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ABSTRACT

Geometric morphometrics (GM) is a tool for the statistical 
analysis of shape on Cartesian landmark coordinates. 
However, because GM studies commonly focus on the 
description of morphological trends within shape space (or 
morphospace), the predictive power of multivariate statistics 
to understand morphological change remains underutilized. 
Here we show the protocols to study allometry in 3D with 
these tools on a postnatal growth series of the domestic 
chicken. We contrast three approaches: a ‘traditional’ one in 
which size variables are compared statistically, a Principal 
Components Analysis on size and shape scores (Procrustes 
form space), and a multivariate regression. In the latter 
approach we further used three different independent factors 
inherently related to ontogeny: skull centroid size, body 
weight, and age of the specimens. The results clearly stress 
the importance of studying shape change in relation to 
different causal factors (i.e., with regressions), demonstrating 
that, indeed, any independent variable or variables that make 
biological sense can be used to understand morphological 
change with GM. 

Keywords: Gallus gallus, skull shape variation, 3D 
landmarks, Principal Components Analysis, multivariate 
regression.

RESUMEN

La morfometría geométrica es una herramienta para el análisis 
estadístico de la forma con coordenadas cartesianas claves o 
landmarks. Sin embargo, como la morfometría geométrica se 
centra normalmente en la descripción de tendencias morfológicas 
dentro de un morfoespacio, no se suele aprovechar el poder 
predictivo de la estadística multivariante para comprender el 
cambio morfológico. En este trabajo presentamos los protocolos 
para estudiar mediante estas herramientas la alometría en 3D 
de una serie de crecimiento postnatal de pollos domésticos. 
Comparamos tres aproximaciones diferentes: una estadística 
“tradicional” comparando variables de tamaño, un análisis de 
componentes principales de valores de tamaño y forma (espacio 
de forma Procrustes) y una regresión multivariante. Para esta 
última utilizamos tres factores independientes e inherentemente 
relacionados con la ontogenia: el tamaño del centroide del 
cráneo, el peso corporal y la edad de los especímenes. Los 
resultados destacan la importancia de investigar los cambios 
de forma en relación con factores causales (p.ej., utilizando 
regresiones), y demostrar, de hecho, que cualquier variable 
o variables con sentido biológico pueden ser utilizadas para 
comprender el cambio morfológico mediante la morfometría 
geométrica.

Palabras clave: Gallus gallus, variación de forma del cráneo, 
landmarks 3D, análisis de componentes principales (PCA), 
regresión multivariante.
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The interpretation of allometry in GM is different 
from other methodologies in the sense that isometric size 
has been set aside from the landmark confi gurations in 
the shape data (i.e., the confi gurations are equally scaled; 
see Methods). Therefore, allometry in GM can only be 
analyzed in the unique sense of testing if any variation 
in shape is correlated with size (Strauss, 2010). Thus, 

correlated within a Cartesian coordinate system it is 
logically because both measurements increase in unison 
(Fig. 1). However, there may be differences in this scaling 
relationship. When the bivariate relationship is rectilinear 
both variables scale equivalently and the phenomenon is 
interpreted as isometric growth (Strauss, 2010), whereas 
if the scaling between two variables is asymptotical (i.e., 
exponential) the rate at which one of the measurements 
changes relative to the other is uneven; by definition 
this is a case of anisometry (Fig. 1). Allometry allows 
equating growth and evolution to deviations from a 
linear relationship (e.g., positive and negative residuals 
of a line); the latter derive either from changes in the 
slope or the intercept (Shingleton & Frankino, 2013). 
However, it is important to note that a non-rectilinear 
relationship between two measurements may be due to 
the fact that the dimensionality between the variables is 
different. This occurs, for instance, when a linear length 
is compared to an area or a volume (Gould, 1977), but 
it may occur in instances when the structure is modular 
and different units grow with different dynamics (Bastir 
& Rosas, 2009). In traditional morphometrics the most 
common way to deal with this issue is the transformation 
of the original variables into logarithms, which maintains a 
straightforward interpretation of the allometric relationship 
(Huxley, 1932). 

