
New technologies for big multimedia

data treatment
Mercedes Barrionuevo, Luis Britos, Fabricio Bustos, Verónica Gil-Costa,

Mariela Lopresti, Virginia Mancini, Natalia Miranda, Cesar Ochoa,

Fabiana Piccoli, A. Marcela Printista, Nora Reyes

Laboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC).

Departamento de Informática.

Universidad Nacional de San Luis.

Argentina.

e-mail: {gvcosta, mpiccoli, mprinti, nreyes}@unsl.edu.ar

Abstract—With the technology advance and the growth of
Internet, the information that can be found in this net, as well
as the number of users that access to look for specific data is
bigger. Therefore, it is desirable to have a search system that
allows to retrieve information at a reasonable time and in an
efficient way. In this paper we show two computing paradigms
appropriate to apply in the treatment of large amounts of data
consisting of objects such as images, text, sound and video,
using hybrid computing over MPI+OpenMP and GPGPU.
The proposal is developed through experience gained in the
construction of various indexes and the subsequent search,
through them, of multimedia objects.

Index Terms—Metric Space, Hybrid Computation, GPU,
Index, Parallel Searching

I. INTRODUCTION

MEtric spaces have been proven to be a useful and

practical model for similarity search problems on

very-large collections of complex data objects such as

images or audio. In this case, queries are represented by

objects of the same type to those stored in the database

where, for example, one is interested in retrieving the top-k

objects which are the most similar to a given query. The

degree of similarity between two objects is calculated by an

application-dependent function called the distance function,

which is usually expensive to compute, and pre-computed

distances are used to index the database in order to reduce

the average number of calls to this function during search.

Most existing search structures have been designed to

run on a single computer. They are built with different

assumptions about type of distance function, form of query,

index storage and temporal properties of the data to be

organized. These centralized metric indexes achieve a sig-

nificant speedup when compared to the sequential scan, but

their costs increases linearly with the growth of the dataset

[1]. Thus, the ability of centralized indexes to maintain a

reasonable query response time when the datset multiples in

size, its scalabilty, is limited.

To tackle this problem we propose to use parallel and

distributed algorithms that aim to optimize resource utiliza-

tion, response time and throughput. The field of architecture

and paradigms for parallel and distributed computation envi-

ronment is large due to the numerous research challenge it

offers for different objectives. Recently, the hybrid archi-

tecture model has begun to attract more attention for at

least two reasons. The first is that it is relatively easy to

pick a language/library instantiation of the hybrid model;

in this work we used OpenMP+MPI and GPGPU, solids

commercial products with implementation from multiples

vendors. The second reason is that several scalable parallel

computers now appears to encourage this model. The idea of

the hybrid parallel paradigm is to exploit parallelism beyond

a single level using the threads paradigm to exploit the

multiples cores per node (with one multithreaded process per

node) while using message passing to communicate among

the nodes.

The remaining of this paper is organized as follows: sec-

tion II describes the concepts required for the development of

this work. Sections III and IV develop, respectively, hybrid

programming and GPU approaches applied to the metric

spaces context. Section V locates the concepts of cloud

and HPC applied to the processing of big multimedia data

treatment. Sections VI discusses some final considerations.

II. PREVIOUS CONCEPTS

In this section, we explain the main concepts to develop

this work.

A. Metric Spaces, Queries and Indexes

A metric space (X, d) is composed of a universe of valid

objects X and a distance function d : X × X → R+

defined among them. The distance function determines the

similarity (or dissimilarity) between two given objects and

JCS&T Vol. 13 No. 3 December 2013

111

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CONICET Digital

https://core.ac.uk/display/52476754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

satisfies several properties such as strict positiveness (ex-

cept d(x, x) = 0, which must always hold), symmetry

(d(x, y) = d(y, x)), and the triangle inequality (d(x, z) ≤
d(x, y) + d(y, z)). The finite subset U ⊆ X with size

n = |U |, is called the database and represents the set of

objects of the search space. The distance is assumed to be

expensive to compute, hence it is customary to define the

search complexity as the number of distance evaluations

performed, disregarding other components.

