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ABSTRACT 
Background: The skin mucus layer of fish is endowed with biologics including, Antimicrobial peptides (AMPs) that offer 
a first line of defence against pathogens. Such peptides can either inhibit bacterial growth or completely kill the bacteria 
and hence are regarded as a viable alternative to traditional antibiotics, in addressing the ever-increasing incidences 
of antimicrobial resistance. However, one of the major hurdles to AMPs use is their poor haemolytic profile. As a result, 
a thorough evaluation of prospective AMPs’ bacterial cell membrane disruption and hemolytic potentials in the early 
phases of drug discovery is critical. The current study presented cell membrane destruction as well as hemo-compatibility 
of antimicrobial peptides previously isolated from skin mucus of African catfish, Clarias gariepinus.
Methods: A previously isolated antimicrobial peptide in the skin mucus of African catfish, C. gariepinus were profiled 
using 15% Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE). The electrical conductivity and 
alkaline phosphatase assays were utilised to measure bacterial cell envelope lysis activity as a classical mode of action 
of the antimicrobial peptides. Afterwards, fresh Rabbit blood cells were then utilised for in vitro hemolytic assay. 
Results: The peptides were found to be about 5 kDa molecular weight with, ability to damage the bacterial cell 
envelope causing significant leakage in periplasmic alkaline phosphatase enzyme and cytoplasmic electrolytes. Even at 
the highest peptide extract concentration of 100 µg/mL, no significant hemolysis was observed on the fresh rabbit blood 
cells [3.63%;P>.05], signifying their safety on normal mammalian cells. 
Conclusion: The findings of this study pointed out that antimicrobial peptides in skin mucus of C. gariepinus are potentially 
safe source of antimicrobial drug leads; however, further studies are still required to search for possibly maximum dose 
that is safe to host cells but still effective against infecting bacteria.

 

has left little known about the toxicological profiles 
and bactericidal efficacy of fish-derived antimicrobial 
peptides. Yet, exploring such may be of relevance to 
new alternative antimicrobial drug candidates in the 
era of new antimicrobial drug search.10

To this effect, the fish skin mucus has increasingly 
enthralled the search for new potential bactericidal 
drug candidates. Natively available fish biologics are 
gradually gaining pursuits as potential therapeutic 
candidates, due to their safety, low cost of production 
and rapid mode action11.

Accordingly, several studies have investigated 
the  antimicrobial activity of different fish species, 
notable examples include antimicrobial activity of 
skin mucus extracts of Hypophthalmichthys nobilis,12,13 
Clarias batrachus,14–16 Heteropneustes fossilis and 
Clarias batrachus,17 Channa striatus,18 Catla catla,19 

Rutilus frisii,20 Periophthalmodon schlosseri21 and Anabas 
testudineus22 among others.

INTRODUCTION

Pathogenic bacteria, fungi, viruses and protozoa 
flourish in the same aquatic ecosystem in which fish 

live.1 Such habitats predispose fish to higher infection 
risks compared to terrestrial vertebrates,2,3thereby 
calling for a more effective natural defence mechanism. 
Given their underdeveloped adaptive immunity, 
fish mostly utilise a more complex innate defence 
mechanism comprising three major components: 
physical, phagocytic cells and chemical mediators.4,5 

Over decades, it has been demonstrated that the fish 
mucus layer on the skin, gills, nose and gut remains 
the principal first-line physical defence against 
infections.6,7 The mucus layer comprises a cocktail of 
biologics including peptides, acute phase proteins, 
glycoproteins, enzymes, immunoglobulin, lectins and 
hemolysin that are essential in contributing potential 
leads in the field of drug discovery.8,9 However, the 
aquatic exploration has largely been for food sourcing 
with far less attention to fish-derived drug leads. This 
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However, studies on the antimicrobial potentials of 
Clarias gariepinus inhabiting any of the three major lakes 
of Uganda have not been reported. Besides, the bacterial 
cell lytic activity just like hemo-compatibility of such 
peptide extracted from the skin mucus of C. gariepinus in 
the African region remains unknown. The current work 
builds on a previous study where antimicrobial peptides 
from the skin mucus of the African catfish, C. gariepinus 
sourced from Lake Albert, Uganda were isolated.23 In fact, 
the previous study was only limited to Sephadex G-25 
peptide isolation. Therefore, in the quest for potential drug 
leads in the era of antimicrobial resistance, the current 
study presents the first report on bacterial cell envelope 
disruption and hemolytic profiles of such peptides.

