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Abstract 

High-intensity concurrent arrivals of request packets in Internet traffic can cause dependence of 

event-to-event-times of the requests being served, which causes non-memoryless, modelled 

with heavy-tail distributions unlike common known traffics. The performance of Internet traffic 

can be examined using analytical models for the purpose of optimizing the system to reduce its 

operating costs. Therefore, our study examined a Ga/M/1/K Internet queue class (Gamma 

arrival processes, Ga; with memoryless-Poisson service process, M; a single server, 1, and K 

waiting room) and proposed specific derivations of its performance indicators. Real-life data of 

a corporate organisation Internet server was monitored at both peak and off-peak periods of its 

usage for Internet traffic data analysis. The minimum ‘0’ in the arrival process indicates self-

similarity and was assessed using Hurst parameter, H, and their (standard deviation). ‘H’ > 0.5 

arrival process in the peak period only, indicates self-similarity. Performance of Ga/M/1/K was 

compared with various queuing Internet traffic models used in existing literatures. Results 

showed that the value of the waiting room size for Ga/M/1/K has closest ties with true self-

similar model at peak-periods usage of the Internet, which indicates possible concurrent arrival 

of clients' requests leading to more usage of the waiting room, but with light-tailed queue 

model at the off-peak periods. Therefore, the proposed Ga/M/1/K model can assist in 

evaluating the performance of high-intensity self-similar Internet traffic.      

 

Keywords: Internet traffic, self-similarity, Ga/M/1/K model, gamma distribution. 

 

Introduction  

Internet traffic streams under self-

similarity 

The Internet traffic queue has a peculiar   

nature of self-similarity, which makes it 

different from the traditional known queues 

experienced in common server systems. For 

instance, such other known traditional 

queues may occur when customers arrive in a 

banking hall and join a queue while waiting 

to be served; intending travellers arrive at a 

bus station and join the queue to purchase 

their bus tickets, etc. Rodrigues et al. (2022) 

worked on the assessment of health 

monitoring systems for elderly people, 

whereby chips were embedded inside aged 

people and connected to the Internet. The 

study assessed the M/M/c/K analytical 

queuing network model for the purpose of 

optimizing the performance of the system to 

minimize its costs of operations. Arrival 

processes of customers/clients’ request to 

Internet servers in low intensified Internet 

traffics can be modelled by the Poisson 

distribution, M, and the service process 

modelled by the exponential distribution, M, 

(Alakiri et al. 2014, Olaniran and Abdullah 

2020). In addition, the Memoryless property, 

https://dx.doi.org/10.4314/tjs.v48i2.14
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M, in most traditional known queue systems, 

describes the independence of events, that is, 

event-to-event-times of service of customers. 

The M/M/1/K queue class model provides a 

model that can be used to explain such 

scenarios with its forgetfulness property and 

light-tailed distributions for describing such 

traffics. 

On the contrary, the concurrent arrival of 

request packets to the server, particularly in a 

high-intensity Internet traffic is characterized 

by the self-similar property. This brings 

about the non-memoryless property of the 

Internet traffic steams with dependent event-

to-event-times of service of customers and 

can be described by heavy-tailed 

distributions (Fras et al. 2013) but may be 

described by light-tailed distributions in a 

low Internet traffic stream (Teymori and 

Zhuang 2005).  

However, queue class models that will be 

able to capture the self-similar property that 

is peculiar nature to the Internet traffic 

steams is extremely paramount. Furthermore, 

the specific derivations of the performance 

indicators of such Internet queue models will 

be able to provide appropriate estimates for 

evaluating the performance of the Internet 

server for its proper monitoring and 

management.  

In some reviewed literatures, light-tailed 

distributions have been used to model 

Internet traffic; this is not adequate to 

describe the true self-similar property of the 

Internet traffic. In order to model the true 

self-similar property of the Internet, our 

current work proposes a Ga/M/1/K queue 

class model with a Gamma distribution, 

which is an appropriate heavy-tailed 

distribution for modelling concurrent arrivals 

of request packets with non-forgetfulness 

property. We derived specific performance 

indicators for our proposed Ga/M/1/K queue 

class model. This will provide appropriate 

estimates for understanding traffic behaviour 

in network aggregation points in light of self-

similarity. For instance, this can give 

adequate estimate for predicting the queue 

lengths and waiting times in the models and 

can help maximize the use of limited 

resources in monitoring and managing the 

Internet. 