There are two main queries of interest [2], [1], [3]: Range

Searching and the k Nearest Neighbors (k-NN). The goal

of a range search (q, r)d is to retrieve all the objects x ∈
U within the radius r of the query q (i.e. (q, r)d = {x ∈
U/d(q, x) ≤ r}). In k-NN queries, the objective is to retrieve

the set k-NN(q) ⊆ U such that |k − NN(q)| = k and

∀x ∈ k−NN(q), v ∈ U∧v /∈ k−NN(q), d(q, x) ≤ d(q, v).

When an index is defined, it helps to retrieve the objects

from U that are relevant to the query by making much

less than n distance evaluations during searches. The saved

information in the index can vary, some indices store a subset

of distances between objects, others maintain just a range

of distance values. In general, there is a tradeoff between

the quantity of information maintained in the index and

the query cost it achieves. As more information an index

stores (more memory it uses), lower query cost it obtains.

However, there are some indices that use memory better

than others. Therefore in a database of n objects, the most

information an index could store is the n(n−1)/2 distances

among all element pairs from the database. This is usually

avoided because O(n2) space is unacceptable for realistic

applications [4].

Proximity searching in metric spaces usually are solved

in two stages: preprocessing and query time. During the

preprocessing stage an index is built and it is used during

query time to avoid some distance computations. Basically

the state of the art in this area can be divided in two families

[2]: pivot based algorithms and compact partition based

algorithms. In the first case, the index consists in a set of

pivots {p1, . . . , pm} ⊆ U , which computes and keeps (in a

data structure, usually like a tree) some (or all) distances

{d(p1, x), d(p2, x), . . . , d(pm, x)}, x ∈ U . The queries are

solved considering all pivots. In the second case, the space

is divided into small and compact zones. A set of objects,

called centers, {c1, . . . , cs} ⊆ U are chosen and the rest

of the elements are distributed into the s zones defined in

different ways by the centers ci. The index is composed

by the centers, the elements of each zone, and often some

additional distances.

There is an alternative to “exact” similarity searching

called approximate similarity searching [5], where accuracy

or determinism is traded for faster searches [2][1][3][6],

and encompasses approximate and probabilistic algorithms.

The goal of approximate similarity search is to reduce

significantly search times by allowing some errors in the

query outcome.

In approximate algorithms one usually has a threshold ǫ
as parameter, so that the retrieved elements are guaranteed

to have a distance to the query q at most (1 + ǫ) times of

what was asked for [7]. Probabilistic algorithms on the other

hand state that the answer is correct with high probability.

Some examples are [8], [9]. In the next section we detail a

probabilistic method: Permutation Index [10].

B. Big Data

Many institutions and organizations today produce a large

amount of data per day [11]. Recent statistics show that

Facebook 1 has more than 900M users, 2.5 billion content

items and produces more than 105 TB per hour. Twitter 2 is

another source of large amount of data producing more than

800 tweets per second. Every minute more than 60 blogs

are created, 168 million mails are sent, 600 new videos and

so on. This situation has given rise to the existence of the

Big Data problem.

Big data is important due to more data may lead to

more accurate analyses. More accurate analyses may lead

to more confident decision making. And better decisions

can mean greater operational efficiencies, cost reductions

and reduced risk. However, some problems arise with this

new exponential growth and availability of data. (1) The

data cannot be easily analyzed in on a simple laptop (say

few Gigabytes to Terabytes). (2) Most organizations do

not know whether it is worth keeping the data or not. (3)

How to store/organize the new data. (4) Visualization is

another important issue as most scientific and commercial

applications require to plot the data. (5) How to find out

which data points are really important. (6) The data are

generally quirky and messy (unstructured text, json3 files

with lots of missing data, fast files with quality metrics, etc.)

This large amount of data consist of text and also mul-

timedia data like sound and video. In fact, most of the

current data is not in a structured format. For example,

blogs and tweets are weakly structured texts, while images

and video are only structured for storage and display, but

totally unstructured with respect to their semantic content.

As it is the content which is important for most applications

(specially web applications), its extraction in a structured

way is a major challenge.

C. Hybrid Computation

Recent computational architectures, such as multi-core

CPUs and clusters, proposed several orders of magnitude

faster than the corresponding serial implementations. To

achieve these speedups they have imposed additional com-

plexities on programming. Programmers must take the ini-

tiative to implement parallel processing capabilities to their

programs to fully utilize the hardware available.

