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ABSTRACT
This study derived a new heterogeneous transfer function of the Statistical Neural Network 
from a convolution of two transfer functions: the Symmetric Hard Limit and Hyperbolic Tangent 
Sigmoid, showing their various mathematical forms. The properties of the derived function were 
examined. Results show that it is a proper probability distribution with distributional properties 
shown to exist with mean 0, and variance  
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heterogeneous model is more efficient than its homogeneous forms, as indicated 

from their respective predictive performances. From the foregoing, the use of 

homogeneous models of the statistical neural networks in solving empirical 

problems is encouraged, for effective outcomes. 
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INTRODUCTION
Artificial Neural Networks (ANN) has been 
used over the years as empirical models to 
outperform most conventional statistical 
models. Its similarities to statistical models 
have been extensively discussed by Ripley 
(1993), Sarle (1994) and Sarle (1996). Anders 
(1996) was arguably the first to build an ANN 
model in statistical view, which he termed, 
Statistical Neural Network (SNN) model. In the 
same vein, Medeiros et al. (2006) developed 
an SNN model for time series models. Over 
the years, the Homogeneous Statistical Neural 
Networks (HOMSNN) models had been widely 
used in various studies. Literature is scarce on 
the Heterogeneous Statistical Neural Network 
(HETSNN) models. In Udomboso (2013a,b), it 
has been shown analytically and empirically, 
that the HETSNN is found to be more efficient 
than the HOMSNN model. Neural networks 
models, generally obtain their structure for the 
transfer functions used in the architecture. The 
choice of transfer functions in neural networks 
is of crucial importance to their performance.

Duch and Jankowski (1999) made a survey of 
transfer functions. They noted that before 
then, literature had been scarce on the 
subject matter, and had not been reviewed. 
Transfer functions may be used in the input 
pre-processing stage or as an integral part 
of the network (Duch and Jankowski, 2001). 
Testing several networks with different 
transfer functions and selecting the best one 
has been suggested as the simplest approach. 
Furthermore, they suggested that using 
heterogeneous transfer functions, also known 
as mixed transfer functions, in one network 
has the tendency to result into better effects. 
This may be introduced in two ways. Starting 
from a network with several types of transfer 
function one may train it, possibly using 
pruning techniques to drop functions that are 
not useful. Also, a constructive method that 
selects the most promising function from a 
pool of candidates, and selecting the one that 

is the best performer, adding it to the network, 
has been introduced (Duch, Adamczak and 
Dierksen, 2001; Jankowski and Duch, 2001). 
Other constructive algorithms, such as the 
cascade correlation (Fahlman and Lebiere, 
1990), may also be used for this purpose. 
Each candidate node using different transfer 
function should be trained and the most useful 
candidate added to the network. Initially the 
network may be too complex but at the end 
only the functions that are best suited to solve 
the problem are left out.

This study centers on the Multi-Layer 
Perceptron (MLP) which happens to be the 
most used type of ANN (Resop, 2006). The 
choice of MLP is because it is the only ANN 
type that allows for statistical inference. The 
mathematical rigors of SNN model, which have 
been sparse in literature in the past, have been 
established in recent times (Anders, 1996; 
Medeiros et al., 2006, Udomboso, 2013a, 
b). Few studies have reported the use of one 
and/or combination of two transfer functions. 
For example, Adepoju et al. (2007), Adewole 
et al. (2011), Akaike (1974), Akinwale et al. 
(2009), Anders (1996), Anderson (2003) and 
Ashigwuike (2012), used the sigmoid transfer 
function, while Battiti (1992) compared logistic 
and hyperbolic tangent transfer functions. 
Adeyiga et al. (2011) used both the sigmoid and 
the family of tangent transfer functions, while 
Carling (1992) as well as Falode & Udomboso 
(2016) used the symmetric saturated linear 
transfer function. Udomboso (2013a,b) used 
a convolution of both the symmetric saturated 
linear and hyperbolic tangent sigmoid 
(satlins*tansig) as well as symmetric saturated 
linear and hyperbolic tangent (satlins*tanh) 
transfer functions.

This study endeavors to analytical derive a 
heterogeneous transfer function using the 
symmetric hard limit (HARDLIMS) as well as the 
hyperbolic tangent sigmoid (TANSIG) transfer 
functions. It further showed that the derived 
transfer function is a proper probability 
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density function (pdf), with existing mean and 
variance.

A major limitation to the use of neural 
networks is the vanishing gradient problem, 
which happens in the event of large number 
of hidden layers. This is, sometimes, due to 
the need for a high number of feed-forward 

or -backward propagation from the input layer 
to the output layer in between many hidden 
layers. This can result into actual information 
getting lost (that is, vanishing) in the process. 
In order to reduce this limitation, this study 
does not go beyond a single hidden layer.

MATERIALS AND METHODS

The Statistical Neural Network Model and its Identification
The Statistical Neural Network (SNN) model proposed by Anders (1996) is given as
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𝑦𝑦 = 𝑓𝑓(𝑋𝑋, 𝑤𝑤) + 𝑢𝑢         (1) 

where 𝑦𝑦 is the dependent variable, X =  (𝑥𝑥0 ≡ 1, 𝑥𝑥1, … , 𝑥𝑥𝐼𝐼) is a vector of independent variables, 

w = (𝛼𝛼, 𝛽𝛽, 𝛾𝛾) is the network weight: ‘𝛼𝛼’ is the weight of the input unit, ‘𝛽𝛽’ is the weight of the 

hidden unit, and ‘𝛾𝛾’ is the weight of the output unit, and 𝑢𝑢 is the stochastic term that is normally 

distributed as 𝑢𝑢 ~ 𝑁𝑁(0, 𝜎𝜎2𝐼𝐼𝑛𝑛). Basically, 𝑓𝑓(𝑋𝑋, 𝑤𝑤) is the artificial neural network function, 

expressed as 

𝑓𝑓(𝑋𝑋, 𝑤𝑤) = 𝛼𝛼𝑋𝑋 + ∑ 𝛽𝛽ℎ𝑔𝑔𝐻𝐻
ℎ=1 (∑ 𝛾𝛾ℎ𝑖𝑖

𝐼𝐼
𝑖𝑖=0 𝑥𝑥𝑖𝑖)      (2) 

where 𝑔𝑔(. ) is the Homogeneous Transfer Function (HOMTF),𝑔𝑔: 𝑋𝑋 → 𝑦𝑦. Putting (2) in (1) gives 

𝑦𝑦 = 𝛼𝛼𝑋𝑋 + ∑ 𝛽𝛽ℎ𝑔𝑔𝐻𝐻
ℎ=1 (∑ 𝛾𝛾ℎ𝑖𝑖

𝐼𝐼
𝑖𝑖=0 𝑥𝑥𝑖𝑖) + 𝑢𝑢      (3) 

which is known as the Homogeneous SNN (HOMSNN) model. 

