
Computación y Sistemas Vol. 17 No.3, 2013 pp. 391-399
ISSN 1405-5546

Suffix Array Performance Analysis for Multi-Core Platforms

Verónica Gil-Costa
1,2

, Cesar Ochoa
1
, and A. Marcela Printista

1,2

1
LIDIC, University of San Luis,

Argentina

2
CONICET,
Argentina

gvcosta@unsl.edu.ar

Abstract. Performance analysis helps to understand

how a particular invocation of an algorithm executes.
Using the information provided by specific tools like the
profiler tool Perf or the Performance Application
Programming Interface (PAPI), the performance
analysis process provides a bridging relationship
between the algorithm execution and processor events
according to the metrics defined by the developer. It is
also useful to find performance limitations which
depend exclusively on the code. Furthermore, to
change an algorithm in order to optimize the code
requires more than understanding of the obtained
performance. It requires understanding the problem
being solved. In this work we evaluate the performance
achieved by a suffix array over a 32-core platform.
Suffix arrays are efficient data structures for solving
complex queries in a number of applications related to
text databases, for instance, biological databases. We
perform experiments to evaluate hardware features
directly aimed to parallelize computation. Moreover,
according to the results obtained by the performance
evaluation tools, we propose an optimization technique
to improve the use of the cache memory. In particular,
we aim to reduce the number of cache memory
replacement performed each time a new query is
processed.

Keywords. Multi-core, suffix array.

Análisis de performance para el
arreglo de sufijos sobre plataformas

multi-core

Resumen. El análisis de performance es utilizado para

entender cómo se ejecuta una invocación particular de
un algoritmo. Al utilizar la información provista por las
herramientas específicas como Perf o “Performance
Application Programming Interface” (PAPI), el proceso
de análisis de performance provee un puente entre la
ejecución del algoritmo y los eventos de los
procesadores de acuerdo a las métricas definidas por

el desarrollador. También es útil para encontrar las
limitaciones del rendimiento del algoritmo, las cuales
dependen del código. Además, para modificar un
algoritmo de forma tal de optimizar el código, es
necesario no sólo entender el rendimiento obtenido,
sino que requiere entender el problema que se quiere
resolver. En este trabajo, evaluamos el rendimiento
obtenido por el arreglo de sufijos en un procesador de
32 cores. Los arreglos de sufijos son estructuras de
datos eficientes para resolver consultas complejas en
aplicaciones relacionadas con bases de datos
textuales, por ejemplo bases de datos biológicas.
Ejecutamos experimentos para evaluar las
características del hardware con el objetivo de mejorar
el cómputo paralelo. Además, de acuerdo a los
resultados obtenidos a través de las herramientas de
evaluación de performance, proponemos una técnica
de optimización para mejorar el uso de la memoria
cache. En particular, nuestro objetivo es reducir el
número de reemplazos realizados en las memorias
caches.

Palabras clave. Multi-core, arreglo de sufijos.

1 Introduction

Several microprocessor design techniques have
been used to exploit the parallelism inside a
single processor. Among the most relevant
techniques we can mention bit-level parallelism,
pipelining techniques and multiple functional
units [4]. These three techniques assume a single
sequential flow of control which is provided by the
compiler and which determines the order of
execution in case there are dependencies
between instructions. For a programmer, this kind
of internal techniques has an advantage of
allowing parallel execution of instructions by a
sequential programming language. However, the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CONICET Digital

https://core.ac.uk/display/52476749?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

392 Veronica Gil-Costa, Cesar Ochoa, and A. Marcela Printista

Computación y Sistemas Vol. 17 No.3, 2013 pp. 391-399
ISSN 1405-5546

degree of parallelism and pipelining obtained by
multiple functional units is limited.

Recently, the work in [8, 9] showed that
increasing the number of transistors on a chip
leads to improvements in the architecture of a
processor to reduce the average time of
execution of an instruction. Therefore, an
alternative approach to take advantage of the
increasing number of transistors on a chip is to
place multiple cores on a single processor chip.
This approach has been used in desktop
processors since 2005 and is known as multi-core
processors. These multi-core chips add new
levels in the memory (cache) hierarchy [10].
There are significant differences in how the cores
on a chip or socket may be arranged. Memory is
divided up into pages and pages can be variable
in size (4K, 64K, 4M). Each core has an L1 cache
capable of storing a few Kb. A second level called
L2 cache is shared by all cores grouped on the
same chip and has a storage capacity of a few
Mb. An example is the Intel machine Sandy
Bridge-E which has up to 8 cores on a single chip,
32K L1 cache, 256 K L2 cache, and up to 20M L3
cache shared by all cores on the same chip.