1www.facebook.com
2www.twitter.com
3JavaScript Object Notation

JCS&T Vol. 13 No. 3 December 2013

112

The current infrastructures have distributed-memory but

use shared-memory. As a result of efforts of MPI designer

to deliver efficient MPI implementations, which put the

full capabilities of shared-memory system to use for high-

performance intra-node message passing, most parallel ap-

plications still use pure MPI for parallelization. This means

that in the era of multi-core, many applications run an

MPI process per core. From the point of view of the

programmer, the model known as pure MPI ignores the fact

that the cores within a processor shares memory. In this

model, it is not required that the MPI library supports multi-

thread, which simplifies the algorithm implementation. All

communications among processes inside of same processor

are performed by producing an MPI message exchange in

the application. This communication has to be optimized by

using methods supporting shared memory among the process

running on the same processor and through the intercon-

nection network of cluster for MPI processes running on

different processors.

The work presented in [12] questions whether nowadays it

is appropriate to continue using these pure MPI trend. A new

style considers a hybrid OpenMP/MPI programming model

which allows any MPI process to spawn a team of OpenMP

threads. Thus, inserting OpenMP compiler directives into an

MPI code is a straightforward way to build a hybrid parallel

program.

The idea of hybrid parallel programming is to decompose

an application into tasks and the use of multiple control

flows running on different processors or cores to reduce the

runtime. An important feature is that threads within a process

share the address space, i.e. they have a common address

space. In particular, different threads of a single process can

be assigned to different cores of a multi-core processor.

Based on the above, a suitable choice for a parallel pro-

gramming model becomes extremely important on current

hybrid architectures. The taxonomy of parallel programming

models proposed in [13] defines the following levels: a) Pure

MPI where each core is used for one MPI process; b) Pure

OpenMP based on virtual distributed shared memory system

(DSM) where the application is parallelized only with shared

memory directives; c) Hybrid MPI+OpenMP Master-only

where there is no overlap among message-passing MPI

calls and application code in other threads; and d) Hybrid

MPI+OpenMP with Overlap where one or more threads of

the OpenMP team to execute communication, letting the rest

do the actual computations.

Moving from a single thread scheme to a multi-thread

scheme is not a simple task from the perspective of commu-

nication library. To support an implementation of a multi-

thread scheme, the MPI-2.2 standard defines four levels to

initialize MPI thread environment. The argument required by

the MPI INIT function is used to specify the desired level

of thread. The possible values are listed in increasing order

of thread support:

1) MPI THREAD SINGLE: only one thread will exe-

cute;

2) MPI THREAD FUNNELED: the process may be

multi-threaded, but only the main thread will make

MPI calls (all MPI calls are “funneled” to the main

thread);

3) MPI THREAD SERIALIZED: the process may be

multi-threaded, and multiple threads may make MPI

calls, but only one at a time: MPI calls are not made

concurrently from two distinct threads (all MPI calls

are “serialized”) and

4) MPI THREAD MULTIPLE: multiple threads may

call MPI, with no restrictions.

D. GPGPU

Mapping general-purpose computation onto GPU implies

to use the graphics hardware to solve any applications,

not necessarily of graphic nature. This is called GPGPU

(General-Purpose GPU), GPU computational power is used

to solve general-purpose problems [14], [15]. The parallel

programming over GPUs has many differences from parallel

programming in typical parallel computer, the most relevant

are: The number of processing units, CPU-GPU memory

structure and Number of parallel threads.

Every GPGPU program has many basic steps, first the

input data transfers to the graphics card. Once the data are

in place on the card, many threads can be started (with little

overhead). Each thread works over its data and, at the end

of the computation, the results should be copied back to the

host main memory.

Not all kind of problem can be solved in the GPU

architecture, the most suitable problems are those that can

be implemented with stream processing and using limited

memory, i.e. applications with abundant parallelism.

The Compute Unified Device Architecture (CUDA), sup-

ported from the NVIDIA Geforce 8 Series, enables to use

GPU as a highly parallel computer for non-graphics appli-

cations [14], [16]. CUDA provides an essential high-level

development environment with standard C/C++ language.