1. INTRODUCTION

Professor Nieves López was a polymath, never afraid 
to ask questions in her incessant thirst for knowledge. 
Nieves wasn’t a user of Geometric Morphometrics (GM) 
but, while attending a talk on the topic, she expressed her 
curiosity about how allometry could be so easily analyzed 
with GM. In particular, she asked, how can it be that 
size relates to shape data if size has been set aside from 
the landmark confi gurations with Procrustes methods? 
Newcomers who begin to use GM also fi nd this confusing. 
Indeed, GM allows testing the covariation of shape data 
not only with size, but with any biologically relevant, 
independent variable, or variables, with multivariate 
regression (Monteiro, 1999), as well as more complex 
models such as the Two-Block Partial Least Squares (Rohlf 
& Corti, 2000). It is actually the multivariate analysis 
of Procrustes data that truly opens a myriad of new 
possibilities for morphological discovery (Roth & Mercer, 
2000). The fact that shape variation may be predictable 
by size or any other variable or variables further touches 
on a key operational point of GM, and is why GM is 
considered a tool for the statistical analysis of form on 
Cartesian landmark coordinates (Mitteroecker & Guntz, 
2009). To explain this, here we will use a straightforward 
example to show how to analyze the relationship between 
size and shape (allometry) on three-dimensional data of 
skull growth in the domestic chicken. 

The relatively new morphometric tools based on 
landmark coordinates were labeled geometric because 
configurations of homologous landmarks –Cartesian 
coordinates– represent the geometry of forms (Bookstein, 
1991), not the forms themselves (i.e., all qualitative 
information is lost). The application of GM involves the 
treatment of such landmark data in a two-step procedure: 
(1) the acquisition of shape data per se, applying Procrustes 
methods (Gower, 1975; Chapman, 1990); this is the 
comparative step, and (2) the analysis of the obtained 
shape data (the Procrustes coordinates) with multivariate 
statistics, which allows the analysis of the variance 
among multiple shapes, trends in the data, as well as how 
such variance may relate to –or is explained by– other 
biologically meaningful variables. Allometry is a biological 
example of the latter case, where shape variance is related 
to size changes.

Different growth rates of parts of an organism 
result in different organismal forms which is why 
allometry is so meaningful to the evolution of morphology 
and shape (Thompson, 1917; Huxley, 1932; Gayon, 
2000). Homologous (or biologically comparable) size 
measurements, such as lengths, weights, or volumes 
from a sample of organisms, are often linearly correlated 
(Klingenberg, 1996). This can easily be shown graphically, 
because allometry is equivalent to a power function 
(Huxley, 1932); when two measurements are linearly 
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Figure 1.  Examples of classical ‘Huxelyan’ models of 
isometry, anisometry and allometry with traditional 
morphometrics. Below are (left) differences in 
the intercept and (right) on the slope. A, B are 
morphological traits.
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Individual A (Week) CS W (g)
M 2 78.91 100
M 2 75.44 120
M 2 86.39 430
F 2 73.41 190
F 2 70.69 123
F 2 67.74 134
F 2 72.79 140
F 2 73.00 151
F 2 77.52 215
F 2 79.69 288
M 2 72.92 135
F 2 78.36 215
M 3 74.27 162
F 3 76.52 100
F 3 85.15 200
F 3 79.06 200
M 3 90.79 437
M 3 83.36 257
M 3 90.50 660
M 3 96.36 561
M 3 95.07 487
M 3 90.19 437
M 4 85.05 387
M 5 105.72 1150
M 5 96.66 502
F 5 99.06 525
F 5 101.71 825
F 5 94.98 672
F 5 97.40 750
F 5 97.45 670
F 5 103.73 850
F 5 99.14 670
F 5 113.84 1375
F 5 109.64 1150
F 5 77.24 215
M 6 126.25 1400
M 6 128.68 1950

Table 1.   Sex, age (A), centroid size (CS), and weight (W) of 
the studied specimens.