MATERIALS AND METHODS
Preparation of antimicrobial peptides
Two lyophilized archived antimicrobial peptide fractions 
(Peak I and Peak II) previously isolated from 24 live 
mature C. gariepinus (Figure 1) in the family Clariidae 
(mean weight 300.50±5.98g, mean length 30.60±2.11 
cm) using Sephadex G-25 gel filtration chromatography,23 
were utilised in the present study. Guided by our 
previous study, only fractions (Peak I) with demonstrable 
antimicrobial activity E. coli [(MIC: 0.31±0.16 µg/ml) 
and S. aureus (MIC: 1.99±0.13 µg/ml)]23 and clear band 
upon resolving on a 15 (%) Sodium Dodecyl Sulfate-
Polyacrylamide Gel Electrophoresis (SDS-PAGE) was 
considered. In addition, only the peptides extracted 
through Solid Phase Extraction (SPE) technique prior to 
Sephadex G25 bio-guided fractionation were employed 
in this study. This was due to the fact that cartridge’s 
solid-phase hydrophobic matrix optimally captures the 
hydrophobic peptides that are later recovered through  
organic solvent systems.24

Peptide Profiling
To establish the peptide profiles, Sodium Dodecyl 
Sulfate-Polyacrylamide Gel Electrophoresis  (SDS-
PAGE) was run as described by Laemmli with minor 
modifications.25 A 15% separating gel and 4% stacking 
gel was used. Here, 0.01 g of lyophilized Peak I fractions 
and 0.01 g of lyophilized C18 SPE elute were dissolved in 
50 µl deionized water, respectively. Thereafter, 40 µl of 
samples and 40 µl of sample loading buffer [12% SDS 
(w/v), 6% mercaptoethanol (v/v), 30% glycerol (w/v), 
0.05% Coomassie blue G-250, 150 mm Tris/HCl, pH 
7.0] were mixed, boiled for 5 minutes at 100 °C utilising 
heating block (Biobase, Shangdon, China). Then, 10 µl of 
the samples were then loaded into each well of the gel. 
Later, 8 µl of pre-stained SDS-PAGE standard markers 
(Thermo Fisher Scientific, Waltham, USA) were included 
to estimate the molecular mass of the proteins.

Electrophoresis was run at a constant voltage of 150 V 
for 55 minutes, until the dye front migrated to 2 cm from 
the bottom of the gel (Bio-Rad, Hercules, USA). Later, 
the gel was directly stained in 100 ml staining solution 
(1 g Coomassie R250, 30 ml, methanol, 65 ml deionized 
water, 50 ml acetic acid) for 4 hours.26 Peptides were 
then directly visualized in distaining solution I (10 ml 
methanol, 10 ml Glacial acetic acid, and 80 ml deionized 
water) at 55 rpm rotation at room temperature; 25 °C 
(Edmund Buhler GmbH, Bodelshausen, Germany), until 
fairly clear bands were observed. 

Alkaline Phosphatase Activity 
Cell wall destruction was determined by measuring  
Alkaline Phosphatase Activity (ALP). An alkaline 
phosphatase assay kit (QuantiChrom BioAssay Systems, 
Hayward, USA) with p-nitrophenylphosphate (pNPP) 
as a substrate was used to measure the ALP activity of 
the cell lysate.27 Briefly, 12 hour cultured E. coli  were 
dissolved in fresh sterile medium to 106 CFU/ml. About 
5 mg/ml of laboratory prepared antimicrobial peptide 
in 0.01 M Phosphate Buffer Solution (PBS) was added 
to the medium and cultured at 37°C (Heraeus, Hanau, 
Germany) for 30 minutes. The reaction mixture (1 ml) 
was then collected every hour, centrifuged at 5000 
x g (Eppendorf, Dubai, UAE) for the next 20 hours. 
Thereafter, 150 µl of disodium p-nitrophenyl phosphate 
substrate buffer was added in the 50 µl supernatant and 
the mixture incubated in a 40 °C water bath (Grants, 
Cambridge-shire, UK) for 4 minutes. Absorbance was 
then measured at 405 nm using Microtiter plate reader 
(Biochrom, Cambridge, England) while 0.01 M PBS was 
used as a negative control. The experiment was carried 
out in triplicate before the Mean and Standard Error of 
Mean (SEM) were then calculated.