It defines the GPU architecture as a programmable graphic

unit which acts as a coprocessor for CPU. It has multiple

streaming multiprocessors (SMs), each of them contains

several (eight, thirty-two or forty-eight, depending GPU

architecture) scalar processors (SPs).

The CUDA programming model has two main charac-

teristics: the parallel work through concurrent threads and

the memory hierarchy. The user supplies a single source

program encompassing both host (CPU) and kernel (GPU)

code. Each CUDA program consists of multiple phases

that are executed on either CPU or GPU. All phases that

exhibit little or no data parallelism are implemented in CPU.

Contrary, if the phases present much data parallelism, they

are coded as kernel functions in GPU. A kernel function

defines the code to be executed by each thread launched in

a parallel phase.

JCS&T Vol. 13 No. 3 December 2013

113

GPU computation considers a hierarchy of abstraction lay-

ers: grid, blocks and threads. The threads, basic execution

unit that executes kernel function, in the CUDA model are

grouped into blocks. All threads in a block execute on one

SM and communicate among them through the shared mem-

ory. Threads in different blocks can communicate through

global memory. Besides shared and global memory, the

threads have their local variables. All Thread − blocks
form a grid. The number of grids, blocks per grid and

threads per block are parameters fixed by the programmer,

and adjustable to improve performance.

Respect of memory hierarchy, CUDA threads may access

data from multiple memory spaces during their execution.

Each thread has private local memory and each block has

shared memory visible to all its threads. These memories

have the same lifetime that the kernel. All threads have

access to the same global memory and two additional read-

only memory spaces: the constant and texture memory

spaces, which are optimized for different memory usages.

The global, constant and texture memory spaces are persis-

tent across launched kernel by the same application. Each

kind of memory has its own access cost, and the global

memory accesses are the most expensive.

III. METRIC SPACES USING HYBRID COMPUTATION

Hybrid Algorithm

Search

 Node

Search

 Node

Search

 Node
Broker

 Node
First Level

 MPI

SPMD

Second Level

 OpenMP

Communication

workers

Fig. 1. Two level hybrid algorithm approach. In the first level communica-
tion is managed with the MPI library. In the second level communication
is managed with the OpenMP library.

Figure 1 shows a hybrid approach based on the Single

Program Multiple Data (SPMD) programming model. The

hybrid approach has two programming levels. The first level

is used to schedule distributed computation and to perform

intra-node communication by means of the MPI library. The

second level, is used to manage thread computation and

inter-node communication by means of the OpenMP library.

In particular, Figure 2 presents the thread management

scheme proposed in [17] for a pivot-based metric space

index named Sparse Spatial Selection (SSS) [18]. This

approach uses the MPICH library for inter-node commu-

nication and OpenMP library to perform the query pro-

cessing using shared memory. The application architec-

ture considers P + 1 MPI processes, P Query Processing

processes and the Broker process, distributed on P + 1

T1

Input queue

T2 T3 TN-1

Output queue

TN

MPI_Comm_A

MPI_Comm_B

workers

Fig. 2. Thread management in a hybrid parallel platform.

physical nodes. MPI was initialized to support the thread en-

vironment (MPI THREADS MULTIPLE) where multiples

threads may call MPI, with no restrictions.

Inter-node messages are handled by two threads of a

single MPI process by means of the MPI COMM WORLD

communicator. In other words, the communication is done

by the two specific threads, one to receive messages and

another to send messages. Those threads use an input and

output queue protected by critical regions. Queues are FIFO

data structures that are used as an asynchronous method

of intra-node communication. Moreover, each thread has

a different MPI Comm communicator to perform com-

munication (send/receive messages) in parallel. All other

non-communicating threads in a node are executing the

index search and distance evaluations. We call them worker

threads.

Threads are created and allocated into cores using the

system call sched setaffinity(), but taking into account the

following conditions: the threads of communication are

allocated into the first two cores and the other threads are

distributed among the remaining cores of the node.

1) Distributed Memory Management: Building a metric

space index over the parallel platform described above can

be made as follows.

