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ABSTRACT: Liquid accumulation is a major problem in gas wells. The inability of gas to lift coproduced liquids 

to the surface imposes back pressure on the reservoir, limits the ultimate recovery and ultimately kills the well if 
improperly managed. Therefore, accurate prediction of its occurrence and reliable monitoring strategy is key to 

effectively handling liquid accumulation in gas wells. In this study, machine learning algorithms were used to develop 

regression and classification models to accurately predict the critical flowrate and the loading status of individual wells. 
The regression models used are the feed-forward neural network and a least squares support vector machine models 

while the decision trees model was used as the classification model to characterize the loading status of the wells 

investigated. These models were validated using actual published data and it was observed that the feed-forward neural 
network performed better in predicting the critical rate compared to the least squares support vector machine model 

with an R2 value of 0.9833, and thus was adopted. The feed-forward neural network model was further compared with 

other critical rate models; and a consistent result with least percent error of 5.571% was also observed.  Form this study, 
it is obvious that the neural network model provide benefits and good prospects in investigating liquid loading 

phenomena in gas wells compared to empirical models that apply so many simplifying assumptions.  
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At the onset of production of gas from gas reservoirs, 

only single phase gas is produced (Ezekwe, 2011). 

However, as operating conditions fall below the dew 

point, a liquid phase in the form of condensed 

hydrocarbon or water or both is coproduced with the 

gas. At early stages of production, particularly in the 

mist flow regime, the flowrate of the gas is high 

enough to lift the coproduced liquids along with it to 

the surface. Howbeit, as the pressure of the reservoir 

declines, the gas carrying capacity of the coproduced 

liquid also decline. The decline in the gas carrying 

capacity (flow rate) causes liquids entrained in the 

core of the gas or deposited on the wall of the pipe, fall 

and accumulate at the bottom of the wellbore (Lea et 

al., 2008). The accumulation of these liquid(s) at the 

bottom of the wellbore following the inability of the 

gas to transport them to the surface is what is termed 

liquid loading (Shekhar et al., 2017). Liquid loading 

can occur in all gas reservoirs but it is most prevalent 

in wet gas reservoirs (Joseph et al., 2013). The 

accumulation of liquids creates a back pressure on the 

adjacent formation, causes metastable flow, rapid 

decline in flow rate, abnormal rise in casing pressure, 

slugging flow and can eventually kill a well (Bolujo et 

al., 2017, Ikpeka and Okolo, 2019). Hence, early 

detection is key to resolving it to prevent these 

problems associated with it. Over the years, curative 

and preventive methods have been developed to 

mitigate the adverse effects of liquid loading in gas 

wells. Typical curative techniques are the use of 

velocity strings, plunger lift, foaming of the liquid, gas 

lifting, beam pumping and swabbing while preventive 

techniques involves the use of critical velocity models 

that predicts the onset of liquid loading, the film 

reversal models and the use of dynamic simulation  

(Ikpeka and Okolo, 2019, Li et al., 2001, Luan and He, 

2012). Turner et al. (1969) pioneered the investigation 

of liquid loading phenomenon in gas wells. They 

developed two models, film-movement model and the 

entrained liquid drop movement model to predict the 
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critical velocity for the onset of liquid loading. When 

these models were validated against field data, it was 

observed that the entrained liquid-drop movement 

models gave a better prediction than the film 

movement model, thus the droplet model became the 

preferred model for predicting the minimum velocity. 

Unfortunately, Turner et al. (1969 observed that even 

the droplet model under-predicted the minimum 

velocity which they attributed to the use of drag 

coefficient for solid spheres to liquid and adjustments 

to incomplete field data used for the validation. Thus, 

to give better predictions, Turner et al recommended 

that the droplet model be adjusted to 20% upward to 

improve its accuracy in predicting the minimum 

velocity.  