In this study, a convoluted form of the artificial neural network function given by Udomboso 

(2013) using product convolution is derived: 

𝑓𝑓(𝑋𝑋, 𝑤𝑤) = 𝛼𝛼𝑋𝑋 + ∑ 𝛽𝛽ℎ
𝐻𝐻
ℎ=1 [ 𝑔𝑔1(∑ 𝛾𝛾ℎ𝑖𝑖

𝐼𝐼
𝑖𝑖=0 𝑥𝑥𝑖𝑖)𝑔𝑔2(∑ 𝛾𝛾ℎ𝑖𝑖

𝐼𝐼
𝑖𝑖=0 𝑥𝑥𝑖𝑖)]    (4) 

Putting (4) in (1), then (3) can be rewritten as 

𝑦𝑦 = 𝛼𝛼𝑋𝑋 + ∑ 𝛽𝛽ℎ
𝐻𝐻
ℎ=1 [𝑔𝑔1(∑ 𝛾𝛾ℎ𝑖𝑖

𝐼𝐼
𝑖𝑖=0 𝑥𝑥𝑖𝑖)𝑔𝑔2(∑ 𝛾𝛾ℎ𝑖𝑖

𝐼𝐼
𝑖𝑖=0 𝑥𝑥𝑖𝑖)] + 𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗               (5) 

where 𝑢𝑢𝑖𝑖and 𝑢𝑢𝑗𝑗  are the stochastic terms that are also normally distributed as 𝑢𝑢𝑖𝑖, 𝑢𝑢𝑗𝑗 ~ 𝑁𝑁(0, 𝜎𝜎2𝐼𝐼𝑛𝑛), 

and 𝑔𝑔1(. ) and 𝑔𝑔2(. ) are the transfer functions, 𝑔𝑔1(. ). 𝑔𝑔2(. ) is known as Heterogeneous Transfer 

Function (HETTF), and other terms are as defined earlier. Equation (5) is known as 

Heterogeneous SNN (HETSNN). 

In this paper, two HOMSNN models are convoluted to derive a new HETSNN model.  The HOMSNN 

models consist of models having the HOMTFs: Symmetric HardLimit (hardlims) and Hyperbolic 

Tangent Sigmoid (tansig) transfer functions, respectively.  Moreover, the distributional properties 

of the resulting HETSNN were investigated as follows: 

Now, 

1. Let 𝑔𝑔1(. ) =  ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, defined as 

ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑓𝑓1(𝑥𝑥) = {−1                      𝑥𝑥 < 0
1                          𝑥𝑥 > 0     (6) 

For this transfer function, the HOMSNN model can thus be written as, 

(i) for 2 variables: 

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + ∑ 𝛽𝛽ℎ(𝛾𝛾ℎ0 + 𝛾𝛾ℎ1𝑥𝑥1)  + 𝑢𝑢𝐻𝐻
ℎ=1      (7) 
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So that at 1 hidden unit, (7) can be written as, 

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + 𝛽𝛽1(𝛾𝛾10 + 𝛾𝛾11𝑥𝑥1)  + 𝑢𝑢      (7.1) 

and at 2 hidden units, 

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + 𝛽𝛽1(𝛾𝛾10 + 𝛾𝛾11𝑥𝑥1)  + 𝛽𝛽2(𝛾𝛾20 + 𝛾𝛾21𝑥𝑥1)  + 𝑢𝑢   (7.2) 

 

(ii)  Similarly, for 3 variables: 

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + 𝛼𝛼2𝑥𝑥2 + ∑ 𝛽𝛽ℎ(𝛾𝛾ℎ0 + 𝛾𝛾ℎ1𝑥𝑥1 + 𝛾𝛾ℎ2𝑥𝑥2)  + 𝑢𝑢𝐻𝐻
ℎ=1    (8) 

So that at 1 hidden unit, (8) can be written as, 

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + 𝛼𝛼2𝑥𝑥2 + 𝛽𝛽1(𝛾𝛾10 + 𝛾𝛾11𝑥𝑥1 + 𝛾𝛾12𝑥𝑥2)  + 𝑢𝑢    (8.1) 

and at 2 hidden units,  

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + 𝛼𝛼2𝑥𝑥2 + 𝛽𝛽1(𝛾𝛾10 + 𝛾𝛾11𝑥𝑥1 + 𝛾𝛾12𝑥𝑥2) + 𝛽𝛽2(𝛾𝛾20 + 𝛾𝛾21𝑥𝑥1 + 𝛾𝛾22𝑥𝑥2) 

+ 𝑢𝑢              (8.2) 

2. Let 𝑔𝑔2(. ) = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔, defined as 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔 = 𝑓𝑓2(𝑥𝑥) = (2 (1 − 𝑒𝑒−2x))⁄ − 1      (9) 

For this transfer function, the HOMSNN model can thus be written as, 

(i) for 2 variables: 

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + ∑ 𝛽𝛽ℎ(2 (1 − 𝑒𝑒−2(𝛾𝛾ℎ0+𝛾𝛾ℎ1𝑥𝑥1)))⁄ − 1)  + 𝑢𝑢𝐻𝐻
ℎ=1    (10) 

So that at 1 hidden unit, (10) can be written as, 

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + 𝛽𝛽1(2 (1 − 𝑒𝑒−2(𝛾𝛾10+𝛾𝛾11𝑥𝑥1))⁄ − 1) + 𝑢𝑢    (10.1) 

and at 2 hidden units, 

  𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + 𝛽𝛽1(2 (1 − 𝑒𝑒−2(𝛾𝛾10+𝛾𝛾11𝑥𝑥1))⁄ − 1) + 𝛽𝛽1(2 (1 − 𝑒𝑒−2(𝛾𝛾10+𝛾𝛾11𝑥𝑥1))⁄ − 1) 

        + 𝑢𝑢               (10.2) 

(i) for 3 variables: 

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + 𝛼𝛼2𝑥𝑥2 + ∑ 𝛽𝛽ℎ (2 (1 − 𝑒𝑒−2(𝛾𝛾ℎ0+𝛾𝛾ℎ1𝑥𝑥1+𝛾𝛾ℎ2𝑥𝑥2)))⁄ − 1)  + 𝑢𝑢
𝐻𝐻

ℎ=1
 (11) 

So that at 1 hidden unit, (11) can be written as, 

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + 𝛼𝛼2𝑥𝑥2 + 𝛽𝛽1(2 (1 − 𝑒𝑒−2(𝛾𝛾10+𝛾𝛾11𝑥𝑥1+𝛾𝛾12𝑥𝑥2))⁄ − 1) + 𝑢𝑢  (11.1) 

and at 2 hidden units, 

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + 𝛼𝛼2𝑥𝑥2 + 𝛽𝛽1 (2 (1 − 𝑒𝑒−2(𝛾𝛾10+𝛾𝛾11𝑥𝑥1+𝛾𝛾12𝑥𝑥2))⁄ − 1) +  
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𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + 𝛼𝛼2𝑥𝑥2 + ∑ 𝛽𝛽ℎ(𝛾𝛾ℎ0 + 𝛾𝛾ℎ1𝑥𝑥1 + 𝛾𝛾ℎ2𝑥𝑥2)  + 𝑢𝑢𝐻𝐻
ℎ=1    (8) 

So that at 1 hidden unit, (8) can be written as, 

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + 𝛼𝛼2𝑥𝑥2 + 𝛽𝛽1(𝛾𝛾10 + 𝛾𝛾11𝑥𝑥1 + 𝛾𝛾12𝑥𝑥2)  + 𝑢𝑢    (8.1) 

and at 2 hidden units,  

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + 𝛼𝛼2𝑥𝑥2 + 𝛽𝛽1(𝛾𝛾10 + 𝛾𝛾11𝑥𝑥1 + 𝛾𝛾12𝑥𝑥2) + 𝛽𝛽2(𝛾𝛾20 + 𝛾𝛾21𝑥𝑥1 + 𝛾𝛾22𝑥𝑥2) 