At a high intra-node programming level, the index can

be build using a local, global or even mixed partitioned

approach [19]. By using a local partitioning approach the

whole database is evenly distributed among nodes and then

each node builds its own index using the local data. The

index construction phase has a low cost as no communication

among nodes is required. But during the query processing

phase resource utilization is wasted as every single query has

to be sent to all search nodes and more communication and

computations is required per query. Therefore at any instant

time there is only one query being solved.

The global partitioned approach builds a single sequential

index using the whole database collection. Then the index

is distributed among nodes using different criteria. E.g. the

SSS index can be partitioned by rows or by columns as

shown in [17]. The index construction phase is expensive in

terms of memory allocation and communication specially for

large database collections. But during the query processing

JCS&T Vol. 13 No. 3 December 2013

114

phase resourses tend to be well used due to a single query

visits few nodes. Therefore at any instant time more than

one query can be solved. As a side effect communication

and query response time are reduced.

A mixed partitioning approach typically uses global infor-

mation (such as centers or pivots selected from the whole

database) but each node builds its own local index using

the global information. This approach tends to use the best

features of both local and global index partitioning.

2) Shared Memory Management: At a low inter-node

programming level, each node has a single index partition.

All threads access to the same main memory so it makes no

sense to partition the index again among threads. Then the

question at this point is how to assign the resources (threads)

to process the incoming queries. A first approach named

Bulk [20] all threads work together to solve each query. To

this end, the query processing operation is divided into small

tasks containing information of the specific job assigned to a

thread such as the next cell/node of the index to be examined.

A task usually involves computing distance evaluations and

the triangle inequality. Each time the algorithm processes a

query it may generate a set of task requirements that are

stored in special purposes queues. Each thread has a private

local requirement queue and a secondary requirement queue

that maintain tasks. This second queue is accessed by other

threads to search for tasks. Then, this approach requires

periodically synchronizations to avoid read-write conflicts

among threads.

A second approach named Local [20] each query is solve

by a single thread. Neither data sharing nor periodical syn-

chronizations are required because each thread completely

processes a query by using the sequential algorithm.

IV. METRIC SPACES USING GPU

The computational capabilities of many-core GPUs have

been exploited to improve the query process of metric

spaces. There are many massively parallel algorithms for

metric indexes implemented in a GPU. Querying for k-NN

has obtained most of the attention of researchers in the area.

In [21], [22], [23], [24], [25], [26], [27] improve explicity

the brute force algorithm (or sequential scan) to find the k-

NN. They differ in the parts parallelized or the methodology

applied. Other works [21], [28], [29] implemented some well

known sequential metric indexes, such as the List of Clusters

(LC) and the SSS-Index. For the case of vector data authors

in [30], [31], [32] use Kd-trees for finding the k-NN and [30]

apply a variant of the Kd-tree for the all k-NN problem.

All algorithms in the literature [21], [29], [22], [23],

[24], [25], [26], [31], [28] for k-NN using GPU, solutions

have high complexity in the data structures. Furthermore,

they have a high granularity. Kernels are not uniform and

have a lot of branching. This implies synchronization and

serialization of the threads, which means all of them have

to wait to be in the same path again to resume. In a nutshell,

they use conditionals and do diverse tasks depending on

comparisons. On the other hand the algorithms demand a lot

of memory resources for the data structures and intermediate

data, e.g. distances to pivots, and allocate only very small

instances of the metric databases. For example in [29] they

use only one thread block for the actual k-NN search,

this implies overloading all the threads in the block and

consequently suboptimal GPU resources usage, most of the

threads are not used. In [23], [24], [25] they propose to

solve several queries at a time, but they use just the same

amount of threads than for a single query. This again implies

thread overload, memory starvation and idle processing units

in the GPU. In [26] is also suboptimal in resource usage, to

the point of letting a single thread to finish the searching

process, implying all other threads are idle.

In [33], [34], [35], we have learned from all the above

examples, and also in these proposals, we have tailored

solutions which are uniform and maximize the GPU usage.