Self-similarity in Internet traffic occurs 

when packets with the same burst length 

arrive at the same time or burst at the same 

inter-arrival interval on the server. Hurst was 

the first to identify self-similarity, which is 

now acknowledged to be present in many of 

the processes that explain natural and 

artificial occurrences. Popularity may be 

traced back to research that demonstrated the 

self-similar character of Internet flow and 

stressed the importance of understanding 

traffic behaviour in network aggregation 

points in light of self-similarity (Inácio et al. 

2009). Self-similarity is commonly measured 

by estimating the Hurst parameter, H, 

(Rezakhah et al. 2012) where 0.5 < H< 1 

indicates whether or not a process is self-

similar. 

An object or process is defined as one 

that is self-similar if it is exactly or 

approximately similar to a portion of itself, 

that is, the whole has the same shape as one 

or more of the components. Self-similar 

processes can be described using heavy-

tailed distributions (Fras et al. 2013). The 

main feature of heavy-tailed distributions is 

that they decay hyperbolically, rather than 

exponentially, as light-tailed distributions do. 

The Pareto distribution is the most basic 

heavy-tailed distribution currently available. 

According to Sheluhin et al. (2007), self-

similar systems can also exhibit a feature of 

Long Range Dependence (LRD). Long 

Range Dependence describes the memory 

effect, in which a stochastic process’s current 

value is heavily influenced by its previous 

values, and is explained by its 

autocorrelation function. 

0 < H < 0.5 → SRD (Short Range 

Dependence and no similarity) 

0.5 < H < 1 → LRD (Long Range 

Dependence and self-similarity) 

The diffusion approximation was 

investigated by D’Arcy et al. (2014) as a 

solution to queuing analysis and 

approximations. Modelling of network and 

heavy traffic data systems, as well as issues 

resulting from the Internet and 

telecommunication traffic modelling using 
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Poisson models and assumptions were 

investigated in their study. The study’s flaw 

is that it offered incorrect justifications for 

the Poisson arrival process’s usefulness in 

capturing Internet data, in addition to 

network traffic. In Fras et al. (2013), a 

simulation tool for self-similar network 

traffic measurements, modelling, and 

simulations was developed. Only a few facts 

regarding self-similarity, long range 

interdependence, and probability were 

discussed in the work, which were used to 

define such stochastic processes. Moreover, 

(Jones 2004) focused on modelling self-

similar networks by simulating self-similar 

processes. The study concentrated on the 

construction of an algorithm for generating 

and fitting self-similar processes, and merely 

demonstrated that the severity of self-similar 

processes is determined by the offspring 

distribution. According to Neame (2003), 

Gaussian models, especially LRD Gaussian 

models, are unable to accurately characterize 

modern Internet traffic; hence the study 

developed a new model called the Poisson 

Pareto burst process (PPBP). The model is a 

M/G/1 process with heavy-tailed on-off 

characteristics. The PPBP is shown to meet 

the basic requirements for a simple but 

accurate model of Internet traffic, with 

parameters that can fit observable data from 

an actual traffic stream and relationships 

between the PPBP and LRD Gaussian 

processes. These connections were 

investigated in the paper; however, the 

generated Internet data for the analysis is 

based on a Poisson process called PPBP, 

which assumes that current growth trends 

will become less accurate as models of core 

Internet traffic in the future. 

According to Teymori and Zhuang 

(2005), two traffic flows were simulated, 

each with the same average rate and equal 

expected on and off durations. One is a non-

heavy-tailed on-off source with 

exponentially distributed on and off 

durations. The study only found that the 

distribution for non-heavy-tailed traffic falls 

very quickly (exponentially), but not for 

heavy-tailed traffic, which has a relatively 

significant value even for a very long queue 

length, resulting in the potential of a very 

long delay and a high probability of packet 

loss. The study’s flaw is that the Pareto 

distribution is fitted to the heavy-tailed 

source, but this does not depict the genuine 

scenario on the Internet at a given time when 

the traffic pattern may not be Pareto. 