M=Male, F=Female

there is no evaluation of slopes or intercepts, all of which 
measure the linear association between two variables 
following specific growth models such as the classic 
models discussed by Huxley (op. cit). On the other hand, 
the “real” size of a specimen in GM is represented by the 
size of each landmark confi guration, and this is captured as 
its ‘Centroid Size’ (CS), a scalar that accounts for the real 
distance (in the real scale of each specimen) between the 
landmarks to the centroid of the confi guration (the geodesic 
center of the confi guration). CS is easy to calculate and it 
is uncorrelated with shape change unless there is allometry, 
whereas in other cases such as weight or volume, this may 
or may not be the case (Zelditch et al., 2012). Under these 
particular circumstances, CS is therefore the most reliable 
estimate of size in GM, because it provides an unbiased 
estimate of allometry. However, the fact that CS is so easy 
to obtain and so mathematically practical does not dismiss 
other continuous variables inherently related to growth to 
account for predictable changes in shape (Monteiro, 1999), 
such as the size of the entire organism (e.g., body mass) 
and age, as we will show later. 

The topic of allometry in biology is too broad for a 
detailed evaluation here (e.g., Gould, 1966, 1971, 1977; 
Klingenberg, 1996; Gayon, 2000), and so is the field 
of geometric morphometrics (Zelditch et al., 2012). 
For simplicity, we will therefore focus this GM study 
on two main objectives: (1) showing the protocols to 
study allometry, and (2) demonstrating how, indeed, GM 
allows testing the covariation of shape change with any 
quantitative and independent variable that make sense for 
a particular biological problem. For the fi rst goal, we will 
apply the Procrustes form space method (Mitteroecker et 
al., 2004, 2005) and multivariate regression (Monteiro, 
1999). For the second, and given that we will be dealing 
with a growth series, we will simply test if different scalars 
related to ontogeny (i.e., skull CS, body weight, and age 
of the specimens) yield equivalent results, as they should, 
and discuss the different protocols for the practical study 
of allometry.

2. MATERIALS AND METHODS

2.1. Sample

The studied sample for this work consists of a post-natal 
growth series of n=37 skulls of the domestic chicken 
(Gallus gallus) (Table 1) which was kindly donated by 
COBB S.A. from natural casualties on their farms (i.e., 
by stress, not illness). Given that the animals came from 
different farms, hence different breeds, and places and 
ages of death were random, we considered skulls as 
belonging to a random sampling of the same species. 
Before preparation, each frozen corpse was weighed with 
a precision balance (Table 1). The skulls were dissected 

from the corpses, then gently skeletonized manually, 
and fi nally dried out. Once prepared, a series of p=37 
3D landmarks (out of which 13 are repeated bilaterally) 
were digitized on each skull (Table 2; Fig. 2) with a 3D 
Microscribe digitizer. Digitizing error was controlled by 
re-digitizing the landmarks on different days (three times) 
and averaging the coordinates for each specimen. The 
landmark series were designed to completely cover the 
entire skull, thus outlining all views of the skull’s external 
anatomy, including the facial skeleton (beak and maxillary 
portions) and the entire neurocranium.  
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2.2. Shape Data, step 1

To obtain the shape data the confi gurations of landmarks 
were superimposed using the Generalized Procrustes 
method, also known as General Procrustes Analysis (GPA; 
Adams et al., 2004) which is based on a generalized 
least-squares minimization of the distance between 
corresponding landmarks (Gower, 1975). Whether in 2D 
or 3D, the confi gurations of landmarks are compared by 
this superimposition, and three maneuvers are required to 
this end: translation, scaling, and rotation. First, translation 
implies that all the confi gurations are brought to a common 
coordinate system which, by consensus (and because of 
the mathematical axiomatic properties that it provides) is 
the average confi guration (or grand mean). In a second 
step, the confi gurations are rigidly scaled to the same size 
(i.e., isometric scaling), and the scaling choice is Centroid 
Size=1 (i.e., unit centroid size). Thirdly, the aim is to 
reduce at maximum the distance between homologous 
landmarks, and all the confi gurations are rotated over their 
shared geodesic centroid. After these three operations the 
corresponding landmarks will be much closer to each other, 
but some mismatch will remain. This residual mismatch 
and irreducible distance among homologous landmarks 
after the Procrustes alignment is due to the geometric 
differences between the confi gurations (after translation, 
rotation, and scaling have been set aside), and is known 
as Procrustes shape data. This data is ‘invariant’ to (i.e., 
it does not possess any information about) translation, 
rotation, and scaling, and consists of a data matrix in 