We have (1) carefully selected the number of threads, (2)

acceded to memory in coalescent form, (3) maximized the

use of shared memory, and (4) taken adventaje of zero cross

talk among threads because data independence. Additionally

our proposals have zero overload in the data structures,

which implies all the available memory can be used for the

database. We work in two different queries types: “exact”

similarity search [35] and “approximate” similarity search

[33], [34]. Beside, as in large-scale systems such as Web

Search Engines indexing multimedia content, it is critical

to deal efficiently with streams of queries rather than with

single queries. Therefore, it is not enough to speed up

the time to answer only one query, but it is necessary to

leverage the capabilities of the GPU to parallely answer

several queries, our proposals can solve many queries at the

same time.

In order to answer parallely many queries, GPU receives

the queries set and it has to solve all of them. Each query,

in parallel, applies the process, therefore the number of

needed resources for this is equal to the resources amount to

compute one query multiplied the number of queries solved

in parallel. The number of queries to solve in parallel is

determined according to the GPU resources mainly its mem-

ory. If q are parallel queries, m the needed memory quantity

per query and i the needed memory by permutation index,

q ∗m+ i is the total required memory to solve q queries in

parallel. Solving many queries in parallel involves carefully

manage the blocks and their threads. At the same time,

blocks of different queries are accessed in parallel. Hence it

is important a good administration of threads: which query it

is solved and which database element it is responsible. The

task is possible by establishing a relationship among Thread

Id, Block Id, Query Id, and Database Element.

V. HPC AND CLOUD COMPUTING

Cloud computing is a type of computing that relies

on sharing computing resources rather than having local

servers or personal devices to handle applications. Cloud

JCS&T Vol. 13 No. 3 December 2013

115

computing offers a larger capacity of additional computation

and flexibility. However there are some challenges that must

be taken into consideration like security and data privacy

and moving data back and forth.

On the other hand, HPC requires very low latency and

servers with individually high performance. It turns out

however, that all MPI workloads are not the same. At the top

of the pyramid presented in Figure 3 is with MPI workloads

that require a high performance and low latency networks

like Infiniband. The middle part of the pyramid is filled

with MPI workloads that require a great network, but not an

Infiniband network. At the bottom of this pyramid we have

the so called embarrassingly parallel (EPP) problems which

have no data sharing requirements. In this kind of problems

a very large dataset is chopped into pieces, distributed

to a large pool of workers, and then the data is brought

back and reassembled. It is like a MapReduce functionality.

This problem workloads are very commonly run on top of

MPI clusters, although some academic institutions build out

separate or smaller grids to run them instead.

Cloud can accommodate EPP and HPC workloads, but is

not itself necessarily a HPC neither a EPP in the traditional

sense. As we explained before, we believe it is a platform

for medium-scale HPC applications which are not tightly

coupled. The ease of use of HPC applications must be

addressed at all layers (infrastructure, platform and software

as a service).

Fig. 3. Parallel algorithm classification.

VI. CONCLUSIONS

Large-scale systems considered in our investigations, must

be prepared to receive a continuous flow of queries. There-

fore, it is not sufficient to accelerate the response time of

individual queries, it is necessary to leverage the capabilities

of the resources available to effectively respond to as many

queries as possible. We presented two paradigms used for

parallel processing of queries in metric spaces.

The hybrid implementation was based on overlapping

computation with communication through a data partitioning

in charge of MPI, with a functional partitioning in each

node provided by OpenMP. This involved an coarse-grained

OpenMP programming style in each search node. The design

and implementation of hybrid system proposed in this paper

needed to compensate the different loads on communicating

and computing threads through the manipulation of inter-

mediate data structures like input and output buffers. These

structures allowed the search engines to work independently

of receipt and distribution of messages (queries and an-

swers).

In the second proposal, the computational capabilities of

many-core GPUs have been exploited to improve the query

process of metric spaces. The architecture carefully selects

and manages the number of blocks and theirs threads, maxi-

mizes the use of shared memory and due to the independence

of data, takes advantage of zero cross talk among threads.

Additionally, our proposals have zero overload in the data

structures, which implies all the available memory can be

used for the database.

In order to successfully scale the content-based search

to very large numbers of data objects, both proposals have

considered the construction of a proper index and the use

of an appropiate infrastructure on which it will execute.

Though, the performance of the implementations are the

subject of the further study, the proposed approaches seem

to be promising and might form an alternative to the current

state-of-the-art solutions.