To take advantage of current commodity
architectures, it is necessary to devise algorithms
that exploit (or at least do not get hindered by)
these architectures. There are several libraries for
multi-core systems as OpenMP [12] which has a
high level of abstraction, TBB [13] that uses
cycles to describe the data parallelism, and others
like IBM X10 [4] and Fortess [1] focusing on data
parallelism but also providing task parallelism. A
multi-core system offers all cores a quick access
to a single shared memory, but the amount of
available memory is limited. The challenge in this
type of architecture is to reduce the execution
time of programs.

In this work, we propose to analyze the
performance of a string matching algorithm in a
multi-core environment, where communication is
realized only through cache and memory, there
are no dedicated instructions to do either
synchronization or communication, and dispatch
must be done by (slow) software. In particular, we
propose to use the Performance Application
Programming Interface (PAPI) tool and the Perf
tool to perform performance analysis (which helps
to improve applications by revealing their

drawbacks) over the suffix array index [11] and
then, guided by the results obtained, we propose
an optimization technique to increase the number
of cache hits. The suffix array index is used for
string matching, which is perhaps one of the tasks
on which computers and servers spend quite a bit
of time. Research in this area spans from
genetics (finding DNA sequences) to keyword
search in billions of web documents, and even to
cyber-espionage. In fact, several problems are
also interpreted as a string matching problem to
be tractable.

The remainder of this article is organized as
follows. In Section 2, we describe the suffix array
index and the search algorithm. In Section 3, we
present the parallel algorithm and the proposed
optimization. In Section 4 we show experimental
results. Conclusions are given in Section 5.

2 Suffix Array

String matching is perhaps one of the most
studied areas of computer science [5]. This is not
surprising given that there are multiple areas of
application for string processing, information
retrieval and computational biology being among
the most notable nowadays. The string matching
problem consists in finding a particular string
(called the pattern) in some usually much larger
string (called the text).

Many index structures have been designed to
optimize text indexing [14, 16]. In particular, suffix
arrays [11] have already been in use for 20 years
and they tend to be replaced by indices based on
compressed suffix arrays or the Burrows-Wheeler
transform [2, 3], which require less memory
space. However, these newer indexing structures
are slower to operate. A suffix array is a data
structure used for quick searching for a keyword
in a text database.

Conceptually, a suffix array is a particular
permutation on all the suffixes of a word. Given a
text T[1..n] over an alphabet ∑, the corresponding
suffix array SA[1..n] stores pointers to the initial
positions of the text suffixes. The array is sorted
in lexicographical order of the suffixes. As an
example, Figure 1 shows the text “Performance$”

in which the symbol $ ∑ is a special text
terminator which acts as a sentinel. Given an

Suffix Array Performance Analysis for Multi-core Platforms 393

Computación y Sistemas Vol. 17 No.3, 2013 pp. 391-399
ISSN 1405-5546

interval of the suffix array, notice that all the
corresponding suffixes in that interval form a
lexicographical subinterval of the text suffixes.

The suffix array stores information about the
lexicographic order of the suffixes of the text T,
but does not include information about the text
itself. Therefore, to search for a pattern X[1..m],
we have to access both the suffix array and the
text T, with length |T|=n. Therefore, if we want to
find all the text suffixes that have X as a prefix,
i.e., the suffixes starting with X, and since the

array is lexicographically sorted, the search for
the pattern proceeds by performing two binary
searches over the suffix array: one with the
immediate predecessor of X, and the other with
the immediate successor. This way we obtain an
interval in the suffix array that contains the pattern
occurrences. Figure 2 illustrates how this search
is carried out. Finally, Figure 3 illustrates the code
of the sequential search of NQ patterns. To this
end, all patterns of length L are loaded into main
memory (to avoid the interference of disk access
overheads). The algorithm sequentially scans the
patterns in the array using the next() function, and
for each pattern X the SA search algorithm is
executed.