Electrical Conductivity Detection
Electrical conductivity of cytoplasmic  fluid was determined 
as previously described by Lee et al.28 Here, a 12 hour 
cultured E. coli was dissolved in fresh sterile medium to 
106 CFU/ml. Thereafter, 0.05 mg/ml of antimicrobial 
peptides in 0.01 M PBS was added and cultured at 
37°C (Heraeus, Hanau, Germany) for 20 minutes. The 
culture mixture (1 ml) was then collected every hour, 
centrifuged at 5000 x g (Eppendorf, Dubai, UAE) for the 
next 20 hours. The electrical conductivity was detected 
with Seven Go Duo SG-23 digital conductivity meter 
(Mettler-Toledo, Columbus, USA). The experiment was 
carried out in triplicate before the Mean and Standard 
Error of Mean (SEM) was then calculated, taking 0.01 M 
PBS as a negative control. 

Hemolytic Activity Testing
Hemolytic activity was assayed with a modified Rabbit 
blood cells method described by Lin and others.29 Briefly,

FIGURE 1. African Catfish

Clarias gariepinus (Burchell, 1822). Common name, African 
Catfish; Lango, Rec Lango/Twang; Luganda, Semutundu; Alur, 
Nyaii; Kiswahili, Kambale. A benthopelagic freshwater scales-
less fish, with four pairs of slender, whisker-like sensory organs 
(barbel) near the mouth. An original photo by Hedmon Okella
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fresh Rabbit blood cells were obtained by centrifuging 
whole blood from live rabbit in EDTA-coated Vacutainer 
(Becton & Dickinson, New Jersey, USA) in a refrigerated 
microfuge (Eppendorf, Dubai, UAE) at 211 x g for 5 min 
at room temperature (25 °C). Blood cells were washed 
three times with PBS, and then diluted with PBS to a 
blood cell concentration of approximately 10% (v/v).

A portion of the Rabbit blood cell suspension (500 µl) 
was transferred to six micro-centrifuge tubes (CellTreat, 
Massachusetts, USA), and mixed with 500 µL of 
antimicrobial peptide extract solution in 0.01 M PBS at 
the desired concentrations (1, 20, 40, 60, 80 and 100 µg/
ml). The tubes were then incubated at 37°C (Heraeus, 
Hanau, Germany) to induce hemolysis. After 30 minutes 
of incubation, non-hemolysed blood cells were separated 
by centrifugation at 211 x g for 5 minutes at room 
temperature. Aliquots (100 µl) of the supernatant were 
transferred to a 96-well plate (Corning, New York, USA), 
and hemoglobin release was monitored by measuring the 
absorbance of the supernatant at 540 nm using microtiter 
plate reader (Biochrom, Cambridge, England). A blood 
cell solution treated with 1% Triton X-100 (to induce 
100% lysis) was employed as a positive control, and an 
untreated blood cell suspension in 0.01 M PBS alone was 
used as negative control. Each assay was performed in 
triplicate for three independent experiments, and data 
were expressed as the mean and SEM. The percentage of 
hemolysis was calculated using the following formula30

Hemolysis (%)= ((Ae-An)/(Ap-An))  x 100

Where Ae is Absorbance of the extracts, Ap is the 
Absorbance of the positive control and An is the 
absorbance of the Negative control.

Statistical Analysis
Tableau Software v2019.4(Tableau, Seattle, U.S.A) was 
used to present data. All experiments were carried out 
in triplicate and expressed as Mean and Standard Error 
of Mean (SEM) using Prism 5.0 Statistical software 
(GraphPad, San Diego, U.S.A) and SPSS v16.0 (IBM, 
Chicago, U.S.A) were used to compare the means, in 
which a one-sample T-test was performed to determine 
the significance of the hemolytic activity of fish-derived 
antimicrobial peptides on fresh mammalian blood cells. 

Ethical Consideration
Ethical approval and permission to conduct this study 
was obtained from the Mbarara University of Science and 
Technology Research Ethics Committee (22/11-18) and 
registered with the Uganda National Council for Science 
and Technology (HS449ES).