+ 𝑢𝑢              (8.2) 

2. Let 𝑔𝑔2(. ) = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔, defined as 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔 = 𝑓𝑓2(𝑥𝑥) = (2 (1 − 𝑒𝑒−2x))⁄ − 1      (9) 

For this transfer function, the HOMSNN model can thus be written as, 

(i) for 2 variables: 

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + ∑ 𝛽𝛽ℎ(2 (1 − 𝑒𝑒−2(𝛾𝛾ℎ0+𝛾𝛾ℎ1𝑥𝑥1)))⁄ − 1)  + 𝑢𝑢𝐻𝐻
ℎ=1    (10) 

So that at 1 hidden unit, (10) can be written as, 

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + 𝛽𝛽1(2 (1 − 𝑒𝑒−2(𝛾𝛾10+𝛾𝛾11𝑥𝑥1))⁄ − 1) + 𝑢𝑢    (10.1) 

and at 2 hidden units, 

  𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + 𝛽𝛽1(2 (1 − 𝑒𝑒−2(𝛾𝛾10+𝛾𝛾11𝑥𝑥1))⁄ − 1) + 𝛽𝛽1(2 (1 − 𝑒𝑒−2(𝛾𝛾10+𝛾𝛾11𝑥𝑥1))⁄ − 1) 

        + 𝑢𝑢               (10.2) 

(i) for 3 variables: 

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + 𝛼𝛼2𝑥𝑥2 + ∑ 𝛽𝛽ℎ (2 (1 − 𝑒𝑒−2(𝛾𝛾ℎ0+𝛾𝛾ℎ1𝑥𝑥1+𝛾𝛾ℎ2𝑥𝑥2)))⁄ − 1)  + 𝑢𝑢
𝐻𝐻

ℎ=1
 (11) 

So that at 1 hidden unit, (11) can be written as, 

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + 𝛼𝛼2𝑥𝑥2 + 𝛽𝛽1(2 (1 − 𝑒𝑒−2(𝛾𝛾10+𝛾𝛾11𝑥𝑥1+𝛾𝛾12𝑥𝑥2))⁄ − 1) + 𝑢𝑢  (11.1) 

and at 2 hidden units, 

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + 𝛼𝛼2𝑥𝑥2 + 𝛽𝛽1 (2 (1 − 𝑒𝑒−2(𝛾𝛾10+𝛾𝛾11𝑥𝑥1+𝛾𝛾12𝑥𝑥2))⁄ − 1) +  
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𝛽𝛽1(2 (1 − 𝑒𝑒−2(𝛾𝛾10+𝛾𝛾11𝑥𝑥1+𝛾𝛾12𝑥𝑥2))⁄ − 1) + 𝑢𝑢     (11.2 

3. The HETSNN is derived by convoluting the HOMTFs to obtain a new HETTF, and putting it 

into (5).  

ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡 =  𝑓𝑓1(𝑥𝑥) ∗ 𝑓𝑓2(𝑥𝑥)       (12) 

Let  

𝑓𝑓(𝑥𝑥) = 𝑓𝑓1(𝑥𝑥) ∗ 𝑓𝑓2(𝑥𝑥) = ∫ 𝑓𝑓1(𝑥𝑥 − 𝑎𝑎)𝑓𝑓2(𝑎𝑎)𝑎𝑎𝑎𝑎 𝑏𝑏
𝑎𝑎      (13) 

For 𝑥𝑥 < 0, 𝑓𝑓1(𝑥𝑥) = −1 ⟹ 𝑓𝑓1(𝑥𝑥 − 𝑎𝑎) = −1, then 

 𝑓𝑓1(𝑥𝑥) ∗ 𝑓𝑓2(𝑥𝑥) = ∫ (−1) ((2 (1 − 𝑒𝑒−2𝑥𝑥))⁄ − 1)𝑎𝑎𝑎𝑎0
−𝑥𝑥 ,   − 𝑥𝑥 < 𝑎𝑎 < 0  (14) 

 = ∫ (1 − 2 (1 − 𝑒𝑒−2𝑥𝑥)⁄ )𝑎𝑎𝑎𝑎0
−𝑥𝑥      (15) 

 = ∫ 1 𝑎𝑎𝑎𝑎 − ∫ (2 (1 − 𝑒𝑒−2𝑥𝑥)⁄ )𝑎𝑎𝑎𝑎0
−𝑥𝑥

0
−𝑥𝑥     (16) 

 = ∫  𝑎𝑎𝑎𝑎 − 2 ∫ (1 − 𝑒𝑒−2𝑥𝑥)−1𝑎𝑎𝑎𝑎0
−𝑥𝑥

0
−𝑥𝑥      (17) 

 = 𝑥𝑥 − 2 ∫ (1 + 𝑒𝑒−2𝑥𝑥 + 𝑒𝑒−4𝑥𝑥 + 𝑒𝑒−6𝑥𝑥 + ⋯ )𝑎𝑎𝑎𝑎0
−𝑥𝑥    (18) 

 = 𝑥𝑥 − 2(𝑎𝑎 − (𝑒𝑒−2𝑥𝑥 2)⁄ − (𝑒𝑒−4𝑥𝑥 4)⁄ − (𝑒𝑒−6𝑥𝑥 6)⁄ + ⋯ )| 0
−𝑥𝑥 (19) 

 = 𝑥𝑥 − 2(0 − (1 2)⁄ − (1 4)⁄ − (1 6)⁄ + ⋯ ) + (𝑥𝑥 + (𝑒𝑒−2𝑥𝑥 2)⁄   

  + (𝑒𝑒−4𝑥𝑥 4)⁄ + (𝑒𝑒−6𝑥𝑥 6)⁄ + ⋯ )    (20) 

 = 𝑥𝑥 + ∑ (𝑒𝑒2𝑝𝑝𝑥𝑥 𝑝𝑝)⁄∞
𝑝𝑝=1 − ∑ (1 𝑝𝑝)⁄∞

𝑝𝑝=1     (21) 

(ii)  Similarly, for 𝑥𝑥 > 0, 𝑓𝑓1(𝑥𝑥) = 1 ⟹ 𝑓𝑓1(𝑥𝑥 − 𝑎𝑎) = 1, then 

𝑓𝑓1(𝑥𝑥) ∗ 𝑓𝑓2(𝑥𝑥) = ∫ (1) (2 (1 − 𝑒𝑒−2𝑥𝑥)⁄ − 1)𝑎𝑎𝑎𝑎𝑥𝑥
0 ,      0 < 𝑎𝑎 < 𝑥𝑥  (22)  

= 2 ∫ (1 − 𝑒𝑒−2𝑥𝑥)−1𝑎𝑎𝑎𝑎 − ∫ 1𝑥𝑥
0 𝑎𝑎𝑎𝑎𝑥𝑥

0      (23) 

= 2 ∫ (1 + 𝑒𝑒−2𝑥𝑥 + 𝑒𝑒−4𝑥𝑥 + 𝑒𝑒−6𝑥𝑥 + ⋯ )𝑎𝑎𝑎𝑎0
−𝑥𝑥 − ∫ 1𝑥𝑥

0 𝑎𝑎𝑎𝑎  (24) 

= 2(𝑎𝑎 − (𝑒𝑒−2𝑥𝑥 2)⁄ − (𝑒𝑒−4𝑥𝑥 4)⁄ − (𝑒𝑒−6𝑥𝑥 6)⁄ + ⋯ )|𝑥𝑥
0 − 𝑥𝑥  (25) 