 

Materials and Methods 

Some existing distributions for modelling 

Internet traffic 

Exponential distribution: This happens 

to be the default model for monitoring 

Internet traffic before the advent of self-

similar and Long Range Dependency issues. 

Exponential distribution belongs to the class 

of light-tailed distribution because of its 

memoryless property. The probability 

density function of exponential distribution 

given by Alakiri et al. (2014), and Olaniran 

and Abdullah (2020) is:  

𝑓(𝑥, 𝜃) = 𝜃𝑒−𝜃𝑥, 𝑥 > 0 (1) 

and the cumulative distribution function 

(CDF) is:  

𝐹(𝑥) = 1 − 𝑒−𝜃𝑥 

where; the θ is the intensity parameter of the 

process. 

Erlang distribution: The Erlang 

distribution is a continuous probability 

distribution with wide applicability primarily 

due to its relation to the Exponential and 

Gamma distributions. The probability density 

function of the Erlang distribution is the 

same as the Gamma distribution except for 

the possible values to which the shape 

parameter k can assume. Thus, the PDF of 

Erlang distribution described by 

(Brockmayer, 1948) is; 

𝑓(𝑥, 𝑘, 𝜃) =
𝑥𝑘−1𝜃𝑘𝑒−𝜃𝑥

(𝑘−1)!
, 𝑘 = 1,2,3, . . .  ; 𝑥 > 0 

    (2) 

and the cumulative distribution function 

(CDF) is: 

𝐹(𝑥, 𝑘, 𝜃) = 1 − ∑
𝑒−𝜃𝑥(𝜃𝑥)𝑖

𝑖!

𝑘−1
𝑖=0 , 𝑥 > 0  

Pareto distribution: The Pareto 

distribution has a long tail and follows a 

power law across its range. According to 

Alakiri et al. (2014), the PDF of the Pareto 

distribution is defined as: 

𝑓(𝑥) = 𝑘𝑎𝑘𝑥−𝑘−1, 0 < 𝑎 ≤ 𝑥 (3) 
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and the cumulative distribution function 

(CDF) is: 

𝐹(𝑥) = 1 − (𝑎/𝑥)𝑘 
where the constant a represents the smallest 

possible value of the random variable x, and 

k is the shape parameter of the distribution. 

Gamma distribution: According to Tran-

Gia et al. (2001), the Gamma distribution is 

also utilized in publications for simulating 

Internet traffic. The Gamma distribution’s 

PDF is defined as follows: 

 𝑓(𝑥, 𝑘, 𝜃) =
𝑥𝑘−1𝜃𝑘𝑒−𝜃𝑥

Γ𝑘
, 𝑘 > 0 ; 𝑥 > 0 (4)  

and the cumulative distribution function 

(CDF) on the support of X is: 

𝐹(𝑥, 𝑘, 𝜃) =  
Γ(  𝑘,   𝜃𝑥  )

Γ𝑘

, 𝑘 > 0 ; 𝑥 > 

where Γ(𝑠, 𝑥) = ∫ 𝑡𝑠−1𝑒−𝑡𝑑𝑡
𝑥

0
  For 𝑠 >

0 ; 𝑥 > 0 is the incomplete Gamma 

function, 𝑘 is the shape and 𝜃 is the intensity 

parameter of the distribution; and Γ is the 

Gamma function which has the formula; 

Γ(𝑠) = ∫ 𝑡𝑠−1𝑒−𝑡𝑑𝑡
∞

0

 

for 𝑠 > 0 is the Gamma function.   