Landmark Description   
1 Sagittal edge of occipital crest
2 Junction supraoccipital-parietal
3 Suture between parietal-frontal
4* Point of maximal curvature orbit
5* Suture Frontal-nasal-lacrimal
6* Naso-lacrimal suture
7* Nare’s dorsal vertex
8 Medial suture at landmark 7
9* Nare’s anterior vertex
10* Ventral naso-maxillary union at nare
11 Tip of the beak (premaxilla)
12* Naso-maxillary suture antorbital fenestra
13* Lateral suture at palatine-pterygoid
14* Orbital process
15* Postorbital process
16* Quadrate articulation w/cranium
17* Jugal articulation at quadrate
18 Medial dorsal margin foramen magnum
19 Exo-occipital-supraoccipital suture
20 Lateral depression at occipital condyle
21 Subcondylar fossa
22 Tuba tympanica
23* Quadrate-pterygoid suture
24 Union at palatine, pterygoid and sphenoid
*Refl ected bilaterally 

Table 2. Landmark descriptions.

Dorsal Lateral

Caudal

Ventral

Figure 2. Example of the studied 3D landmark confi guration on a chicken skull in four different views.
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which coordinate values for each landmark of each 
confi guration correspond to their location in this newly 
generated coordinate system (the Procrustes shape space; 
Dryden & Mardia, 1998). More mathematical, practical, 
and historical accounts about the methods can be found 
in Slice (2007), Mitteroecker & Guntz (2009), Viscosi & 
Cardini (2011), and Zelditch et al. (2012). 

In this study, all the GM procedures were performed 
with the program MorphoJ (v. 1.6.0_27; Klingenberg, 
2011) with the exception of Procrustes form space (see 
below). A special option for the Procrustes treatment of 
the landmark confi gurations with MorphoJ is isolating a 
component of symmetric shape variation which accounts 
only for the variation of a confi guration of landmarks 
with symmetry (such as a skull) (Mardia et al., 2000). 
This method, informally called ‘symmetrization’, yields a 
component of shape variation among individuals in what 
might be considered a left-right averaging (Savriama et al., 
2012). This helps ignoring any source of variation within 
the sample due to asymmetry (which is necessary only for 
biological studies interested in analyzing that factor), and 
implicitly entails reducing the small yet potentially present 
error introduced by the separate digitizing of two nearly 
identical sides of a symmetrical form.

2.3. Statistical Analyses, step 2

There are two ways to test for allometry using GM. 
One approach proposes to add a column of natural log-
transformed CS variables within a principal components 
analysis (PCA) accompanying the Procrustes data matrix 
(Mitteroecker et al., 2004, 2005). The method was 
originally called Size-Shape-space, but its similitude 
with Dryden & Mardia’s (1998) Size-and-Shape space 
–the space that results by superimposing landmark 
confi gurations without re-scaling them– led to coin the 
name Procrustes form space at the Vienna Morphofest 
in July 2006, and to our records, the first citation 
applying it was by Bastir et al. (2007). Analytically, 
PCA summarizes large amounts of data in a new set of 
variables (eigenvectors), which are a linear combination 
of the original variables in decreasing order of amount of 
explained variance (Lattin et al., 2002). By incorporating 
size in the shape data-matrix, in case of a meaningful 
association between size and shape, such size-shape PCA 
will yield an ordination (Procrustes form space) in which 
the fi rst dimension captures the covariation between size 
and shape (allometry), subsequently yielding orthogonal 
dimensions (PCs) of less-explained shape variance, which 
will therefore be completely independent of size. Besides 
the platform R (user-programmable), so far there are only 
two programs available to perform a form space (or size-
shape) analysis, TPSrelw (for 2D data) and Morphologika 
(for 3D). However, Procrustes form space can be computed 

in any statistical package, such as PAST©, Statistica© or 
SPSS©, simply exporting the Procrustes shape data and 
centroid size, say, from MorphoJ (using the Ln-transform 
of CS, and adding this to the last column of the shape data-
matrix before performing a variance-covariance PCA). 
Thereafter, shape data can be regressed on the obtained 
PC-scores to visualize the meaning of such scores as shape 
changes. Here, we performed the PCA with Statistica© (v. 
8.0; Statsoft Inc., 2007). 