                                    = 2(𝑥𝑥 + (𝑒𝑒−2𝑥𝑥 2)⁄ + (𝑒𝑒−4𝑥𝑥 4)⁄ + (𝑒𝑒−6𝑥𝑥 6)⁄ + ⋯ ) +  

  2(0 − (1 2)⁄ − (1 4)⁄ − (1 6)⁄ + ⋯ ) − 𝑥𝑥   (26) 

                                    = 𝑥𝑥 − ∑ (𝑒𝑒−2𝑝𝑝𝑥𝑥 𝑝𝑝)⁄∞
𝑝𝑝=1 + ∑ (1 𝑝𝑝)⁄∞

𝑝𝑝=1     (27) 

The summary of the derived function is given as 

𝑓𝑓1(𝑥𝑥) ∗ 𝑓𝑓2(𝑥𝑥) =  {
𝑥𝑥 + ∑ (𝑒𝑒2𝑝𝑝𝑥𝑥 𝑝𝑝)⁄∞

𝑝𝑝=1 − ∑ (1 𝑝𝑝)⁄∞
𝑝𝑝=1   ,    𝑥𝑥 < 0

𝑥𝑥 − ∑ (𝑒𝑒−2𝑝𝑝𝑥𝑥 𝑝𝑝)⁄∞
𝑝𝑝=1 + ∑ (1 𝑝𝑝)⁄ ,∞

𝑝𝑝=1    𝑥𝑥 > 0  (28) 
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𝛽𝛽1(2 (1 − 𝑒𝑒−2(𝛾𝛾10+𝛾𝛾11𝑥𝑥1+𝛾𝛾12𝑥𝑥2))⁄ − 1) + 𝑢𝑢     (11.2 

3. The HETSNN is derived by convoluting the HOMTFs to obtain a new HETTF, and putting it 

into (5).  

ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡 =  𝑓𝑓1(𝑥𝑥) ∗ 𝑓𝑓2(𝑥𝑥)       (12) 

Let  

𝑓𝑓(𝑥𝑥) = 𝑓𝑓1(𝑥𝑥) ∗ 𝑓𝑓2(𝑥𝑥) = ∫ 𝑓𝑓1(𝑥𝑥 − 𝑎𝑎)𝑓𝑓2(𝑎𝑎)𝑎𝑎𝑎𝑎 𝑏𝑏
𝑎𝑎      (13) 

For 𝑥𝑥 < 0, 𝑓𝑓1(𝑥𝑥) = −1 ⟹ 𝑓𝑓1(𝑥𝑥 − 𝑎𝑎) = −1, then 

 𝑓𝑓1(𝑥𝑥) ∗ 𝑓𝑓2(𝑥𝑥) = ∫ (−1) ((2 (1 − 𝑒𝑒−2𝑥𝑥))⁄ − 1)𝑎𝑎𝑎𝑎0
−𝑥𝑥 ,   − 𝑥𝑥 < 𝑎𝑎 < 0  (14) 

 = ∫ (1 − 2 (1 − 𝑒𝑒−2𝑥𝑥)⁄ )𝑎𝑎𝑎𝑎0
−𝑥𝑥      (15) 

 = ∫ 1 𝑎𝑎𝑎𝑎 − ∫ (2 (1 − 𝑒𝑒−2𝑥𝑥)⁄ )𝑎𝑎𝑎𝑎0
−𝑥𝑥

0
−𝑥𝑥     (16) 

 = ∫  𝑎𝑎𝑎𝑎 − 2 ∫ (1 − 𝑒𝑒−2𝑥𝑥)−1𝑎𝑎𝑎𝑎0
−𝑥𝑥

0
−𝑥𝑥      (17) 

 = 𝑥𝑥 − 2 ∫ (1 + 𝑒𝑒−2𝑥𝑥 + 𝑒𝑒−4𝑥𝑥 + 𝑒𝑒−6𝑥𝑥 + ⋯ )𝑎𝑎𝑎𝑎0
−𝑥𝑥    (18) 

 = 𝑥𝑥 − 2(𝑎𝑎 − (𝑒𝑒−2𝑥𝑥 2)⁄ − (𝑒𝑒−4𝑥𝑥 4)⁄ − (𝑒𝑒−6𝑥𝑥 6)⁄ + ⋯ )| 0
−𝑥𝑥 (19) 

 = 𝑥𝑥 − 2(0 − (1 2)⁄ − (1 4)⁄ − (1 6)⁄ + ⋯ ) + (𝑥𝑥 + (𝑒𝑒−2𝑥𝑥 2)⁄   

  + (𝑒𝑒−4𝑥𝑥 4)⁄ + (𝑒𝑒−6𝑥𝑥 6)⁄ + ⋯ )    (20) 

 = 𝑥𝑥 + ∑ (𝑒𝑒2𝑝𝑝𝑥𝑥 𝑝𝑝)⁄∞
𝑝𝑝=1 − ∑ (1 𝑝𝑝)⁄∞

𝑝𝑝=1     (21) 

(ii)  Similarly, for 𝑥𝑥 > 0, 𝑓𝑓1(𝑥𝑥) = 1 ⟹ 𝑓𝑓1(𝑥𝑥 − 𝑎𝑎) = 1, then 

𝑓𝑓1(𝑥𝑥) ∗ 𝑓𝑓2(𝑥𝑥) = ∫ (1) (2 (1 − 𝑒𝑒−2𝑥𝑥)⁄ − 1)𝑎𝑎𝑎𝑎𝑥𝑥
0 ,      0 < 𝑎𝑎 < 𝑥𝑥  (22)  

= 2 ∫ (1 − 𝑒𝑒−2𝑥𝑥)−1𝑎𝑎𝑎𝑎 − ∫ 1𝑥𝑥
0 𝑎𝑎𝑎𝑎𝑥𝑥

0      (23) 

= 2 ∫ (1 + 𝑒𝑒−2𝑥𝑥 + 𝑒𝑒−4𝑥𝑥 + 𝑒𝑒−6𝑥𝑥 + ⋯ )𝑎𝑎𝑎𝑎0
−𝑥𝑥 − ∫ 1𝑥𝑥

0 𝑎𝑎𝑎𝑎  (24) 

= 2(𝑎𝑎 − (𝑒𝑒−2𝑥𝑥 2)⁄ − (𝑒𝑒−4𝑥𝑥 4)⁄ − (𝑒𝑒−6𝑥𝑥 6)⁄ + ⋯ )|𝑥𝑥
0 − 𝑥𝑥  (25) 

                                    = 2(𝑥𝑥 + (𝑒𝑒−2𝑥𝑥 2)⁄ + (𝑒𝑒−4𝑥𝑥 4)⁄ + (𝑒𝑒−6𝑥𝑥 6)⁄ + ⋯ ) +  

  2(0 − (1 2)⁄ − (1 4)⁄ − (1 6)⁄ + ⋯ ) − 𝑥𝑥   (26) 

                                    = 𝑥𝑥 − ∑ (𝑒𝑒−2𝑝𝑝𝑥𝑥 𝑝𝑝)⁄∞
𝑝𝑝=1 + ∑ (1 𝑝𝑝)⁄∞

𝑝𝑝=1     (27) 

The summary of the derived function is given as 

𝑓𝑓1(𝑥𝑥) ∗ 𝑓𝑓2(𝑥𝑥) =  {
𝑥𝑥 + ∑ (𝑒𝑒2𝑝𝑝𝑥𝑥 𝑝𝑝)⁄∞

𝑝𝑝=1 − ∑ (1 𝑝𝑝)⁄∞
𝑝𝑝=1   ,    𝑥𝑥 < 0

𝑥𝑥 − ∑ (𝑒𝑒−2𝑝𝑝𝑥𝑥 𝑝𝑝)⁄∞
𝑝𝑝=1 + ∑ (1 𝑝𝑝)⁄ ,∞

𝑝𝑝=1    𝑥𝑥 > 0  (28) 
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Equation (28) is the derived HETTF for the symmetric hard limit and hyperbolic tangent 

sigmoid transfer functions. 

