component of the evaluation of the biliary system as the size of the common bile duct diameter is a predictor of biliary obstructionor choledocholithiasis. ${ }^{12,1315}$ Several studies have been carried out quantifying the normal calibre of the CBD as measured by ultrasonography show wide range of variations and the acceptable upper limit of normal havevaried greatly. ${ }^{1,3,16}$

A prospective study of 251 patients between 20and 94 (mean $=52.5 \pm 17.63$) years of ageby Bacher et al ${ }^{3}$ showed the range of CBD diameter of $1.0-8.6 \mathrm{~mm}$ with the overall mean diameter of $3.60 \pm 1.15 \mathrm{~mm}$. In a similar study by Horrow et al ${ }^{4}$ where they found theoverall mean for all measurements of duct diameter of $3.5 \pm 1.2 \mathrm{~mm}$ and ranged between $1.7-6.0 \mathrm{~mm}$. In another study by Admassie et al ${ }^{17}$ on ultrasound assessment of common bile duct diameter in Tikur Anbessa Hospital, Addis A baba, Ethiopia. In his study, he evaluated 293 normal adult patients and found that the range of CBD diameter of $2.1-6.0 \mathrm{~mm}$ and mean diameter of 3.90 mm . The overall mean CBD in this study was $3.78 \pm 0.84 \mathrm{~mm}$ which is in close agreement with the above findings and well in therangeof thereferenced studies.

This study also showed range of CBD diameter between 2.0-6.0mm which is in close agreement with the findings of Admassie et al ${ }^{17}$ and that of Horrow et al ${ }^{4}$ both of which had maximum CBD diameter of 6.0 mm . This study did not find CBD diameter of less than 2 mm or greater than 6 mm in contrast to the findings by Bachar et al^{3} and Wu et al ${ }^{16}$ range of CBD diameter of $1.0-8.6 \mathrm{~mm}$ and $1.0-10.0 \mathrm{~mm}$ respectively.

Wachsberg et al ${ }^{18}$ found that the duct tended to beoval in shapewhen dilated, in favour of transverse diameter. Horrow et al ${ }^{4}$ also observed that non-dilated ducts transverse measurements numerically exceed AP measurements. In contrast, Perret et al ${ }^{2}$ observed no significant discrepancies in duct sizewhen compared the sagittal (AP) and transverse measurements. In this study, although the difference in the overall mean diameter obtained in AP view and that obtained in transverse view is just 0.21 mm , it is statistically significant ($P=0.0004$). The mean transverse diameter was greater than AP diameter and this correlates with the findings of Horrow et al 4 and Wachsberg et a. ${ }^{18}$

Several studies have shown that the CBD diameter increases with age. ${ }^{1-3,5,7,16,17,19}$ In 1984 Wu et al ${ }^{16}$ established the effect of age on the size of extrahepatic bile ducts. The size of the extrahepatic bile ducts was age dependent. In a study by Bachar et al ${ }^{3}$ on the effect of aging on the adult extrahepatic bile ducts using ultrasonography. They found significant correlation between CBD size and age. Adibi et al ${ }^{5}$ evaluated 375 adult patients older than 16 years of age to find out the relationship between the CBD diameter and demographic data (age, gender and

BMI), fasting, and history of opiumaddiction. They found out that the CBD diameters (proximal and distal) were significantly correlated with age. This study showed strong correlation between the CBD and age ($r=0.798 ; p=0.000 ; r^{2}=0.629$). In contrast, Horrow et al ${ }^{4}$ in a prospective study of 258 patients, failed to observe any increasein size of CBD with age.