Multivariate regression can also be used to test the 
association between size and shape data (Monterio, 1999). 
In our case study the independent (predictor variable) can 
be CS or log-CS, but it can also be mass (W) or age (A) 
(Table 1). For the study of allometry, one variable to test 
with the regression model would be CS, as this scalar 
represents the real size of the skull for each specimen. 
As in other software, MorphoJ predicts a vector which 
is equivalent to a shape variable that is most strongly 
associated with the independent variable (Drake & 
Klingenberg, 2008), and the statistical signifi cance of its 
explained variance (a multivariate equivalent to R2) is 
measured by permutation (here, 10,000 rounds). In order to 
graphically show the relationship between the independent 
variables and shape, MorphoJ provides a scatter-plot of the 
regression scores (ordinate) on the independent variable 
(abscissa) for all the observations in the sample. This set 
of regression scores, just as the scores of the principal 
component’s ordination, are obtained by projecting each 
individual’s data onto the obtained regression vector. If the 
resulting association is curved, it can be useful to linearize 
the data using log-CS (i.e., the natural logarithm). This is 
important because the implemented statistical models test 
for a rectilinear correlation between shape and independent 
data. Thus, a correct interpretation of the signifi cance of 
the predicted shape changes will only make sense if there 
is a rectilinear relationship between size and shape. For the 
same reason, W (weight) and A (age) may or may not need 
to be log-transformed, but this may only be determined 
after a preliminary analysis of the data. 

On the other hand, the use of CS as a predictor variable 
addresses how skull shape changes relative to skull size. 
However, using body mass as an independent variable 
addresses how skull shape changes relative to changes in 
the size of the entire animal. This difference is important 
because skull size may scale differently to the rest of 
the body, and this surely affects skull shape as a whole 
(Gould, 1966). In our example this could be the case, for 
instance, between sexes, since males or females could have 
relatively smaller or larger skulls compared to the other 
sex. Therefore, some skull-shape differences may be related 
to this sexually dimorphic allometric shift. When A (age) 
is used as an independent variable, the question addressed 
is if skull shape changes through post-natal time, which 
is obviously assumed to be the case (the null hypothesis). 
Interestingly, Ponce de León & Zollikofer (2001) argued 
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that these situations may be typifi ed differently; using 
size and shape in combination would entail studying 
ontogenetic allometry, while combining shape data and 
time would be related to studying development (though 
in our case, this would be post-natal). 

Visualization is one of the greatest advantages of using 
GM, being able to show shape differences on virtual 
models that closely resemble the studied forms (Rohlf, 
1993). Differences in shape (or shape differences correlated 
to size) correspond to differences in the coordinates 
of landmarks, and in GM these are visually expressed 
as deviations of the landmarks relative to the mean 
confi guration. For comparison, it is therefore necessary 
to have two configurations, a reference and a target. 
These can either be two specimens of the sample; or the 
mean confi guration (the consensus confi guration) as the 
reference, and a shape estimated statistically, for example 
after performing a PCA or a regression, as the target. Shape 
differences are usually shown either with vectors denoting 
the displacement of the landmarks from the reference to 
the target, or by deforming an orthogonal grid over the 
reference to the target confi guration, simulating D’Arcy 
Thompson deformation grids (Thompson, 1917). The latter 
deformation is attained by a smoothing equation known 
as the Thin Plate Spline (TPS; Bookstein, 1989), which 
computes the estimated location of coordinates surrounding 
the landmarks necessary to deform the grid from the 
reference to the target. Following the same logic and using 
the TPS, it is possible to deform images by estimating the 
pixels surrounding the landmarks from one confi guration 
onto another (image unwarping; Bookstein, 1989; Rohlf, 
2002) and, with less graphical distortion, estimating the 
corresponding polygons of 3D meshes rendered by CT-
scans, laser-scans, and photogrammetry. Deforming a 
virtual, yet real-looking form, out of a polygonal mesh 
was computer-exhausting less than a decade ago, but with 
today’s computers this is becoming a standard practice 
in GM, clearly providing the most graphically appealing 
and easy to interpret results. Here we used the software 
Landmark v. 3.6 (http://www.idav.ucdavis.edu/research/
EvoMorph) to perform these depictions. 