 

The proposed  𝑮/𝑴/𝟏/𝑲 self-similar 

model for burst Internet traffic  

    The 𝐺/𝑀/1 queue is a single-server 

queue, where the arrival process follows a 

general distribution and the service process 

has an Exponential distribution with mean 

service time 1/𝜇, that is 

𝐵(𝑥) = 1 − 𝑒−𝜇𝑥, 𝑥 > 0] (5) 

while the arrival process is general with 

mean inter-arrival time equal to the mean of 

inter-arrival time of the distribution G, in 

G/M/1/K . Request-packets arrive one at a 

time, and their inter-arrival delays are 

dispersed equally and independently. 

 

Review and proposed specific derivatives 

of parameter formulae for evaluating 

performance indicators for arrival and 

transmission of packets in a 𝑮/𝑴/𝟏 traffic  

For the claim of the parameter formula 

for the performance indicators, Stewart 

(2009) gave the stationary distribution 𝑝𝑖  of 

packets in a 𝐺/𝑀/1 traffic as; 

𝑝𝑖 = 𝜌(1 − 𝜉)𝜉𝑖−1, 𝑖 > 0 (6) 

where 𝜉 is interpreted as the traffic intensity 

and it is computed from the relation given 

below.   

𝜉 = 𝐹𝐴
∗(𝜇 − 𝜇𝜉) (7) 

where 𝐹𝐴
∗(𝜇 − 𝜇𝜉) is the laplace transform of 

the arrival process evaluated at 𝑠 = 𝜇 − 𝜇𝜉 

and    0 < 𝜉 < 1. 

 

G/M/1 where G is Gamma 

Stewart (2009) used the Pollaczek 

Khintchine transform to state the stationary 

distribution of request-packets at the server 

end in a 𝐺/𝑀/1  as; 

𝑝𝑖 = 𝜌(1 − 𝜉)𝜉𝑖−1, 𝑖 > 0 (8) 

or 

𝑝𝑖 = (1 − 𝜉) 𝜉𝑖  , 𝑖 > 0 (9) 

According to Pollaczek Khintchine 

transform, where, 𝜉 is computed from 

 𝜉 = 𝐹𝐴
∗(𝜇 − 𝜇𝜉); and 𝐹𝐴

∗(𝜇 − 𝜇𝜉) is the 

Laplace transform of the arrival process 

evaluated at 𝑠 = 𝜇 − 𝜇𝜉 and 0 < 𝜉 < 1 since 

G in G/M/1/K follows Gamma distribution 

for the inter-arrival process. 

Now, the proof of the parameter formula is 

given thus; 

Suppose the inter-arrival time, 𝑡, distribution 

follows Gamma with parameters  𝛼 and  (𝜆), 

then the density function of 𝑡, is; 

𝑓(𝑡, 𝛼, 𝜆) =
𝑡𝛼−1𝜆𝛼𝑒−𝜆𝑡

Γ(𝛼)
  𝛼; 𝜆 > 0; t > 0 (10) 

In this study, the specific derived Laplace 

transform of the arrival process, evaluated at 

𝑠 = 𝜇 − 𝜇𝜉 and 0 < 𝜉 < 1 for G/M/1/K 

queue model, when G in G/M/1/K follows a 

Gamma distribution for the inter-arrival 

process is; 

     𝐿(𝑡) = [
𝜆

𝑠+𝜆
]

𝛼

 (11) 

According to Stewart (2009), since 𝜉 is the 

Laplace transform of the arrival process, 

evaluated at 𝑠 = 𝜇 − 𝜇𝜉 and 0 < 𝜉 < 1 for 

G/M/1/K queue model, which is computed 

from 𝜉 = 𝐹𝐴
∗(𝜇 − 𝜇𝜉);  

then; specific derivation in this study for 𝜉 in 

G/M/1/K when G is Gamma for the arrival 

process is; 

𝜉 = 𝐹𝐴
∗(𝜇 − 𝜇𝜉) = [

𝜆

𝑠+𝜆
]

𝛼

; (12) 

That is, 

𝜉 = 𝐹𝐴
∗(𝜇 − 𝜇𝜉) = [

𝜆

𝜇(1−𝜉)+𝜆
]

𝛼

 (13) 
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𝜉 = [
𝜆

𝜇(1−𝜉)+𝜆
]

𝛼

 (14) 

𝜉
1

𝛼 = [
𝜆

𝜇(1−𝜉)+𝜆
] (15) 

After solving some algebra, the solutions to 𝜉 

are 𝜉 = 1 and =
𝜆

𝛼𝜇
 . 