A study by Wu et al ${ }^{16}$ also observed that the size of the CBD increases by 0.1 mm per year or 1 mm per decade. Bachar et al ${ }^{3}$ found that CBD gradually dilated 0.04 mm per year (0.4 mm per decade). In this study, the least squares regression slope of $0.039 \mathrm{~mm} \pm 0.001$ (mean \pm SE) was obtained suggesting gradual increase in the CBD diameter by $0.039 \mathrm{~mm} \pm$ 0.001 per year ($0.39 \mathrm{~mm} \pm 0.01$ per decade) which is similar to findings of Bachar et al. ${ }^{3}$ In contrast, Horrow et al. ${ }^{4}$ did not observe any increase in the CBD size per year or per decade. The enlargement of CBD diameter with increasing age may be explained by fragmentation of the longitudinal smooth myocyte bands and intervening connective tissues, and loss of the reticulo-elastic network of duct wall with aging which leads to reduced contractility and hypotonia of the CBD. ${ }^{20}$

Ultrasonographic studies to ascertain the relationship between the CBD diameter with demographic data (weight, BMI and height) were done by previous researchers. ${ }^{5-7,17}$ Daradkeh et al.'7found out that one of the factors significantly affect the diameter of the CBD is BMI. Adibi et al. ${ }^{5}$ also observed significant correlation between the CBD diameter and BMI. In contrast, Brogni et al. ${ }^{6}$ did not observe any relationship between BMI and diameter of theCBD. Thisstudy is in conformity with findings of Adibi et al. ${ }^{5}$ and Dardkeh et al.' ${ }^{7}$ as the diameter of the CBD significantly correlated with BMI ($r=0.454$; p
=0.000).The increase in the CBD diameter with increasing BMI or weight is expected becauseCBD is a part of thebody habitus.

Most researchers did not take into consideration weight or height as separate entities for correlation with the diameter of the CBD but rather preferred to correlatewith BMI. However, Admassieet al. ${ }^{17}$ correlated weight and height as separatevariableswith thediameter of the CBD. Heobserved that the duct diameter significantly correlated with weight and observed no association with height. This study is consistent with the findings of Admassie et al. ${ }^{17}$ in that the CBD diameter significantly correlated with weight ($r=$ 0.504; $p=0.000$). Though statistically significant ($p=0.002$), correlation between diameter of the CBD and height is very weak ($r=0.152$) inthisstudy.

Many studies did not establish difference in CBD diameter between the two genders. ${ }^{5 \cdot 7,17}$ This study is similar to the abovefindings as no significant difference in CBD diameter was found between the two genders ($\mathrm{P}=0.084$).

None of the previous studies conducted showed bile duct wall thickness greater than 1.5 mm . ${ }^{21-23}$ Mahour et al ${ }^{22}$ observed that the CBD wall varied from 0.8 to 1.5 mm (mean $=1.1 \mathrm{~mm}$). In a study by Schulte et al. ${ }^{23}$, the mean wall thickness of theCBD was 1 mm . No duct size measured more than 1.5 mm in their study. Mesenas et al ${ }^{24}$ in their study: duodenal endoscopic ultrasound (EUS) to identify thickening of the extrahepatic biliary tree wall in primary sclerosing cholangitis; they found 0.8 mm as the mean wall thickness of theCBD in normal control group.

The mean CBD wall thickness obtained in thisstudy was 1.1 mm and varied between
0.7 to 1.5 mm with no duct wall thickness exceeded 1.5 mm .

CONCLUSION

Ultrasonography has become the first-line diagnostic tool for evaluation of suspected biliary pathologies because it is readily available, relatively inexpensive and does not make use of ionizing radiation. With theaid of high-resolutionscanners, the luminal diameter of the CBD can be assessed
accurately. The mean CBD size in this environment was found to be 3.78 ± 0.86 mm and ranged between $2.0-6.0 \mathrm{~mm}$. There was significant correlation of the CBD diameter with age, weight, and BMI. No statistically significant difference in the CBD size found between the two genders.