3. RESULTS

The analysis of the independent variables CS, W, and 
A is equivalent to a ‘traditional’ morphometric analysis 
(see Adams et al., 2004) to evaluate allometry, because 
CS is a size scalar, as it can be W. However, CS is rarely 
compared to other variables in this way. Interestingly, the 
correlation between CS and W is slightly curved (even 
though CS here is three dimensional, hence both being 
dimensionally congruent; Fig. 3a), entailing that skull size 
(denoted by CS) grows at faster rates in earlier stages (fi rst 
week) relative to the achievement of larger body masses 

(i.e., allometrically) than later. This notwithstanding, 
body mass (W) was log-transformed because it was right 
skewed (histogram; Fig. 3a), and CS was therefore also 
log-transformed to maintain all the data dimensionality 
congruent. All the independent variables, skull Log-CS and 
body mass (Log-W) and age (A) are positively correlated 
(Fig. 3b), logically entailing that both the size of the skull 
and body mass increase as time passes. 

CS (Centroid size)

W (Weight)

A (Age)

Weeks

2 3 4 5 6

a)

2 3 4 5 6

Original Variables

Weeks

2 3 4 5 6

b)

Log CS

A (Age)

Log W

2 3 4 5 6

Log-transformed Variables

Figure 3.  Correlation matrices of independent variables (CS, 
W, and A, and Log-transformed). a) Original values, 
b) log-transformed values. Histograms show how the 
frequency distributions change before and after log-
transformation.

The multivariate analyses indicate that post-natal 
growth in the chicken skull is clearly related to shape 
changes of the entire facial skeleton (its relative growth) 
and to minor changes in the cranium, which are related 
with a depression of the cranial roof. The fi rst eigenvector 
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of the PCA including size-shape data (PC1 of Procrustes 
form space), explained more than 92 % of the variance. 
Notice, however, that out of this PCA it is impossible to 
know how much shape variance is explained by the fi rst 
dimension, because the results includes size, which is 
the variable that clearly increases the explained variance 
to more than 90 %. In fact, the only way to know how 
much shape variance per se corresponds to this dimension 
is by regressing shape to the obtained PC1 scores using a 
multivariate linear regression. We performed this analysis 
and found that PC1 explains 33 % of the total variance 
(p>0.001; Fig. 4).

Using multivariate regressions, the independent 
variables Log-CS, Log-W, and A explain the same shape 
changes as the latter PC (compare Figs 4-5), predicting 
33 %, 28.90 % and 23.03 % of the explained variance, 
respectively (all, p<0.001). These percentages are 
relatively equal, though the exception is age (A). The 
farmers provided age data in weeks, which is a relatively 
imprecise measure of time to study ontogenetic change 
(i.e., individual growth rates can vary a lot within a week 
on a daily basis). This time bias explains shape variance 
by A is lower than the rest (ca. 10 % less, which is a small 
difference anyway), and why the grey-scale color coding 
of the points within the 3D scatter (Fig. 5) shows a great 
deal of overlapping.
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Figure 4. Procrustes form space scatter-plot (PCA of shape and 

size data). Notice that the axes of the scatterplot are 
equally scaled to each other for visualization purposes 
(i.e., PC1 should be much longer than PC2). The 
skulls show the skull shape differences accounted 
by PC1 scores as a warped (averaged) CT-scan, and 
were obtained by egressing the shape data on the PC1 
scores. Notice that these shape changes are identical 
to those predicted by any of the rest of variables with 
the regression models.
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Figure 5.  Skull-shape variance prediction by CS, W, 
and T (above), and correlation between 
shape regression vector (x and y) with shape 
on the z-axis. Skull differences shown as a 
warped (averaged) CT-scan of a chicken 
skull corresponding to the predicted scores 
by the multivariate regression (here, those 
estimated by Log-CS, but Log_W and A are 
identical; see text).
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4. DISCUSSION

