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Abstract. Performance analysis helps to understand 

how a particular invocation of an algorithm executes. 
Using the information provided by specific tools like the 
profiler tool Perf or the Performance Application 
Programming Interface (PAPI), the performance 
analysis process provides a bridging relationship 
between the algorithm execution and processor events 
according to the metrics defined by the developer. It is 
also useful to find performance limitations which 
depend exclusively on the code.  Furthermore, to 
change an algorithm in order to optimize the code 
requires more than understanding of the obtained 
performance. It requires understanding the problem 
being solved. In this work we evaluate the performance 
achieved by a suffix array over a 32-core platform. 
Suffix arrays are efficient data structures for solving 
complex queries in a number of applications related to 
text databases, for instance, biological databases. We 
perform experiments to evaluate hardware features 
directly aimed to parallelize computation. Moreover, 
according to the results obtained by the performance 
evaluation tools, we propose an optimization technique 
to improve the use of the cache memory. In particular, 
we aim to reduce the number of cache memory 
replacement performed each time a new query is 
processed. 
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Análisis de performance para el 
arreglo de sufijos sobre plataformas 

multi-core 

Resumen. El análisis de performance es utilizado para 

entender cómo se ejecuta una invocación particular de 
un algoritmo. Al utilizar la información provista por las 
herramientas específicas como Perf o “Performance 
Application Programming Interface” (PAPI), el proceso 
de análisis de performance provee un puente entre la 
ejecución del algoritmo y los eventos de los 
procesadores de acuerdo a las métricas definidas por 

el desarrollador. También es útil para encontrar las 
limitaciones del rendimiento del algoritmo, las cuales 
dependen del código. Además, para modificar un 
algoritmo de forma tal de optimizar el código, es 
necesario no sólo entender el rendimiento obtenido, 
sino que requiere entender el problema que se quiere 
resolver. En este trabajo, evaluamos el rendimiento 
obtenido por el arreglo de sufijos en un procesador de 
32 cores. Los arreglos de sufijos son estructuras de 
datos eficientes para resolver consultas complejas en 
aplicaciones relacionadas con bases de datos 
textuales, por ejemplo bases de datos biológicas. 
Ejecutamos experimentos para evaluar las 
características del hardware con el objetivo de mejorar 
el cómputo paralelo. Además, de acuerdo a los 
resultados obtenidos a través de las herramientas de 
evaluación de performance, proponemos una técnica 
de optimización para mejorar el uso de la memoria 
cache. En particular, nuestro objetivo es reducir el 
número de reemplazos realizados en las memorias 
caches.  

Palabras clave. Multi-core, arreglo de sufijos. 

1 Introduction 

Several microprocessor design techniques have 
been used to exploit the parallelism inside a 
single processor. Among the most relevant 
techniques we can mention bit-level parallelism, 
pipelining techniques and multiple functional 
units [4]. These three techniques assume a single 
sequential flow of control which is provided by the 
compiler and which determines the order of 
execution in case there are dependencies 
between instructions. For a programmer, this kind 
of internal techniques has an advantage of 
allowing parallel execution of instructions by a 
sequential programming language. However, the 
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degree of parallelism and pipelining obtained by 
multiple functional units is limited.  

Recently, the work in [8, 9] showed that 
increasing the number of transistors on a chip 
leads to improvements in the architecture of a 
processor to reduce the average time of 
execution of an instruction. Therefore, an 
alternative approach to take advantage of the 
increasing number of transistors on a chip is to 
place multiple cores on a single processor chip. 
This approach has been used in desktop 
processors since 2005 and is known as multi-core 
processors. These multi-core chips add new 
levels in the memory (cache) hierarchy [10]. 
There are significant differences in how the cores 
on a chip or socket may be arranged.  Memory is 
divided up into pages and pages can be variable 
in size (4K, 64K, 4M). Each core has an L1 cache 
capable of storing a few Kb. A second level called 
L2 cache is shared by all cores grouped on the 
same chip and has a storage capacity of a few 
Mb.  An example is the Intel machine Sandy 
Bridge-E which has up to 8 cores on a single chip, 
32K L1 cache, 256 K L2 cache, and up to 20M L3 
cache shared by all cores on the same chip.   