3 Shared Memory Parallelization

Parallelization for shared memory parallel
hardware is expected to be both the most simple
and less scalable parallel approach to a given
code [15]. It is simple due to the fact that the
shared memory paradigm requires few changes
in the sequential code and it can be understood in
a straightforward manner by programmers and
algorithm designers.

In this work we use the OpenMP [14] library
which allows a very simple implementation of
intra-node shared memory parallelism only by
adding a few compiler directives. The OpenMP
parallelization is achieved with some simple
changes in the sequential code. To avoid
read/write conflict, every thread should have a
local buff variable which stores a suffix of a length
L, also local left, right and cmp variables used to
decide in which subsection of the SA the search
must be continued (see Figure 2 above). To

Fig. 3. Sequential search algorithm

Fig. 1. Suffix array for the example text “Performance$”

Fig. 2. Search algorithm for a pattern X of size L

394 Veronica Gil-Costa, Cesar Ochoa, and A. Marcela Printista

Computación y Sistemas Vol. 17 No.3, 2013 pp. 391-399
ISSN 1405-5546

avoid using a critical section which incurs an
overhead (delay in execution time), we replace
the result variable of Figure 3 by an array of
results [1..NQ]. Therefore, each thread stores the
results for the pattern Xi into results[i].

The “for” instruction is divided among all
threads by means of the “#pragma omp for”
directive. Figure 4 shows the threaded execution
using the OpenMP terminology. Also, the
sched_setaffinity function is used in this
implementation to obtain performance benefits
and to ensure that threads are allocated in cores
belonging to the same sockets.

We further investigate the effect of using a
local SA index per thread or a global shared SA
index. To this end, we performed experiments to
measure the speedup (measured as the
sequential execution time divided by the parallel
execution time) achieved with both approaches.
Figure 5 shows the results obtained with up to 32
threads, an index size of 801M and pattern length
of L=10 and L=20. In both cases, efficiency is
improved by using a local data structure (17%
with L=10 and 41% with L=20). Hence, despite
performing read-only access to the SA index,
there is an overhead associated with the search
operation over the shared data structure when
many threads process the search patterns. This
overhead includes the administration
(creation/deletion) of the local variables such as
buff, cmp, left, right each time we call the Search
function. But as the local approach requires more
memory, it can be used only when

NT*sizeof(SA index) < Memory size,

where NT is the number of threads.

3.1 Optimization

The suffix array search algorithm presents
features that make it suitable to improve its
efficiency in multi-core processors. In particular,
we propose to take advantage of the binary
search algorithm which makes some elements of
the suffix array more feasible to be accessed than
others, namely, the center element of the suffix
array and the left and right centers as shown in

Fig. 4. Parallel search algorithm

(a)

(b)

Fig. 5. Speedup achieved when each thread uses a local

copy of the index (Local SA) and when all threads share
the same SA index. (a) Results obtained with L=10 and (b)
L=20

Suffix Array Performance Analysis for Multi-core Platforms 395

Computación y Sistemas Vol. 17 No.3, 2013 pp. 391-399
ISSN 1405-5546

Figure 6 for a pattern length L=3.This effect is
known as temporal locality.

Therefore, we propose to introduce an extra
data structure storing the most frequently
referenced elements of the suffix array. This new
data structure is small enough to fit into the low
level cache memory and it is used to prune the
search of patterns. The proposed algorithm is
detailed in Figure 6. To begin searching for a
new pattern (iter=1), we access the second
position of the AUX data structure. If we have to
continue the search at the left side of the text
stored into AUX[1], the next iteration (iter=2)
compares the first element of AUX with the
search pattern X, otherwise the third element of
AUX and the pattern X are compared.

4 Evaluation

4.1 Hardware and Data Preparation

Experiments were performed on a 32-core
platform with 64GB Memory (16x4GB), 1333MHz
and a disk of 500GB, 2x AMD Opteron 6128,
2.0GHz, 8C, 4M L2/12M L3, 1333 Mhz Maximum
Memory, Power Cord, 250 volt, IRSM 2073to
C13. The operating system is Linux Centos 6
supporting 64 bits. As shown in Figure 7, we used
the hwlock (Hardware Locality) tool [7] which

Fig. 6. Cache optimization

Fig. 7. Four sockets with two nodes. Each node has

four cores

396 Veronica Gil-Costa, Cesar Ochoa, and A. Marcela Printista

Computación y Sistemas Vol. 17 No.3, 2013 pp. 391-399
ISSN 1405-5546

collects all information from the operating system
and builds an abstract and portable object tree:
memory nodes (nodes and groups), caches,
processor sockets, processor cores, hardware
threads, etc.