VII. ACKNOWLEDGEMENTS

We wish to thank to the UNSL for allowing us the

access to their computational resources. This research has

been partially supported by Project UNSL-PROICO-30310,

Project UNSL-PROICO-330303 and CONICET.

REFERENCES

[1] P. Zezula, G. Amato, V. Dohnal, and M. Batko, Similarity Search: The

Metric Space Approach, ser. Advances in Database Systems, vol.32.
Springer, 2006.

[2] E. Chávez, G. Navarro, R. Baeza-Yates, and J. Marroquı́n, “Searching
in metric spaces,” ACM Comput. Surv., vol. 33, no. 3, pp. 273–321,
2001.

[3] H. Samet, Foundations of Multidimensional and Metric Data Struc-

tures (The Morgan Kaufmann Series in Computer Graphics and

Geometric Modeling). San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2005.

[4] K. Figueroa, E. Chávez, G. Navarro, and R. Paredes, “Speeding
up spatial approximation search in metric spaces,” ACM Journal of

Experimental Algorithmics, vol. 14, p. article 3.6, 2009.

[5] P. Ciaccia and M. Patella, “Approximate and probabilistic methods,”
SIGSPATIAL Special, vol. 2, no. 2, pp. 16–19, Jul. 2010. [Online].
Available: http://doi.acm.org/10.1145/1862413.1862418

[6] M. Patella and P. Ciaccia, “Approximate similarity search: A multi-
faceted problem,” J. Discrete Algorithms, vol. 7, no. 1, pp. 36–48,
2009.

[7] B. Bustos and G. Navarro, “Probabilistic proximity searching
algorithms based on compact partitions,” Discrete Algorithms,
vol. 2, no. 1, pp. 115–134, Mar. 2004. [Online]. Available:
http://dx.doi.org/10.1016/S1570-8667(03)00067-4

[8] A. Singh, H. Ferhatosmanoglu, and A. Tosun, “High dimensional
reverse nearest neighbor queries,” in The twelfth international

conference on Information and knowledge management, ser. CIKM
’03. New York, NY, USA: ACM, 2003, pp. 91–98. [Online].
Available: http://doi.acm.org/10.1145/956863.956882

JCS&T Vol. 13 No. 3 December 2013

116

[9] F. Moreno-Seco, L. Micó, and J. Oncina, “A modification of the laesa
algorithm for approximated k-nn classification,” Pattern Recognition

Letters, vol. 24, no. 13, pp. 47 – 53, 2003.

[10] E. Chávez, K. Figueroa, and G. Navarro, “Proximity searching in high
dimensional spaces with a proximity preserving order,” in Proc. 4th

Mexican International Conference on Artificial Intelligence (MICAI),
ser. LNAI 3789, 2005, pp. 405–414.

[11] A. Labrinidis and H. V. Jagadish, “Challenges and opportunities with
big data,” Proc. VLDB Endow., vol. 5, no. 12, pp. 2032–2033, 2012.

[12] G. Hager and G. Wellein, Introduction to High Performance Comput-

ing for Scientists and Engineers, ser. Computational Science, 2010.

[13] G. Hager, G. Jost, and R. Rabenseifner, “Communication character-
istics and hybrid mpio/penmp parallel programming on clusters of
multi-core smp nodes,” Proceedings of Cray User Group Conference,
vol. 4, no. d, pp. 54–55, 2009.

[14] D. B. Kirk and W. W. Hwu, Programming Massively Parallel Pro-

cessors, A Hands on Approach. Elsevier, Morgan Kaufmann, 2010.

[15] J. D. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and
J. Phillips, “GPU computing,” Proceedings of the IEEE, vol. 96, no. 5,
pp. 879–899, May 2008.

[16] NVIDIA, “Nvidia cuda compute unified device architecture, program-
ming guide version 4.2.” in NVIDIA, 2012.

[17] V. Mancini, F. Bustos, V. G. Costa, and A. M. Printista, “Data par-
titioning evaluation for multimedia systems in hybrid environments,”
in 3PGCIC, 2012, pp. 321–326.

[18] N. R. Brisaboa, A. Fariña, O. Pedreira, and N. Reyes, “Similarity
search using sparse pivots for efficient multimedia information re-
trieval,” in ISM. IEEE Computer Society, 2006, pp. 881–888.