To take advantage of current commodity 
architectures, it is necessary to devise algorithms 
that exploit (or at least do not get hindered by) 
these architectures. There are several libraries for 
multi-core systems as OpenMP [12] which has a 
high level of abstraction, TBB [13] that uses 
cycles to describe the data parallelism, and others 
like IBM X10 [4] and Fortess [1] focusing on data 
parallelism but also providing task parallelism. A 
multi-core system offers all cores a quick access 
to a single shared memory, but the amount of 
available memory is limited. The challenge in this 
type of architecture is to reduce the execution 
time of programs.  

In this work, we propose to analyze the 
performance of a string matching algorithm in a 
multi-core environment, where communication is 
realized only through cache and memory, there 
are no dedicated instructions to do either 
synchronization or communication, and dispatch 
must be done by (slow) software. In particular, we 
propose to use the Performance Application 
Programming Interface (PAPI) tool and the Perf 
tool to perform performance analysis (which helps 
to improve applications by revealing their 

drawbacks) over the suffix array index [11] and 
then, guided by the results obtained, we propose 
an optimization technique to increase the number 
of cache hits. The suffix array index is used for 
string matching, which is perhaps one of the tasks 
on which computers and servers spend quite a bit 
of time. Research in this area spans from 
genetics (finding DNA sequences) to keyword 
search in billions of web documents, and even to 
cyber-espionage. In fact, several problems are 
also interpreted as a string matching problem to 
be tractable. 

The remainder of this article is organized as 
follows. In Section 2, we describe the suffix array 
index and the search algorithm. In Section 3, we 
present the parallel algorithm and the proposed 
optimization. In Section 4 we show experimental 
results. Conclusions are given in Section 5. 

2 Suffix Array 

String matching is perhaps one of the most 
studied areas of computer science [5]. This is not 
surprising given that there are multiple areas of 
application for string processing, information 
retrieval and computational biology being among 
the most notable nowadays. The string matching 
problem consists in finding a particular string 
(called the pattern) in some usually much larger 
string (called the text).  

Many index structures have been designed to 
optimize text indexing [14, 16].  In particular, suffix 
arrays [11] have already been in use for 20 years  
and they tend to be replaced by indices based on 
compressed suffix arrays or the Burrows-Wheeler 
transform [2, 3], which require less memory 
space. However, these newer indexing structures 
are slower to operate. A suffix array is a data 
structure used for quick searching for a keyword 
in a text database.  

Conceptually, a suffix array is a particular 
permutation on all the suffixes of a word. Given a 
text T[1..n] over an alphabet ∑, the corresponding 
suffix array SA[1..n] stores pointers to the initial 
positions of the text suffixes. The array is sorted 
in lexicographical order of the suffixes. As an 
example, Figure 1 shows the text “Performance$” 

in which the symbol $  ∑ is a special text 
terminator which acts as a sentinel. Given an 
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interval of the suffix array, notice that all the 
corresponding suffixes in that interval form a 
lexicographical subinterval of the text suffixes.  

The suffix array stores information about the 
lexicographic order of the suffixes of the text T, 
but does not include information about the text 
itself. Therefore, to search for a pattern X[1..m], 
we have to access both the suffix array and the 
text T, with length |T|=n.  Therefore, if we want to 
find all the text suffixes that have X as a prefix, 
i.e., the suffixes starting with X, and since the 

array is lexicographically sorted, the search for 
the pattern proceeds by performing two binary 
searches over the suffix array: one with the 
immediate predecessor of X, and the other with 
the immediate successor. This way we obtain an 
interval in the suffix array that contains the pattern 
occurrences. Figure 2 illustrates how this search 
is carried out. Finally, Figure 3 illustrates the code 
of the sequential search of NQ patterns. To this 
end, all patterns of length L are loaded into main 
memory (to avoid the interference of disk access 
overheads). The algorithm sequentially scans the 
patterns in the array using the next() function, and 
for each pattern X the SA search algorithm is 
executed. 