For this derived transfer function, the HETSNN model can thus be written as 

(i) for 2 variables,  

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + ∑ 𝛽𝛽ℎ((2(𝛾𝛾ℎ0 + 𝛾𝛾ℎ1𝑥𝑥1)2) + 3(𝛾𝛾ℎ0 + 𝛾𝛾ℎ1𝑥𝑥1) +  (1 2)⁄ )𝐻𝐻
ℎ=1      

− (𝛾𝛾ℎ0 + 𝛾𝛾ℎ1𝑥𝑥1)(∑ (𝑒𝑒−2𝑝𝑝(𝛾𝛾ℎ0+𝛾𝛾ℎ1𝑥𝑥1) 𝑝𝑝)⁄𝑥𝑥
𝑝𝑝=1 − ∑ (𝑒𝑒−2𝑝𝑝 𝑝𝑝)⁄𝑥𝑥

𝑝𝑝=1 )) + 𝑢𝑢1𝑢𝑢2  (29) 

So that at 1 hidden unit, 

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + 𝛽𝛽1(2(𝛾𝛾10 + 𝛾𝛾11𝑥𝑥1)2 + 3(𝛾𝛾10 + 𝛾𝛾11𝑥𝑥1) + (1 2)⁄ ) 

−(𝛾𝛾10 + 𝛾𝛾11𝑥𝑥1)(∑ (𝑒𝑒−2𝑝𝑝(𝛾𝛾10+𝛾𝛾11𝑥𝑥1) 𝑝𝑝)⁄𝑥𝑥
𝑝𝑝=1 − ∑ (𝑒𝑒−2𝑝𝑝 𝑝𝑝)⁄𝑥𝑥

𝑝𝑝=1 )) + 𝑢𝑢1𝑢𝑢2  (30) 

at 2 hidden units, 

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + 𝛽𝛽1(2(𝛾𝛾10 + 𝛾𝛾11𝑥𝑥1)2 + 3(𝛾𝛾10 + 𝛾𝛾11𝑥𝑥1) + (1 2)⁄  

−(𝛾𝛾10 + 𝛾𝛾11𝑥𝑥1)(∑ (𝑒𝑒−2𝑝𝑝(𝛾𝛾10+𝛾𝛾11𝑥𝑥1) 𝑝𝑝) − ∑ (𝑒𝑒−2𝑝𝑝 𝑝𝑝))⁄
𝑥𝑥

𝑝𝑝=1
⁄

𝑥𝑥

𝑝𝑝=1
+ 𝛽𝛽2((2(𝛾𝛾20 + 𝛾𝛾21𝑥𝑥1)2 

+3(𝛾𝛾20 + 𝛾𝛾21𝑥𝑥1) + (1 2) −⁄ (𝛾𝛾20 + 𝛾𝛾21𝑥𝑥1)(∑ (𝑒𝑒−2𝑝𝑝(𝛾𝛾20+𝛾𝛾21𝑥𝑥1) 𝑝𝑝)⁄
𝑥𝑥

𝑝𝑝=1
 

− ∑ (𝑒𝑒−2𝑝𝑝 𝑝𝑝))⁄𝑥𝑥
𝑝𝑝=1 + 𝑢𝑢1𝑢𝑢2       (31) 

(ii) Similarly, for 3 variables,  

           𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + 𝛼𝛼2𝑥𝑥2 + ∑ 𝛽𝛽ℎ(2(𝛾𝛾ℎ0 + 𝛾𝛾ℎ1𝑥𝑥1 + 𝛾𝛾ℎ2𝑥𝑥2)2 + 3(𝛾𝛾ℎ0 + 𝛾𝛾ℎ1𝑥𝑥1 + 𝛾𝛾ℎ1𝑥𝑥2)𝐻𝐻
ℎ=1

 +(1 2⁄ )) − (𝛾𝛾ℎ0 + 𝛾𝛾ℎ1𝑥𝑥1 + 𝛾𝛾ℎ1𝑥𝑥2)(∑ (𝑒𝑒−2𝑝𝑝(𝛾𝛾ℎ0+𝛾𝛾ℎ1𝑥𝑥1+𝛾𝛾ℎ1𝑥𝑥2) 𝑝𝑝)⁄𝑥𝑥
𝑝𝑝=1 − ∑ (𝑒𝑒−2𝑝𝑝 𝑝𝑝⁄ )𝑥𝑥

𝑝𝑝=1 ) 

 +𝑢𝑢1𝑢𝑢2           (32) 

at 1 hidden unit, 

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + 𝛼𝛼2𝑥𝑥2 + 𝛽𝛽1(2(𝛾𝛾10 + 𝛾𝛾11𝑥𝑥1 + 𝛾𝛾12𝑥𝑥2)2 + 3(𝛾𝛾10 + 𝛾𝛾11𝑥𝑥1 + 𝛾𝛾12𝑥𝑥2) 

                    + ∑ (𝑒𝑒−2𝑝𝑝 𝑝𝑝⁄ )) +𝑥𝑥
𝑝𝑝=1 𝑢𝑢1𝑢𝑢2       (33) 

at 2 hidden units, 

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1 + 𝛼𝛼2𝑥𝑥2 + 𝛽𝛽1(2(𝛾𝛾10 + 𝛾𝛾11𝑥𝑥1 + 𝛾𝛾12𝑥𝑥2)2 + 3(𝛾𝛾10 + 𝛾𝛾11𝑥𝑥1 + 𝛾𝛾11𝑥𝑥2) 

        +(1 2⁄ )) − (𝛾𝛾10 + 𝛾𝛾11𝑥𝑥1 + 𝛾𝛾12𝑥𝑥2)(∑ (𝑒𝑒−2𝑝𝑝(𝛾𝛾10+𝛾𝛾11𝑥𝑥1+𝛾𝛾12𝑥𝑥2) 𝑝𝑝⁄ ) −𝑥𝑥
𝑝𝑝=1 ∑ (𝑒𝑒−2𝑝𝑝 𝑝𝑝⁄ ))𝑥𝑥

𝑝𝑝=1  

        +𝛽𝛽2(2(𝛾𝛾20 + 𝛾𝛾21𝑥𝑥1 + 𝛾𝛾22𝑥𝑥2)2 + 3(𝛾𝛾20 + 𝛾𝛾21𝑥𝑥1 + 𝛾𝛾21𝑥𝑥2) + (1 2⁄ )) 

       −(𝛾𝛾20 + 𝛾𝛾21𝑥𝑥1 + 𝛾𝛾22𝑥𝑥2)(∑ (𝑒𝑒−2𝑝𝑝(𝛾𝛾20+𝛾𝛾21𝑥𝑥1+𝛾𝛾22𝑥𝑥2) 𝑝𝑝⁄ ) −𝑥𝑥
𝑝𝑝=1 ∑ (𝑒𝑒−2𝑝𝑝 𝑝𝑝⁄ ))𝑥𝑥

𝑝𝑝=1 + 𝑢𝑢1𝑢𝑢2 (34) 
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2.2 Distributional Properties of the Hardlims*TansigFunction 

 Definition: 

Let 𝑋𝑋 be a continuous random variable with the probability distribution 𝑓𝑓(𝑥𝑥), which is said 

to be a probability density function (pdf) such that: 

(i) 𝑓𝑓(𝑥𝑥) ≥ 0, ∀𝑥𝑥. 