RESULTS
Study selection and Characteristics
In the present study, lyophilized Sephadex G-25 isolated 
antimicrobial peptides belonging to distinct peaks two 
peaks (Peak I   and Peak II),23 were utilised. Sephadex 
G-25 chromatographic resin was used and two prominent 
peaks (peaks I  and II) were observed with absorbance 
measured at 280 nm. Only Peak I antimicrobial peptides 
demonstrated an antimicrobial activity with a MIC of 
0.31 ± 0.16 and 1.99 ± 0.13 µg/ml on E. coli and S. aureus, 
respectively, whereas no antimicrobial activity was 
detected in peak II. The present study therefore, utilised 

only peak I archived samples of our previous study.23

Peptide Profiling
The SDS-PAGE peptide profiles of the previously 
extracted peptides from the skin mucus of African catfish 
are shown in Figure 2. Low molecular weight peptides 
(about 5 kDa) were observed as a clear band for the 
Sephadex G-25 purified extract unlike in the case of the 
5 kDa-ultrafiltered C18 SPE elute. 

Alkaline Phosphatase Activity and Electrical Conductivity 
Throughout the culture process, the alkaline phosphatase 
content in the control group (0.01 M PBS), remained at a 
low level (below 5 iu/l), indicating the cell wall was intact 
(Figure 3a). In the antimicrobial peptide treated group, 
the alkaline phosphatase activity increased exponentially 
after an hour of treatment, as more alkaline phosphatase 
enzyme continues to leak out of the periplasm. Figure 3b 
showed the results of conductivity measurements.

Conductivity of the control group (0.01 M PBS) remained 
relatively stable at low level throughout the culture 
process. On the other hand, just after an hour of treatment 
with the antimicrobial peptides, the electrical conductivity 
was elevated significantly when compared to the control 
group, as the large volumes of the electrolyte continues 
to leak out of the cytoplasm during the culturing process.

FIGURE 2. A 15 (%) SDS-PAGE of peptides extracted 
from African catfish

The SDS-PAGE molecular marker lane (M), 5 kDa-ultrafiltered 
C18 SPE elute (1), C18 SPE and Sephadex G-25 isolated 
peptides (2). The extracted peptides were about 5 kDa.
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Hemolytic activity of Antimicrobial Peptides
When the peptide extracts of C. gariepinus skin mucus were 
incubated with fresh rabbit blood cells, the percentage 
hemolysis increased with increase in peptide concentration 
(Figure 4). However, the increase in hemolytic activity 
was not significant even at the maximum concentration 
(100 µg/ml;  P>.05) at a zero percent hemolysis test value. 
This signifies the safety of the fish-derived antimicrobial 
peptides (tested concentrations) on the Rabbit blood cells.

DISCUSSION
The present study demonstrated the capability of 
antimicrobial peptides extracted from C. gariepinus 
skin mucus in disrupting the bacterial cell wall and 
cell membrane. The previous study employed Solid 
Phase Extraction (SPE) of the antimicrobial peptides 
optimized the isolation of hydrophobic peptides. This is 
because solid phase of the SPE cartridge is a hydrophobic 
matrix that captures hydrophobic peptides that are 
later recovered by organic solvents after washing. 
Hydrophobicity is essential in bacterial cell membrane 
non-polar interactions.31 Increased hydrophobicity up 
to the optimal threshold leads to enhanced ability of 
the peptides to associate with cellular hydrophobic lipid 
bilayer,32 and most importantly, allows such peptide easily 
cross the membrane.33,34 Much as, the present study was 
able to explore the action of these peptides on bacterial 
cell envelope (Figure 4), archived samples were utilized. 
Such samples are subject to deterioration. To mitigate 
this limitation, only lyophilized samples stored at 4 °C 
with clear band profiles on the SDS-PAGE and detected 
antimicrobial activity were considered for this study.