Since it is required that 𝜉 < 1, for a 

stationary process, then the required solution 

is 
𝜆

𝛼𝜇
  

In this study, the proof of the specific derived 

traffic intensity in a 𝐺/𝑀/1, when G is 

Gamma is, 𝜏,  where  𝜏 =
𝜆

𝛼𝜇
. 

According to Pollaczek Khintchine transform 

for G/M/1/K, the probability of having no 

connection of multiple request-packets at the 

server end, denoted by, 𝑝0, is 𝑃(𝑧) when 

𝑧 = 0 and similarly, the probability of 

having 𝑖 connection of multiple request-

packets at the server end is 𝑝𝑖 = 
𝑑𝑖𝑃(𝑧)

𝑑𝑧𝑖  

evaluated at 𝑧 = 0. 

Using Pollaczek Khintchine transform 

equation, 𝑝𝑖 = (1 − 𝜉) 𝜉𝑖  , 𝑖 > 0, in this 

study, the proof of the specific derived 

distributions of request-packets at the server 

end for G/M/I/K when G is Gamma is; 

𝑝𝑖 = {
1 − 𝜏,                    𝑖 = 0

(1 − 𝜏)𝜏𝑖 ,         𝑖 > 0      
 (16) 

Using Pollaczek Khintchine transform 

equation, in this study, the   specific derived 

probability of reaching the maximum 

blocking bandwidth available to the server 

for concurrent connections of request-

packets, often interpreted as the blocking 

probability of the bandwidth available to the 

server, 𝑝𝐾  , for G/M/I when G is Gamma is; 

𝑝𝐾 = (1 − 𝜏)𝜏𝐾 (17) 

In the same line, the waiting room size, K, 

given 𝑝𝐾  is; 

𝐾 =
𝑙𝑜𝑔[

𝑝𝐾
(1−𝜏)

]

𝑙𝑜𝑔(𝜏)
 (18) 

Using Pollaczek Khintchine formula, 

𝐿 = 𝐿𝑞 + 𝜌 ; in this study, the proof of the 

specific derived distributions of request-

packets on the queue at the server end for 

G/M/1/K when G is Gamma is; 

𝑝𝑖(𝐿𝑞) = {
1 − 2𝜏,                      𝑖 = 0

(1 − 𝜏)𝜏𝑖 − 𝜏,           𝑖 > 0
     (19) 

The derivation in equation (19) above   

indicates a close link with the 𝑀/𝑀/1 

queue; the mean number of request-packets 

at the server end for  𝑀/𝑀/1 is; 

𝐿 =
𝜌

1 − 𝜌
 

where, 𝜌 =
𝜆

𝜇
. 

   Thus, by analogy, in this study, the specific 

derived mean number of request-packets at 

the server end for 𝐺/𝑀/1 where the inter-

arrival time distribution is Gamma is;  

𝐿 =
𝜏

1−𝜏
  (20) 

   Similarly, in this study, the proof of the 

specific derived mean number of request-

packets on the queue at the server end for 

𝐺/𝑀/1 where the inter-arrival time 

distribution is Gamma is; 𝐿𝑞 = 𝐿 − 𝜏 

𝐿𝑞 =
𝜏

1−𝜏
− 𝜏 (21) 

   Since there exists a close association 

between 𝑀/𝑀/1 and 𝐺/𝑀/1 queue, the 

only difference is the utilization factor, 

which in 𝐺/𝑀/1 queue is 𝜉. The distribution 

of time spent by request-packets at the server 

end in 𝑀/𝑀/1  by literature is given as; 

𝑊(𝑡) = 𝜇(1 − 𝜌)𝑒−[𝜇(1−𝜌)]𝑡 , 𝑡 > 0 (22) 

while the distribution of time spent by 

request-packets on the queue at the server 

end in M/M/1/K is; 