(ii) 𝑓𝑓(𝑥𝑥) has, at most, a finite number of discontinuities in every finite interval on the 

real line. 

(iii) ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 = 1∞
−∞ ,  

(iv) For every interval [𝑎𝑎, 𝑏𝑏], 𝑃𝑃{𝑎𝑎 ≤ 𝑋𝑋 ≤ 𝑏𝑏} = ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎  

 Now, to show that the derived HETTF in (28) is pdf: 

∫ 𝑓𝑓1(𝑥𝑥) ∗ 𝑓𝑓2(𝑥𝑥)𝑑𝑑𝑥𝑥 = ∫ (𝑥𝑥 + ∑ (𝑒𝑒2𝑝𝑝𝑝𝑝 𝑝𝑝⁄ )∞
𝑝𝑝=91 − ∑ (1 𝑝𝑝⁄ ))∞

𝑝𝑝=1 𝑑𝑑𝑥𝑥0
−∞

∞
−∞   

+ ∫ (𝑥𝑥 − ∑ (𝑒𝑒2𝑝𝑝𝑝𝑝 𝑝𝑝⁄ )∞
𝑝𝑝=1 + ∑ (1 𝑝𝑝⁄ )∞

𝑝𝑝=1 )𝑑𝑑𝑥𝑥∞
0   (35) 

           = ∫ 𝑥𝑥 𝑑𝑑𝑥𝑥0
−∞ + ∫ ∑ (𝑒𝑒2𝑝𝑝𝑝𝑝 𝑝𝑝⁄ )∞

𝑝𝑝=1
0

−∞ − ∫ ∑ (1 𝑝𝑝⁄ )∞
𝑝𝑝=1

0
−∞  + ∫ 𝑥𝑥 𝑑𝑑𝑥𝑥∞

0   

          − ∫ ∑ (𝑒𝑒−2𝑝𝑝𝑝𝑝 𝑝𝑝⁄ )∞
𝑝𝑝=1  𝑑𝑑𝑥𝑥∞

0 + ∫ ∑ (1 𝑝𝑝⁄ )∞
𝑝𝑝=1

∞
0 𝑑𝑑𝑥𝑥 (36) 

= ∑ (𝑒𝑒2𝑝𝑝𝑝𝑝 2𝑝𝑝2⁄ )∞
𝑝𝑝=1 | 0

−∞ + ∑ (𝑒𝑒2𝑝𝑝𝑝𝑝 2𝑝𝑝2⁄ )∞
𝑝𝑝=1 |∞

0   (37) 

= ∑ (1 2𝑝𝑝2⁄ )∞
𝑝𝑝=1 + ∑ (1 2𝑝𝑝2⁄ )∞

𝑝𝑝=1     (38) 

= 1 + 𝑐𝑐        (39) 

where 𝑐𝑐 = 2 ∑ (1 2𝑝𝑝2⁄ )∞
𝑝𝑝=2  is negligible (0) as 𝑝𝑝 → ∞. 

 Hence, we obtain the mean and variance of the derived HETTF as follows: 

𝑓𝑓1(𝑥𝑥) ∗ 𝑓𝑓2(𝑥𝑥) =  {
𝑥𝑥 + ∑ (𝑒𝑒2𝑝𝑝𝑝𝑝 𝑝𝑝⁄ )∞

𝑝𝑝=1 − ∑ (1 𝑝𝑝⁄ )∞
𝑝𝑝=1      𝑥𝑥 < 0

𝑥𝑥 − ∑ (𝑒𝑒2𝑝𝑝𝑝𝑝 𝑝𝑝⁄ )∞
𝑝𝑝=1 + ∑ (1 𝑝𝑝⁄ )∞

𝑝𝑝=1       𝑥𝑥 > 0  

𝐸𝐸(𝑥𝑥) = ∫ 𝑥𝑥(𝑓𝑓1(𝑥𝑥) ∗ 𝑓𝑓2(𝑥𝑥))𝑑𝑑𝑥𝑥∞
−∞        (40)  

          = ∫ 𝑥𝑥(𝑓𝑓1(𝑥𝑥) ∗ 𝑓𝑓2(𝑥𝑥))𝑑𝑑𝑥𝑥 =  ∫ 𝑥𝑥(𝑥𝑥 + ∑ (𝑒𝑒2𝑝𝑝𝑝𝑝 𝑝𝑝⁄ )∞
𝑝𝑝=1 − ∑ (1 𝑝𝑝⁄ ))∞

𝑝𝑝=1 𝑑𝑑𝑥𝑥0
−∞

∞
−∞   

+ ∫ 𝑥𝑥(𝑥𝑥 − ∑ (𝑒𝑒2𝑝𝑝𝑝𝑝 𝑝𝑝⁄ )∞
𝑝𝑝=1 + ∑ (1 𝑝𝑝⁄ )∞

𝑝𝑝=1 )𝑑𝑑𝑥𝑥∞
0     (41) 

                      = (𝑥𝑥3 3⁄ )| 0
−∞ + ∑ (1 𝑝𝑝⁄ )∞

𝑝𝑝=1 ∫ 𝑥𝑥𝑒𝑒2𝑝𝑝𝑝𝑝 − ∑ (1 𝑝𝑝⁄ )∞
𝑝𝑝=1

0
−∞ ∫ 𝑥𝑥 𝑑𝑑𝑥𝑥0

−∞    

+(𝑥𝑥3 3⁄ )|∞
0 − ∑ (1 𝑝𝑝⁄ )∞

𝑝𝑝=1 ∫ 𝑥𝑥𝑒𝑒−2𝑝𝑝𝑝𝑝 + ∑ (1 𝑝𝑝⁄ )∞
𝑝𝑝=1

∞
0 ∫ 𝑥𝑥 𝑑𝑑𝑥𝑥∞

0   (42) 
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          = ∑ (𝑒𝑒−2𝑝𝑝𝑝𝑝 𝑝𝑝⁄ )∞
𝑝𝑝=1 (𝑥𝑥 − (1 2𝑝𝑝⁄ ))| 0

−∞ − ∑ (𝑒𝑒−2𝑝𝑝𝑝𝑝 𝑝𝑝⁄ )∞
𝑝𝑝=1 (𝑥𝑥 − (1 2𝑝𝑝⁄ ))|∞

0  (43) 

          = − ∑ (1 2𝑝𝑝3⁄ )∞
𝑝𝑝=1  +  ∑ (1 2𝑝𝑝3⁄ )∞

𝑝𝑝=1  = 0     (44) 

𝐸𝐸(𝑥𝑥2) = ∫ 𝑥𝑥2(𝑓𝑓1(𝑥𝑥) ∗ 𝑓𝑓2(𝑥𝑥))𝑑𝑑𝑥𝑥∞
−∞        (45) 