To evaluate the performance of the SA index,
we use a 3-megabyte and 100-megabyte DNA
text from the Pizza&Chili Corpus [6]. The resulting
suffix array requires 25M and 801M, respectively.
The text length in each case is n=3145728 and
n=104857600. For the queries, we used 1000000

random search patterns of length 5, 10, 15
and 20.

4.2 Performance Evaluation

In this section we evaluate the performance of the
SA index using the PAPI tool version 5.0.1. In
particular, we measure the cache hit ratio, as well
as the execution time. We use the
PAPI_thread_init function which initializes thread

(a) (b)

(c) (d)

Fig. 8. Results obtained with a small index size. (a) Execution time reported as the baseline and the proposed approach

for a pattern length L=5; (b) Execution time for different pattern length and 32 threads; (c) LLC hits for L=5 and (d) Ratio
of the baseline execution time to the proposed approach execution time with 32 threads

Suffix Array Performance Analysis for Multi-core Platforms 397

Computación y Sistemas Vol. 17 No.3, 2013 pp. 391-399
ISSN 1405-5546

support in the PAPI library. When all threads
finish their work, we execute the
PAPI_unregister_thread function. For the Perf
performance tool we use the version 3.2.30. For
the Perf tool we count the L1 data cache hits and
the Last level cache (LLC) hits.

In Figure 8 we show results obtained for a
small index of 25M and different pattern lengths.
Figure 8(a) demonstrates that the normalized
running times obtained with both the baseline and
our proposed optimization algorithm for a pattern
length of L=5 are almost the same. We show
results normalized to 1 in order to better illustrate
the comparative performance. To this end, we
divide all quantities by the observed maximum in
each case. Figure 8(c) shows the LLC hits

reported for the same experiment. Our proposal
reports an improvement of almost 20% in average
which remains constant with various numbers of
threads although this benefit is not reflected in the
running time. Figure 8(b) shows that the best
performance is achieved by our proposal for a
pattern length of L=10. This last result is
confirmed by Figure 8(e) where the best ratio
(running time reported as the baseline divided by
the running time shown by the proposal) is
obtained with a pattern length L=10.

Figure 9 shows results obtained with a large
index of size 801M. In this case, the best
performance of our optimization is reported, in
Figure 9(a) for a pattern of length L=15 and L=20.
This result is confirmed in Figure 9(b) where the

 (a) (b)

 (c) (d)

Fig. 9. Results obtained with a larger index size. (a) Execution time for different pattern length and 32 threads; (b)

Ratio of the baseline execution time to the proposed approach execution time. (c) LLC hits for L=5 and (d) LLC hits
for L=20

398 Veronica Gil-Costa, Cesar Ochoa, and A. Marcela Printista

Computación y Sistemas Vol. 17 No.3, 2013 pp. 391-399
ISSN 1405-5546

best ratio of the running time reported as the
baseline to the running time shown by our
proposal is given for a search pattern L=15.

Figure 9(c) and (d) show the LLC hit for L=5
and L=20. In both figures, the LLC hits tend to go
down as we increase the number of threads. In
the former, our proposal obtains a gain of 15% in
average but in the last figure the gain is reduced
to 4%.

5 Conclusions

In this work we analyzed the performance of the
suffix array index by means of the Perf and PAPI
tool on a multi-core environment. Parallel codes
were implemented with the OpenMP library.
Experiments were performed with various index
sizes and various patterns length over a 32-core
platform. We ran experiments to evaluate
hardware features directly aimed to parallelize
computation. Results show that read-only
operations performed over shared data structures
affect performance. We also proposed an
optimization scheme which allows increasing the
number of hit cache and tends to improve the
running time.

Acknowledgements

This work has been funded by CONICET,
Argentina.

References

1. Allen, E., Chase, D., Hallett, J., Luchangco, V.,
Maessen, J.W., Ryu, S., Steele Jr., G.L., &
Tobin-Hochstadt, S. (2007). The Fortress
Language Specification, version 1.0 beta, Sun
Microsystems, Inc.