More than a decade ago Monteiro (1999) discussed the 
usefulness of combining multivariate regression with GM 
for morphological research. At that time the combination 
of these methods and GM were still underutilized perhaps 
because they seemed either counterintuitive but, surely, 
complicated. Today the use of GM is very much extended 
in morphological research, yet most studies still focus on 
morphospace construction and comparative investigations, 
and only few exploit GM and its predictive multivariate 
toolkit to a full potential. In most cases, the causes for 
this limited use of GM together with complex statistical 
modeling may still be the same today as it was a decade 
ago. Here we have shown how useful and straightforward 
it is to exploit together GM and multivariate regression (as 
well as any other predictive multivariate technique, such 
as the Two-Block Partial Least Squares; Rohlf & Corti, 
2000) for biological enquiry on morphological change 
(Marugán-Lobón, 2010). 

Using a simple example, a chicken growth series, 
we asked if a set of three variables inherent to growth, 
the size of the skull as the centroid size of its landmark 
confi guration (CS), body mass (W) and age (A), could 
predict skull shape changes in the chicken’s skull, and  what 
these shape changes were. Intuitively, the three variables 
should predict the same pattern and unsurprisingly this 
is what the results have shown; as chickens grow most 
shape changes take place in the facial skeleton, with slight 
changes in the cranial roof. Interestingly, only ca. 30 % of 
skull shape change in chicken growth is explained by size 
or age, entailing that the rest of shape differences among 
skulls are non-allometric. Given that we are studying a 
growth series, these shape differences between individuals 
presumably must have emerged earlier in ontogeny. It 
would be worth asking (again using multivariate techniques 
and alternative covariates) if the remaining shape variance 
relates to other aspects of development or the biology of 
the chicken. For instance, earlier onset of sexual shape 
dimorphic differences could explain part of the remaining 
differences in the data. Indeed, we found that there are 
differences in relative beak size between sexes, though 
unfortunately, we found that females in the farm were 
treated such that their beaks were cut at the tip because 
under stress conditions they tend to attack each other. 
Landmark analysis is extremely precise, and thus, this 
could be the reason why we found such shape dimorphism 
in the relative size of the beak, preventing us from further 
analyzing –and showing– these results. 

Using Procrustes form space or multivariate regression 
to study allometry depends on the choice of the researcher, 
although multivariate regression allows a more ample 
repertoire of biologically meaningful questions to be 
addressed. Procrustes form space fits well with the 
conceptual defi nition of form (form=size+shape; Needham, 

1950), and operationally it is practical because it allows 
comparing developmental trajectories (or growth trajectories) 
over morphospace (Mitteroecker et al., 2004). However, 
Procrustes form space does not allow knowing the percentage 
of shape variance separated from size. Operationally, the CS 
and Procrustes coordinates (the original shape data) are in 
completely different scales, which would require using the 
correlation matrix for the PCA (to standardize the differences 
between data) instead of the variance/covariance matrix, but 
would likely yield different and unpredictable projections 
of the data (Flury, 1997). On the other hand, size in this 
approach can only be the Ln-CS, and no other variable can 
be added to the PCA (at least in principle), because only CS 
fi ts the assumptions of shape distribution within shape space 
(Mitteroecker et al., 2004; Mitteroecker & Guntz, 2008). 
Thus, as the Size-and-Shape space previously proposed 
by Dryden & Mardia (1998), the Procrustes form space is 
a useful tool to study allometry, although it is limited to 
testing allometry relative to the particular size of a given 
set of landmark confi gurations.

In this study we have shown that there is much to learn 
from morphological change with geometric morphometrics 
in combination with multivariate statistics, particularly 
predictive models. GM is a relatively new technique, and 
reciprocally, there is also much to learn about GM by 
the exploitation of the latter tools. For instance, in any 
study of organismal allometry with GM we still need to 
understand what that non-allometric component is and how 
to approach it (Strauss, 2010). Likewise, and importantly, 
one does not need to stick to the use of CS alone as a 
causal factor to address morphological change (Monteiro, 
1999). In fact –and answering Nieves’ question– any study 
that aims at understanding organismal shape change and 
morphological evolution can be approached in the same 
way as we have approached allometry, with multivariate 
regression and one or multiple independent covariates. 
The requisite is to take into account that a biologically 
reasonable hypothesis must link such independent variable 
or variables to phenotypic change. 
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