To gain insight into the mode of action of peptides, the 
bacterial cell envelope lysis of the E. coli was investigated 
by detecting the content of the extracellular alkaline 
phosphatase and electrolytes. The choice was guided 
by the fact that cell envelope damage is the commonest 
killing mechanism of peptides with antimicrobial or 
host defence potentials.35 Alkaline phosphatase (ALP) 
catalyzes the hydrolysis of phosphate esters in an alkaline 
environment, resulting in the formation of an organic 
radical and inorganic phosphate. In this study, a rapid 
increase in the alkaline phosphatase activity in the E. coli 
culture medium within an hour of peptide treatment was 
observed, this persisted till the 13th hour of treatment. 
This hourly trend monitoring is hinged on the fact that, 
antimicrobial peptides firstly targets the cell membrane,36 
and later interact electrostatically interact with negatively 
charged microbial cell membrane, prior to membrane 
destruction. Subsequently, the antimicrobial peptides 
may align parallel to the cell membrane like a carpet 
where it destroys the cell membrane in a ‘detergent-
like’ manner,37 or they penetrate the bilayer of the cell 
membrane as described in the pole model where their 
either form Toroidal pore/Wormhole38 or aggregates into 
channel forming multimers.39 Such sequence of events 
requires interval monitoring and an hour monitoring has 
been reported as ideal.40

Given that, alkaline phosphatase is localised between the 
cell membranes and cell walls of the bacteria41 and and 
any disruption of the cell wall penetrability, leads to its 
discharge out of the bacteria. Therefore, C. gariepinus skin 
mucus peptides were capable of destroying the cell wall.

Similar increase in ALP activity, have previously 
reported for Porphyra yezoensis peptides40 and Ornidazole 
(ORZ),42 Linalool against  Pseudomonas fluorescens,43 

Dihydromyricetin against Food-Borne Bacteria44 and in 
AIEgen-Peptide Conjugate45 among others, signifying 
bacterial cell wall destruction46 and their potential 
application as far as sourcing of new antimicrobial drug 
candidates in the era of antimicrobial drug resistance is 
concerned.

 

Besides, cell wall distraction increases the cell membrane 
permeability resulting to cytoplasmic outflow and hence, 
a rise in extracellular electrolytes.47,48 Monitoring of the 
electrical conductivity of the extracellular medium can 
therefore be employed as a measure of  the bacterial cell 
membrane disruption.49 In this study, within an hour 
of peptide treatment, the electrical conductivity of E. 
coli culture medium significantly increased suggesting 
the cell wall and cell membrane breakage amounting 
to cytoplasmic fluid outflow, cell collapse and death. 
The gradual increase in conductivity after an increase, is 
possibly due to the fact that majority of the cytoplasmic 
electrolytes are lost within the first hour of membrane 
shock. This in line with studies on OVTp12 peptide on 
E.coli and S. aureus;50 Metallic oxide powders on Candida 
albicans NBRC1060, Saccharomyces cerevisiae NBRC1950, 
Aspergillus niger NBRC4067 and Rhizopus stolonifer 
NBRC4781;51 Porphyra yezoensis peptides on S. aureus;40 

Black Paper Essential Oils (BPEO) on meat-borne E.coli52 
and antibiotics like Penicillin G, Nalidixic acid, Rifampicin 
on Escherichia coli 745 and Staphylococcus aureus 9779.53 
Moreover, cell damage as well ignites transient pore 
formation and freight of peptides into the cell for 
intracellular target interactions.54 Much as, it would 
be essential to explore the interactions of the isolated 
peptides with the intracellular targets, it was beyond the 
scope of this study to explore peptide-intercellular target

FIGURE 4. Percentage hemolysis of Rabbit blood cells 
by peptide extracts of C. gariepinus.

T-1% Triton X-100. The concentration of 1-100 µg/ml did not 
hemolyze the Rabbit blood cells. The data are expressed as 
Mean± SEM
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FIGURE 3: Effect of Antimicrobial Peptide Treatment on Cell Wall and Cell Membrane Integrity

(a) Alkaline phosphatase activity in the culture medium, (b) Electrical conductivity in culture medium. PBS-0.01 M Phosphate Buffer Solution. 
Both the Alkaline phosphatase activity and Electrical conductivity were measured each hour for 20 hours. The data are expressed as 
Mean±SEM. 

the bacterial cell envelope. Furthermore, they were 
non-hemolytic to normal mammalian blood cells. The 
current study therefore, fronts the novel source of safe 
and efficacious antimicrobial drug leads of potential 
applications to food, medicinal and pharmaceutical 
industries. However, we recommend the search for 
potentially maximum dose that is safe to the host cells 
but still effective against bacteria.
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