REFERENCES

1. Kaim A, Steinke K, Frank M, Enriquez R, Kirsch E, Bongart G et al. Diameter of the common bile duct in the elderly patient: measurement by ultrasound. Eur Radiol 1998;8(8): 1413-1415.
2. Perret RS, Sloop GD, Borne JA. Common bile duct measurements in an elderly population. J Ultrasound Med 2000; 19:727-730.
3. Bachar GN , Cohen M , Belenky A , Atar E , Sideon SH. Effect of aging on the adult extrahepatic bile duct. J Ultrasound Med 2003; 22:879-882.
4. Horrow MM, Horrow JCH, Niakosari A, Kirby CL, Rosenberg HK. Is age associated with size of adult extrahepatic bile duct: sonographic study. Radiology 2001;221(2):411-414.
5. Adibi A, Givechian B. Diameter of common bileduct: what are the predicting factors? JRMS 2007; 12(3): 121-124.
6. Brogna A, Bucceri AM, Catalano F, Ferrara R, Mangiameli A, M onello S et al. Common bile duct and sex, age and body mass index in normal humans: ultrasonographic study. Ital J Gastroenterol 1991; 23(3):136-137.
7. Daradkeh S, Tarwneh E, AI-Hadidy A. Factors affecting common bile duct diameter. Hepatogastroenterology 2005; 52(66): 1659-1661. duct diameter in patients with cholelithiasis and / or postcholecystectomy: ultrasound evaluation of 1436 subjects. Pol J Radiol 2005; 70(4): 79-86.
8. CsendesP, CsendesA, BurgosAM, Burdiles P. Bile duct diameter before and 12 years after cholecystectomy. Rev Med Chile2007; 135:735-742.
9. Skalicky M, Dajcman D, Hojs R. Effect of cholecystectomy for gallstones on the surface of the papilla of Vater and the diameter of the common bileduct. Eur J Gastroenterol Hepatol 2002; 14(4): 399-404.
10. Wachsberg RH. Respiratory variation of extrahepatic bile duct during ultrasonography. J Ultrasound Med 1994; 13(8): 617-621.
11. Majeed AW, Ross B, Johnson AG, Reed MW. Common duct diameter as an independent predictor of choledocholithiasis: is it useful? Clin Radiol 1999; 54: 170-172.
12. Csendes A, Burdiles P, Diaz JC. Prevalence of common bileduct stones according to the increasing number of risk factors present: a prospective study employing routinely intraoperative cholangiography in 477 cases. Hepatogastroenterology 1998;

45:1415-1421.
14. Hunt DR. Common bile duct stones in non-dilated ducts? An ultrasound study. AustralasRadiol 1996; 40:221-222.
15. Onken JE, Brazer SR, Eisen GM. Predicting the presence of choledocholithiasis in patients with symptomatic cholelithiasis. Am J Gastroenterol 1996; 91:762-767.
16. Wu CC, Ho YH, Chen CY. Effect of aging on common bile duct diameter: a real-time ultrasonography study. J Clin Ultrasound 1984; 12:473-478.
17. AdmassieD. Ultrasound assessment of common bile duct diameter in Tikur Anbessa H ospital, Addis A baba, Ethiopia. Ethiop M ed J. 2008; 46(4): 391-395.
18. Wachsberg RH, Kim KH, Sundaram K. Sonographic versus endoscopic retrograde cholangiographic measurements of the bile duct revisited: importance of the transverse diameter. AJR A mJ Roentgenol 1998; 170: 669-674.
19. Joshi BR. Sonographic variations in common bile duct dimensions. JIOM 2009; 31(3): 27-29.
20. Kialian GP, Aznaurian AV. The age-related characteristics of the muscular layer of the common bile duct in man. M orfologia 1995; 108: 1012.
21. BechtoldRE. Liver, biliary tractand pancreas. In: Chen YM, Pope TL, Ott DJ (Eds). Basic Radiology, $1^{\text {st }}$ ed. Lange/ McGraw-Hill, New York, 2004; Pp281-316.
22. Mahour GH, Wakim KG, Ferris DO. The common bile duct in man: its diameter and circumference. Ann Surg. 1967; 165(3): 415-419.
23. Schulte SJ, Baron RL, Teefey SA, Rohrmann CAJr, Freeny PC, Shuman WP, Foster MA. CT of the extrahepatic bile ducts: wall thickness and contras enhancement in normal and abnormal ducts. Am J Roentgenol 1990; 154(1): 79-85.
24. Mesenas S, Vu C, Diog L, M eenanJ. Duodenal EUS to identify thickening of the extrahepatic biliary tree wall in primary sclerosing cholangitis. Gastrointest Endosc. 2006; 63(3): 403408.

Cite this article as: Farate A, Umar UH, A hmadu MS, M ustapha Z, A hidjo A , Tahir A
Sonographic Evaluation of the Common Bile Duct Size in Normal Adults at University of M aiduguri Teaching Hospital, Nigeria. KJMS 2019; 13(2):51-59.