           = ∫ 𝑥𝑥2(𝑓𝑓1(𝑥𝑥) ∗ 𝑓𝑓2(𝑥𝑥))𝑑𝑑𝑥𝑥 =  ∫ 𝑥𝑥2(𝑥𝑥 + ∑ (𝑒𝑒2𝑝𝑝𝑝𝑝 𝑝𝑝⁄ )∞
𝑝𝑝=1 − ∑ (1 𝑝𝑝⁄ ))∞

𝑝𝑝=1 𝑑𝑑𝑥𝑥0
−∞

∞
−∞   

+ ∫ 𝑥𝑥2(𝑥𝑥 − ∑ (𝑒𝑒2𝑝𝑝𝑝𝑝 𝑝𝑝⁄ )∞
𝑝𝑝=1 + ∑ (1 𝑝𝑝⁄ )∞

𝑝𝑝=1 )𝑑𝑑𝑥𝑥∞
0     (46) 

           = (𝑥𝑥4 3⁄ )| 0
−∞ + ∑ (1 𝑝𝑝⁄ )∞

𝑝𝑝=1 ∫ 𝑥𝑥2𝑒𝑒2𝑝𝑝𝑝𝑝 − ∑ (1 𝑝𝑝⁄ )∞
𝑝𝑝=1

0
−∞ ∫ 𝑥𝑥2 𝑑𝑑𝑥𝑥0

−∞ +  (𝑥𝑥4 3⁄ )|∞
0   

− ∑ (1 𝑝𝑝⁄ )∞
𝑝𝑝=1 ∫ 𝑥𝑥2𝑒𝑒−2𝑝𝑝𝑝𝑝 + ∑ (1 𝑝𝑝⁄ )∞

𝑝𝑝=1
∞

0 ∫ 𝑥𝑥2 𝑑𝑑𝑥𝑥∞
0     (47) 

           = ∑ (1 𝑝𝑝⁄ )∞
𝑝𝑝=1 (𝑥𝑥2(𝑒𝑒2𝑝𝑝𝑝𝑝 2𝑝𝑝⁄ )(𝑥𝑥(𝑒𝑒2𝑝𝑝𝑝𝑝 2𝑝𝑝2⁄ ) − (𝑒𝑒2𝑝𝑝𝑝𝑝 4𝑝𝑝3⁄ ))| 0

−∞  

− ∑ (1 𝑝𝑝⁄ )∞
𝑝𝑝=1 (−𝑥𝑥2(𝑒𝑒−2𝑝𝑝𝑝𝑝 2𝑝𝑝⁄ ) − 𝑥𝑥(𝑒𝑒−2𝑝𝑝𝑝𝑝 2𝑝𝑝2⁄ ) + (𝑒𝑒2𝑝𝑝𝑝𝑝 4𝑝𝑝3⁄ ))|∞

0  (48) 

           = ∑ (1 𝑝𝑝⁄ )(1 4𝑝𝑝3⁄∞
𝑝𝑝=1 ) + ∑ (1 𝑝𝑝⁄ )(1 4𝑝𝑝3⁄∞

𝑝𝑝=1  )  = 2 ∑ (1 4𝑝𝑝4⁄ )∞
𝑝𝑝=1   (49) 

                       = ∑ (1 2𝑝𝑝4⁄ )∞
𝑝𝑝=1 = ((1 2⁄ ) + (1 32⁄ ) + ⋯ )     (50) 

Therefore, variance of  𝑓𝑓1(𝑥𝑥) ∗ 𝑓𝑓2(𝑥𝑥)   is 

𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥) = 𝐸𝐸(𝑥𝑥2) − [𝐸𝐸(𝑥𝑥)]2        (51) 

 = ∑ (1 2𝑝𝑝4⁄ )∞
𝑝𝑝=1 − 0        (52) 

 = ∑ (1 2𝑝𝑝4⁄ )∞
𝑝𝑝=1         (53) 

Hence, equations (44) and (53) are the mean and the variance of the derived HETTF, respectively. 

Thus, HETTF 

𝑔𝑔1(∑ 𝛾𝛾ℎ𝑖𝑖𝑥𝑥𝑖𝑖
𝐼𝐼
𝑖𝑖=0 )𝑔𝑔2(∑ 𝛾𝛾ℎ𝑖𝑖𝑥𝑥𝑖𝑖

𝐽𝐽
𝑗𝑗=0 ) =  {

𝑥𝑥 + ∑ (𝑒𝑒2𝑝𝑝𝑝𝑝 𝑝𝑝⁄ )∞
𝑝𝑝=1 − ∑ (1 𝑝𝑝⁄ ),∞

𝑝𝑝=1   𝑥𝑥 < 0
𝑥𝑥 − ∑ (𝑒𝑒2𝑝𝑝𝑝𝑝 𝑝𝑝⁄ )∞

𝑝𝑝=1 + ∑ (1 𝑝𝑝⁄ ),∞
𝑝𝑝=1   𝑥𝑥 > 0  

has a mean value of 0 and variance ∑ 1
2𝑝𝑝4

∞
𝑝𝑝=1 . 
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          = ∑ (𝑒𝑒−2𝑝𝑝𝑝𝑝 𝑝𝑝⁄ )∞
𝑝𝑝=1 (𝑥𝑥 − (1 2𝑝𝑝⁄ ))| 0

−∞ − ∑ (𝑒𝑒−2𝑝𝑝𝑝𝑝 𝑝𝑝⁄ )∞
𝑝𝑝=1 (𝑥𝑥 − (1 2𝑝𝑝⁄ ))|∞

0  (43) 

          = − ∑ (1 2𝑝𝑝3⁄ )∞
𝑝𝑝=1  +  ∑ (1 2𝑝𝑝3⁄ )∞

𝑝𝑝=1  = 0     (44) 

𝐸𝐸(𝑥𝑥2) = ∫ 𝑥𝑥2(𝑓𝑓1(𝑥𝑥) ∗ 𝑓𝑓2(𝑥𝑥))𝑑𝑑𝑥𝑥∞
−∞        (45) 

           = ∫ 𝑥𝑥2(𝑓𝑓1(𝑥𝑥) ∗ 𝑓𝑓2(𝑥𝑥))𝑑𝑑𝑥𝑥 =  ∫ 𝑥𝑥2(𝑥𝑥 + ∑ (𝑒𝑒2𝑝𝑝𝑝𝑝 𝑝𝑝⁄ )∞
𝑝𝑝=1 − ∑ (1 𝑝𝑝⁄ ))∞

𝑝𝑝=1 𝑑𝑑𝑥𝑥0
−∞

∞
−∞   

+ ∫ 𝑥𝑥2(𝑥𝑥 − ∑ (𝑒𝑒2𝑝𝑝𝑝𝑝 𝑝𝑝⁄ )∞
𝑝𝑝=1 + ∑ (1 𝑝𝑝⁄ )∞

𝑝𝑝=1 )𝑑𝑑𝑥𝑥∞
0     (46) 

           = (𝑥𝑥4 3⁄ )| 0
−∞ + ∑ (1 𝑝𝑝⁄ )∞

𝑝𝑝=1 ∫ 𝑥𝑥2𝑒𝑒2𝑝𝑝𝑝𝑝 − ∑ (1 𝑝𝑝⁄ )∞
𝑝𝑝=1

0
−∞ ∫ 𝑥𝑥2 𝑑𝑑𝑥𝑥0

−∞ +  (𝑥𝑥4 3⁄ )|∞
0   

− ∑ (1 𝑝𝑝⁄ )∞
𝑝𝑝=1 ∫ 𝑥𝑥2𝑒𝑒−2𝑝𝑝𝑝𝑝 + ∑ (1 𝑝𝑝⁄ )∞

𝑝𝑝=1
∞

0 ∫ 𝑥𝑥2 𝑑𝑑𝑥𝑥∞
0     (47) 