[19] V. G. Costa, M. Marı́n, and N. Reyes, “Parallel query processing on
distributed clustering indexes,” J. Discrete Algorithms, vol. 7, no. 1,
pp. 3–17, 2009.

[20] V. G. Costa, R. J. Barrientos, M. Marı́n, and C. Bonacic, “Scheduling
metric-space queries processing on multi-core processors,” in PDP,
2010, pp. 187–194.

[21] R. Barrientos, J. Gomez, C. Tenllado, and M. Prieto, “Heap based
k-nearest neighbor search on gpus,” 09/2010 2010, pp. 559–566.

[22] V. Garcia, E. Debreuve, and M. Barlaud, “Fast k nearest neighbor
search using GPU,” in CVPR Workshop on Computer Vision on GPU

(CVGPU), Anchorage, Alaska, USA, June 2008.

[23] V. Garcia, E. Debreuve, F. Nielsen, and M. Barlaud, “k-nearest neigh-
bor search: fast GPU-based implementations and application to high-
dimensional feature matching,” in IEEE International Conference on

Image Processing, Hong Kong, Sept. 2010.

[24] K. Kato and T. Hosino, “Solving k-nearest neighbor problem on
multiple graphics processors,” in 2010 10th IEEE/ACM International

Conference on Cluster, Cloud and Grid Computing, CCGRID, ACM,
Ed., 2010, pp. 769–773.

[25] Q. Kuang and L. Zhao, “A practical gpu based knn algorithm,” in
International Symposium on Computer Science and Computational

Technology (ISC-SCT), 2009, pp. 151 – 155.

[26] S. Liang, Y. Liu, C. Wang, and L. Jian, “Design and evaluation of
a parallel k-nearest neighbor algorithm on CUDA-enabled GPU,” in
IEEE 2nd Symposium on Web Society (SWS), 2010, pp. 53 – 60.

[27] T.Rozen, K.Boryczko, and W.Alda, “Gpu bucket sort algorithm with
applications to nearest-neighbour search,” Journal of WSCG, vol. 16,
no. 1-3, pp. 161–167, 2008.

[28] R. Barrientos, J. Gomez, C. Tenllado, and M. Prieto, “Query process-
ing in metric spaces using gpus,” 2011.

[29] R. J. Barrientos, J. Gomez, C. Tenllado, M. Prieto, and M. Marin,
“kNN Query Processing in Metric Spaces using GPUs,” vol. 6852,
2011, pp. 380–392.

[30] S.Brown and J.Snoeyink, “Gpu nearest neighbors using a minimal kd-
tree,” in Second Workshop on Massive Data Algorithmics (MASSIVE

2010), Snowbird, Utah, USA, June 2010.

[31] D.Qiu, S.May, and A. Nüchter, “Gpu-accelerated nearest neighbor
search for 3d registration,” in Proceedings of the 7th International

Conference on Computer Vision Systems: Computer Vision Systems,
ser. ICVS ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 194–
203.

[32] K.Zhou, Q.Hou, R.Wang, and B.Guo, “Real-time kd-tree construction
on graphics hardware,” in ACM SIGGRAPH Asia 2008 papers, ser.
SIGGRAPH Asia ’08. New York, NY, USA: ACM, 2008, pp. 126:1–
126:11.

[33] M. Lopresti, N. Miranda, F. Piccoli, and N. Reyes, “Efficient similarity
search on multimedia databases,” in XVIII Congreso Argentino de

Ciencias de la Computacin, CACIC 2012, 2012, pp. 1079–1088.
[34] ——, “Permutation index and gpu to efficiently solve many

queries,” in Proc. HPCLatam 2013, 2013. [Online]. Available:
http://hpc2013.hpclatam.org/

[35] N. Miranda, E. Chávez, F. Piccoli, and N. Reyes, “(very) fast
(all) k-nearest neighbors in metric and non metric spaces without
indexing,” in Proc. International Conference on Similarity Search and

Applications (SISAP 2013). A Coruña, Spain: Elseiver, 2013.

JCS&T Vol. 13 No. 3 December 2013

117