2. Adjeroh, D., Bell, T., & Mukherjee, A. (2008). The
Burrows-Wheeler Transform: Data Compression,
Suffix Arrays, and Pattern Matching. New York:
Springer.

3. Burrows, M. & Wheeler, D.J. (1994). A block-
sorting lossless data compression algorithm

(Research Report 124), Palo Alto California: Digital
Systems Research Center.

4. Charles, P., Grothoff, C., Saraswat, V., Donawa,
C., Kielstra, A., Ebcioglu, K., von Praun, C., &
Sarkar, V. (2005). X10: an object oriented
approach to non-uniform cluster computing. 20

th

annual ACM SIGPLAN Conference on Object
Oriented Programming, Systems, Languages and
Applications (OOPSLA '05). San Diego, CA, 519–
538.

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L. &
Stein, C. (2009). Introduction to Algorithms (3

rd

ed.). Cambridge, Mass.: MIT Press.

6. Ferragina, P. & Navarro, G. (s.f.). The Pizza&Chili
corpus — compressed indexes and their testbeds.
Retrieved from
http://pizzachili.dcc.uchile.cl/index.html.

7. The Portable Hardware Locality (hwloc). Retrieved
from http://www. open-mpi.org/ projects/ hwloc/.

8. Hennesy, J.L. & Patterson, D.A. (2007).
Computer Architecture - A Quantitative Approach
(4

th
 ed.). Amsterdam; Boston: Morgan Kaufmann.

9. Patterson, D.A. & Hennesy, J.L. (2009).

Computer Organization and Design, The
Hardware/Software Interface (4th edition).
Burlington, MA: Morgan Kaufmann.

10. Hager, G. & Wellein, G. (2011). Introduction to
High Performance Computing for Scientists and
Engineers. Boca Raton, FL: CRC Press.

11. Manber, U. & Myers, G. (1993). Suffix arrays: A

new method for on-line string searches. SIAM
Journal on Computing, 22(5), 935–948.

12. OpenMP Application Program Interface - Version
3.1, (2011). Retrieved from
http://www.openmp.org/mp-
documents/OpenMP3.1.pdf.

13. Reinders, J. (2007). Intel Threading Building

Blocks: Outfitting C++ for Multicore Processor
Parallelism. Beijing; Sebastopol, CA: O’Reilly.

14. Stoye, J. (2007). Suffix tree construction in ram.
Encyclopedia of Algorithms (925–928). New York;
London: Springer.

15. Tinetti, F.G., Martin, S.M. (2012). Sequential

Optimization and Shared and Distributed Memory
Optimization in Clusters: N-BODY/Particle
Simulation. Parallel and Distributed Computing and
Systems (PDCS 2012), Las Vegas, USA.

16. Weiner, P. (1973). Linear pattern matching
algorithms. IEEE Conference Record of 14

th

Annual Symposium on Switching and Automata
Theory (SWAT’08), 1–11.

http://www.lidi.info.unlp.edu.ar/wp/?p=623
http://www.lidi.info.unlp.edu.ar/wp/?p=623

Suffix Array Performance Analysis for Multi-core Platforms 399

Computación y Sistemas Vol. 17 No.3, 2013 pp. 391-399
ISSN 1405-5546

Verónica Gil-Costa received
her M.S. (2006) and Ph.D.
(2009) in Computer Science
both from Universidad Nacional
de San Luis (UNSL),
Argentina. She is currently a
professor at the University of
San Luis, an Assistant

Researcher at the National Research Council
(CONICET) of Argentina and a researcher of
Yahoo! Labs Santiago (YLS). Her research
interests are in the field of performance
evaluation, similarity search and distributed
computing.

Cesar Ochoa is an
undergraduate student at the
Universidad National de San Luis
(UNSL), Argentina. He has
worked at the Estirenos (ARCOR)
Company since 2005.

Marcela Printista received
her Ph.D. in Computer
Science from the University of
San Luis, Argentina, in 2004.
She was co-dean of the
College of Physics,
Mathematics and Natural

Sciences from 2007 to 2013. She has been an
associate professor from to 1998. Her main
research interests are parallel computation model,
performance evaluation techniques and high
performance simulation.

Article received on 01/02/2013; accepted on 30/07/2013.

.