𝑊𝑞(𝑡) = 𝜌𝜇(1 − 𝜌)𝑒−[𝜇(1−𝜌)]𝑡 , 𝑡 > 0 (23) 

 Therefore, by analogy, in this study, the 

specific derived distribution of time spent by 

request-packets at the server end for 𝐺/𝑀/
1 queue when G is Gamma is;  

𝑊(𝑡) = 𝜇(1 − 𝜉)𝑒−[𝜇(1−𝜉)]𝑡 , 𝑡 > 0 (24) 

while in this study, the proof of the specific 

derived distribution of time spent by request-

packets on the queue at the server end for 

G/M/1/K when G is Gamma is; 

𝑊𝑞(𝑡) = 𝜉𝜇(1 − 𝜉)𝑒−[𝜇(1−𝜉)]𝑡 , 𝑡 > 0 (25) 

Now, assuming Gamma distribution as the 

inter-arrival distribution, where it has been 

derived in this study that, 𝜉 = 𝜏 =
𝜆

𝛼𝜇
, the 

corresponding distributions of time spent by 

request-packets at the server end and request-

packets on the queue at the server end for 

G/M/1/K when G is Gamma, respectively, 

are; 

𝑊(𝑡) = 𝜇[1 − 𝜏]𝑒−[𝜇(1−𝜏)]𝑡 , 𝑡 > 0    (26) 
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and, 

𝑊𝑞(𝑡) = 𝜏𝜇[1 − 𝜏]𝑒−[𝜇(1−𝜏)]𝑡 , 𝑡 > 0     (27) 

It is obvious that equation (27) follows 

Exponential distribution with parameter, 

𝜇[1 − 𝜏] ; mean times spent by request-

packets at the server end and mean time 

spent request-packets on the queue at the 

server end for G/M/1/K when G is Gamma, 

respectively, are; 

𝑊 =
1

𝜇[1−𝜏]
 (28) 

and, 

𝑊𝑞 =
𝜏

𝜇[1−𝜏]
 (29) 

 

Results and Discussion 

Application to real life network traffic 

The Transmission Control Protocol 

(TCP) for Internet computing of network 

flow of University of Ilorin, Nigeria with 

Internet Protocol address 

(www.unilorin.edu.ng) was monitored as 

sample network flow for this research. 

Packet arrival and transmission times were 

recorded in form of TCP connection format. 

A total of 1, 255, 981 clients’ request-packets 

were observed between the period of April 

19
th

, 2016 to April 20
th

, 2016. The data were 

further subdivided into peak and off-peak 

and the considered Internet traffic models in 

our study were fitted to the data. The off-

peak period data cover the time period of 

6:27 pm of April 19
th

, 2016 to 7:57 am of 

April 20
th

 2016. A total of 169, 628 request-

packets were collected for the off-peak 

period analysis. 

 Similarly, the peak period data cover the 

time period of 8:27 am to 3:57 pm of April 

20
th

, 2016. A total of 1,086,363 request-

packets were collected for the peak period 

analysis. Table 1 shows the descriptive 

statistics of the real-life data for both arrival 

and transmission processes. 

 

Table 1:  Results of arrival and transmission processes of a Ga/M/1/K Internet real-life data 

Period Process Number of 

observations 

mean Standard 

deviation 

Minimum Maximum 

Peak 

(8:27 am-

3:57 pm) 

Arrival 1086363 2.6455 21.5006 0 1801 

Service 

transmission 

1086363 1.4240 3.01307 0.000411 100.4988 

Off peak 

(6:27 pm-

7.57 am) 

Arrival 169628 1.2196 249.0301 0.000240 86400 

Service 

transmission 

169628 1.2194 2.4455 0.000391 100.6715 

Time unit: Seconds. 