3 Shared Memory Parallelization 

Parallelization for shared memory parallel 
hardware is expected to be both the most simple 
and less scalable parallel approach to a given 
code [15]. It is simple due to the fact that the 
shared memory paradigm requires few changes 
in the sequential code and it can be understood in 
a straightforward manner by programmers and 
algorithm designers. 

In this work we use the OpenMP [14] library 
which allows a very simple implementation of 
intra-node shared memory parallelism only by 
adding a few compiler directives. The OpenMP 
parallelization is achieved with some simple 
changes in the sequential code. To avoid 
read/write conflict, every thread should have a 
local buff variable which stores a suffix of a length 
L, also local left, right and cmp variables used to 
decide in which subsection of the SA the search 
must be  continued (see Figure 2 above). To 

 
 

Fig. 3. Sequential search algorithm 

 

Fig. 1. Suffix array for the example text “Performance$” 

 

Fig. 2. Search algorithm for a pattern X of size L 
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avoid using a critical section which incurs an 
overhead (delay in execution time), we replace 
the result variable of Figure 3 by an array of 
results [1..NQ]. Therefore, each thread stores the 
results for the pattern Xi into results[i].  

The “for” instruction is divided among all 
threads by means of the “#pragma omp for” 
directive. Figure 4 shows the threaded execution 
using the OpenMP terminology. Also, the 
sched_setaffinity function is used in this 
implementation to obtain performance benefits 
and to ensure that threads are allocated in cores 
belonging to the same sockets. 

We further investigate the effect of using a 
local SA index per thread or a global shared SA 
index. To this end, we performed experiments to 
measure the speedup (measured as the 
sequential execution time divided by the parallel 
execution time) achieved with both approaches.  
Figure 5 shows the results obtained with up to 32 
threads, an index size of 801M and pattern length 
of L=10 and L=20. In both cases, efficiency is 
improved by using a local data structure (17% 
with L=10 and 41% with L=20).  Hence, despite 
performing read-only access to the SA index, 
there is an overhead associated with the search 
operation over the shared data structure when 
many threads process the search patterns. This 
overhead includes the administration 
(creation/deletion) of the local variables such as 
buff, cmp, left, right each time we call the Search 
function.  But as the local approach requires more 
memory, it can be used only when  

NT*sizeof(SA index) < Memory size,  

where NT is the number of threads. 

3.1 Optimization 

The suffix array search algorithm presents 
features that make it suitable to improve its 
efficiency in multi-core processors.  In particular, 
we propose to take advantage of the binary 
search algorithm which makes some elements of 
the suffix array more feasible to be accessed than 
others, namely, the center element of the suffix 
array and the left and right centers as shown in 

  
 

Fig. 4. Parallel search algorithm 

 
(a) 

 
(b) 

Fig. 5. Speedup achieved when each thread uses a local 

copy of the index (Local SA) and when all threads share 
the same SA index. (a) Results obtained with L=10 and (b) 
L=20 
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Figure 6 for a pattern length L=3.This effect is 
known as temporal locality. 

Therefore, we propose to introduce an extra 
data structure storing the most frequently 
referenced elements of the suffix array. This new 
data structure is small enough to fit into the low 
level cache memory and it is used to prune the 
search of patterns. The proposed algorithm is 
detailed in Figure 6.  To begin searching for a 
new pattern (iter=1), we access the second 
position of the AUX data structure. If we have to 
continue the search at the left side of the text 
stored into AUX[1],  the next iteration (iter=2) 
compares the first element of AUX with the 
search pattern X, otherwise the third element of  
AUX and  the pattern X  are compared. 