           = ∑ (1 𝑝𝑝⁄ )∞
𝑝𝑝=1 (𝑥𝑥2(𝑒𝑒2𝑝𝑝𝑝𝑝 2𝑝𝑝⁄ )(𝑥𝑥(𝑒𝑒2𝑝𝑝𝑝𝑝 2𝑝𝑝2⁄ ) − (𝑒𝑒2𝑝𝑝𝑝𝑝 4𝑝𝑝3⁄ ))| 0

−∞  

− ∑ (1 𝑝𝑝⁄ )∞
𝑝𝑝=1 (−𝑥𝑥2(𝑒𝑒−2𝑝𝑝𝑝𝑝 2𝑝𝑝⁄ ) − 𝑥𝑥(𝑒𝑒−2𝑝𝑝𝑝𝑝 2𝑝𝑝2⁄ ) + (𝑒𝑒2𝑝𝑝𝑝𝑝 4𝑝𝑝3⁄ ))|∞

0  (48) 

           = ∑ (1 𝑝𝑝⁄ )(1 4𝑝𝑝3⁄∞
𝑝𝑝=1 ) + ∑ (1 𝑝𝑝⁄ )(1 4𝑝𝑝3⁄∞

𝑝𝑝=1  )  = 2 ∑ (1 4𝑝𝑝4⁄ )∞
𝑝𝑝=1   (49) 

                       = ∑ (1 2𝑝𝑝4⁄ )∞
𝑝𝑝=1 = ((1 2⁄ ) + (1 32⁄ ) + ⋯ )     (50) 

Therefore, variance of  𝑓𝑓1(𝑥𝑥) ∗ 𝑓𝑓2(𝑥𝑥)   is 

𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥) = 𝐸𝐸(𝑥𝑥2) − [𝐸𝐸(𝑥𝑥)]2        (51) 

 = ∑ (1 2𝑝𝑝4⁄ )∞
𝑝𝑝=1 − 0        (52) 

 = ∑ (1 2𝑝𝑝4⁄ )∞
𝑝𝑝=1         (53) 

Hence, equations (44) and (53) are the mean and the variance of the derived HETTF, respectively. 

Thus, HETTF 

𝑔𝑔1(∑ 𝛾𝛾ℎ𝑖𝑖𝑥𝑥𝑖𝑖
𝐼𝐼
𝑖𝑖=0 )𝑔𝑔2(∑ 𝛾𝛾ℎ𝑖𝑖𝑥𝑥𝑖𝑖

𝐽𝐽
𝑗𝑗=0 ) =  {

𝑥𝑥 + ∑ (𝑒𝑒2𝑝𝑝𝑝𝑝 𝑝𝑝⁄ )∞
𝑝𝑝=1 − ∑ (1 𝑝𝑝⁄ ),∞

𝑝𝑝=1   𝑥𝑥 < 0
𝑥𝑥 − ∑ (𝑒𝑒2𝑝𝑝𝑝𝑝 𝑝𝑝⁄ )∞

𝑝𝑝=1 + ∑ (1 𝑝𝑝⁄ ),∞
𝑝𝑝=1   𝑥𝑥 > 0  

has a mean value of 0 and variance ∑ 1
2𝑝𝑝4

∞
𝑝𝑝=1 . 

Adepoju, G. A., Ogunjuyigbe, S. O. A., & Alawode, K. O. (2007). Application of neural 
network to load forecasting in Nigerian electrical power system. The Pacific 
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Figure 1: Plot of the homogeneous (hardlims and transig) and heterogeneous 
(hardlims*tansig) transfer functions

RESULTS AND 
DISCUSSIONS
To demonstrate the models (HOMSNNs and 
HETSNN), the data used were generated from 
the normal distribution with mean of 5 and 
variance of 1. The data were subjected to each 

of the modelling approaches. A fixed hidden 
neuron was used in the models. Analyses were 
done using MATLAB R2015a at 1000 iterations. 
The mean and variance were computed for 
each prediction and their generated errors. 
Also, computed is their Network Information 
Criterion (NIC).

Table 1: Predictive performance of the HOMSNN and HETSNN transfer functions
Model Transfer Function Predicted Error NIC

Mean Variance Mean Variance

HOMSNN
Hardlims 5.0999 0.1564 0.1001 0.5744 1.0854

Tansig 5.1373 0.1776 0.0627 0.4357 1.1899

HETSNN Hardlims*Tansig 4.8648 0.0395 0.3352 0.5989 0.6938

Table 1 presents the mean and variance of 
predicted values and the error generated. It 
is noticed that for the predicted values, the 
HETSNN model with hardlims*tansig transfer 
function had the least mean and variance, 
while in the case of the generated error, the 
HOMSNN model with tansig transfer function 
had the least mean and variance. Model 
selection based on the NIC shows that the 
HETSNN model with hardlims*tansig transfer 
function is the better preferred model, while 
the tansig function is the least preferred.

CONCLUSION
This study derived a heterogeneous transfer 
function involving the symmetric hardlimit 
and hyperbolic tangent sigmoid transfer 
functions. The mathematical functions of the 
homogeneous and heterogeneous transfer 
functions were incorporated into the structural 
form of the statistical neural network models, 
respectively. Hence, the empirical form was 

described, showing the number of terms 
ensuing from the number of input and hidden 
neurons, respectively. It went further to 
show that the derived transfer function is a 
proper probability distribution function (pdf), 
having mean and variance to be and 
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A DERIVED HETEROGENEOUS TRANSFER FUNCTION FROM CONVOLUTION OF SYMMETRIC 

HARDLIMIT AND HYPERBOLIC TANGENT SIGMOID TRANSFER FUNCTIONS 

OR 

A DERIVED HETEROGENEOUS TRANSFER FUNCTION FROM CONVOLUTION OF TWO 

HOMOGENEOUS TRANSFER FUNCTIONS 

 

ABSTRACT 

This study derived a new heterogeneous transfer function of the Statistical Neural 

Network from a convolution of two transfer functions: the Symmetric Hard Limit 

and Hyperbolic Tangent Sigmoid, showing their various mathematical forms. The 

properties of the derived function were examined. Results show that it is a proper 

probability distribution with distributional properties shown to exist with mean 0, 

and variance ∑ 1
2𝑝𝑝4

∞
𝑝𝑝=1 . Numerical illustrations showed that the derived 

heterogeneous model is more efficient than its homogeneous forms, as indicated 

from their respective predictive performances. From the foregoing, the use of 

homogeneous models of the statistical neural networks in solving empirical 

problems is encouraged, for effective outcomes. 

Keywords: Probability distribution, transfer functions, convolution, homogeneous statistical 

neural networks, heterogeneous statistical neural network, symmetric hard limit, hyperbolic 

tangent Sigmoid,    

 

 

 

, respectively. The numerical illustrations 
showed that the heterogeneous model is more 
efficient than its homogeneous forms, given 
from their predictive performances. This study 
suggests the use of homogeneous functions 
of the statistical neural networks in solving 
empirical problems for effective outcomes.
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