 

Table 1 shows the descriptive summary 

in terms of mean, standard deviation, 

minimum and maximum. The minimum 

value 0 in the arrival process at the peak 

period indicates the possibility of concurrent 

arrivals in a Ga/M/1/K queue model, that is, 

some of the packets arrive on the network at 

the same time, with mean arrival process 

greater than that of the transmission, which 

suggests self-similarity in the Internet arrival 

process. The absence of this structure in the 

off-peak period transmission process 

indicates the possibility of a memoryless 

process. The validity of the data can be 

observed from the fact that irrespective of the 

partitioning, the maximum processing time is 

approximately 101 s. Also, the stability of 

the network can be observed from the mean 

of the inter-arrival time being greater than 

mean transmission time. Hence the network 

process monitoring is possible. The standard 

deviation estimates relatively larger than 

their means suggest adequacy of skewed 

distribution for the arrival and transmission 

process. 

To further examine the self-similarity 

nature, Hurst index (H) was estimated using 

R/S statistics (Mandelbrot and Van Ness, 

1968). The Hurst estimates results in Table 2 

reveal that the arrival process at the peak 

period is more self-similar than the 

transmission process while at the off-peak 

period the self-similarity is low for both the 

arrival and transmission process. The peak 
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and off-peak periods partitioning used here represent low and high traffic.   

 

Table 2: Hurst index, H, estimate and their (standard error) for Ga/M/1/K real-life data 

Period Number of 

observations 

Arrival process Transmission process 

Peak 

(8:27 am-3:57 pm) 

1086363 H = 0.8636*** 

Standard error (0.2271) 

H = 0.4786*** 

Standard error (0.1584) 

Off peak 

(6:27 pm-7.57 am) 

169628 H = 0.4022*** 

Standard error (0.1154) 

H = 0.3814*** 

Standard error (0.0761) 

*** Significant at 5% level. 

 

Tables 3 and 4 present the modelling results for the peak and off-peak periods.  

 

Table 3: Waiting room size, K, for various G/M/1/K models for the peak period data 

Model Waiting room size, K 

Self-similar traffic (S/S/1/K) 9317 

M/M/1/K 1204 

Ga/M/1/K 9316 

Ln/M/1/K 2763 

 

Table 4: Results for waiting room size for the empirical true self-similar traffic model 

S/S/1/K and various G/M/1/K models for the off-peak period data 

Model Waiting room size, K 

Self-similar traffic (S/S/1/K) 336 

M/M/1/K 245 

Ga/M/1/K 248 

Ln/M/1/K 353 

 

Conclusion 

We created approximate performance 

metrics for a Ga/M/1/K class of Internet 

traffic model in this study, where ‘Ga’ is 

Gamma distribution. Various G/M/1/K 

Internet traffic model performances (‘G’ in 

the Kendall  notation representing a general 

distribution of arrival process) were 

specifically assessed for Gamma, Ga, and 

Log-normal, Ln, arrival process distributions, 

as well as their ties to a  M/M/1 Internet 

traffic model and Internet traffic model with 

true self-similar, ‘S’, arrival and transmission 

processes, S/S/1/K. Based on the findings 

from a real-life Internet traffic data of a 

corporate organisation, the minimum ‘0’ in 

the arrival process at the peak period of the 

Internet usage indicates possibility of 

concurrent arrivals leading to possibility of 

self-similarity, which is  assessed using Hurst 

parameter, H, and their (standard deviation). 

‘H’ > 0.5 arrival process in the peak period 

only, indicates self-similarity. Performance of 

Ga/M/1/K was compared with various 

queuing Internet traffic models used in 

existing literatures. Results show the waiting 

room size for Ga/M/1/K has closest ties with 

true self-similar model, S/S/1/K, which 

indicates largest size of the waiting room 

being utilized for concurrent arrival of 

clients' request in a possible bursty Internet 

traffic at peak-periods usage of the Internet, 

but with light-tailed queue model, M/M/1/K 

at the off-peak periods. Therefore, the 

proposed Ga/M/1/K model was found to be 

adequate and can assist in evaluating the 

performance of high-intensity self-similar 

Internet traffic.      

To provide a final stand on modelling 

self-similar Internet traffic, the current work 

can be extended by comparing it to other 

classes of traffic models and heavy tailed 

distributions other than the distributions 

considered in our study. 
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