4 Evaluation 

4.1 Hardware and Data Preparation 

Experiments were performed on a 32-core 
platform with 64GB Memory (16x4GB), 1333MHz 
and a disk of 500GB, 2x AMD Opteron 6128, 
2.0GHz, 8C, 4M L2/12M L3, 1333 Mhz Maximum 
Memory, Power Cord, 250 volt, IRSM 2073to 
C13. The operating system is Linux Centos 6 
supporting 64 bits. As shown in Figure 7, we used 
the hwlock (Hardware Locality) tool [7] which 

 

 

Fig. 6. Cache optimization 

 

Fig. 7. Four sockets with two nodes. Each node has 

four cores 
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collects all information from the operating system 
and builds an abstract and portable object tree: 
memory nodes (nodes and groups), caches, 
processor sockets, processor cores, hardware 
threads, etc.  

To evaluate the performance of the SA index, 
we use a 3-megabyte and 100-megabyte DNA 
text from the Pizza&Chili Corpus [6]. The resulting 
suffix array requires 25M and 801M, respectively. 
The text length in each case is n=3145728 and 
n=104857600. For the queries, we used 1000000 

random search patterns of length 5, 10, 15 
and 20. 

4.2 Performance Evaluation 

In this section we evaluate the performance of the 
SA index using the PAPI tool version 5.0.1. In 
particular, we measure the cache hit ratio, as well 
as the execution time. We use the 
PAPI_thread_init function which initializes thread 

  
(a)                                                                            (b) 

 

(c)                                                                            (d) 

Fig. 8. Results obtained with a small index size. (a) Execution time reported as the baseline and the proposed approach 

for a pattern length L=5; (b) Execution time for different pattern length and 32 threads; (c) LLC hits for L=5 and (d) Ratio 
of the baseline execution time to the proposed approach execution time with 32 threads 
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support in the PAPI library. When all threads 
finish their work, we execute the 
PAPI_unregister_thread function. For the Perf 
performance tool we use the version 3.2.30. For 
the Perf tool we count the L1 data cache hits and 
the Last level cache (LLC) hits. 

In Figure 8 we show results obtained for a 
small index of 25M and different pattern lengths. 
Figure 8(a) demonstrates that the normalized 
running times obtained with both the baseline and 
our proposed optimization algorithm for a pattern 
length of L=5 are almost the same. We show 
results normalized to 1 in order to better illustrate 
the comparative performance. To this end, we 
divide all quantities by the observed maximum in 
each case. Figure 8(c) shows the LLC hits 

reported for the same experiment. Our proposal 
reports an improvement of almost 20% in average 
which remains constant with various numbers of 
threads although this benefit is not reflected in the 
running time. Figure 8(b) shows that the best 
performance is achieved by our proposal for a 
pattern length of L=10. This last result is 
confirmed by Figure 8(e) where the best ratio 
(running time reported as the baseline divided by 
the running time shown by the proposal) is 
obtained with a pattern length L=10.  

Figure 9 shows results obtained with a large 
index of size 801M. In this case, the best 
performance of our optimization is reported, in 
Figure 9(a) for a pattern of length L=15 and L=20. 
This result is confirmed in Figure 9(b) where the 

 
                                                 (a)                                                                     (b) 

 
                                                     (c)                                                                    (d) 

Fig. 9. Results obtained with a larger index size. (a) Execution time for different pattern length and 32 threads; (b) 

Ratio of the baseline execution time to the proposed approach execution time. (c)  LLC hits for L=5 and (d) LLC hits 
for L=20 
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best ratio of the running time reported as the 
baseline to the running time shown by our 
proposal is given for a search pattern L=15.  

Figure 9(c) and (d) show the LLC hit for L=5 
and L=20. In both figures, the LLC hits tend to go 
down as we increase the number of threads. In 
the former, our proposal obtains a gain of 15% in 
average but in the last figure the gain is reduced 
to 4%. 

5 Conclusions 

In this work we analyzed the performance of the 
suffix array index by means of the Perf and PAPI 
tool on a multi-core environment. Parallel codes 
were implemented with the OpenMP library. 
Experiments were performed with various index 
sizes and various patterns length over a 32-core 
platform. We ran experiments to evaluate 
hardware features directly aimed to parallelize 
computation. Results show that read-only 
operations performed over shared data structures 
affect performance. We also proposed an 
optimization scheme which allows increasing the 
number of hit cache and tends to improve the 
running time. 
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