 

Coleman et al. (1991), tested Turner et al model and 

confirmed the model as a good and reliable predictor 

of liquid loading in gas wells, however, stated that the 

adjustment of 20% upward was unnecessary for wells 

operating below 500 psi.  Nossier et al. (2000) argued 

that the major reason for the under-prediction of the 

critical velocity by Turner et al model was the 

exclusion of the impact of the flow regimes.  Hence, 

they incorporated flow regimes and developed two 

models for the transition flow regime and highly 

turbulent flow regime in estimating the critical 

velocity. Although, the Turner et al model is a good 

predictor of liquid loading in gas wells, it cannot 

predict when the well will die (Oudeman, 1990). The 

impact of liquid droplet concentration and coalescence 

was also investigated and considered a major factor 

the influence the occurrence of liquid loading (Zhou 

and Yuan, 2010). The film reversal on the wall of the 

pipe was also considered as the primary cause of liquid 

loading (Luo et al, 2014, Barnea, 1986). Film reversal 

occurs following the impingement and deposition of 

liquid droplets from the core on the wall of the pipe, 

which eventually cause a gradual increase in the wall 

film thickness; which grows over time and attains a 

critical thickness beyond which it begins to trickle 

down and accumulate at the wellbore (Luo et al, 2014, 

Barnea, 1986). Another technique that has been 

explored in investigating liquid loading phenomena in 

gas wells is the approach of dynamic simulation. By 

coupling thermodynamic and hydrodynamic models 

with appropriate equation of state and constitutive 

equations, the occurrence of liquid loading have been 

thoroughly investigated (Joseph and Hicks, 2018).  

Though with its inherent shortcomings, the dynamic 

simulation approach is considered more appropriate 

over critical velocity and film flow reversal models as 

the model is more encompassing. Each 

thermodynamic property that contributes to the 

condensation of liquids is investigated and monitored 

in space and time as the accumulation of liquids 

deteriorates. Moreover, the different flow regimes can 

be captured independently and used to properly 

describe the system as flow changes occurs during the 

accumulation of liquids instead of assuming a 

dominant flow regime throughout the productive life 

of a gas well  (Dousi et al., 2006). In order to improve 

the prediction of liquid loading, diagnostic models are 

now developed.  Ansari et al. (2018) developed a 

smart model for real time diagnosis of liquid loading 

in shale gas using machine learning. By using 

supervised and unsupervised machine learning 

algorithms, the onset of liquid loading was identified 

in shale gas systems and their model showed a great 

promise in the prediction of liquid loading. The K-

Means clustering model was used to help predict the 

loading and unloading status of wells.  

 

Following the discrepancies among the variants of 

Turner et al model, there is the need to develop a smart 

model that can accurately predict the onset of liquid 

loading. Hence, in this study, three machine learning 

algorithms were used to develop a smart model that 

could give precise and accurate prediction of the 

critical conditions for the onset of liquid loading in gas 

wells using data obtained from Coleman et al and 

Turner et al. The algorithms used are: Artificial Neural 

Network (Feed Forward), Least Squares Support 

Vector Regression and Decision Tree algorithms 

respectively. Following the discrepancies among the 

variants of Turner et al model, there is the need to 

develop a smart model that can accurately predict the 

onset of liquid loading. Hence, in this study, three 

machine learning algorithms were used to develop a 

smart model that could give precise and accurate 

prediction of the critical conditions for the onset of 

liquid loading in gas wells using data obtained from 

Coleman et al and Turner et al. The algorithms used 

are: Artificial Neural Network (Feed Forward), Least 

Squares Support Vector Regression and Decision Tree 

algorithms respectively. Therefore, the objective of 

this paper is based on the prediction of liquid 

accumulation in gas wells using machine learning 

algorithms to develop regression and classification 

models to accurately forecast the critical flowrate and 

the loading status of individual wells. Therefore, the 

objective of this paper is based on the prediction of 

liquid accumulation in gas wells using machine 

learning algorithms to develop regression and 

classification models to accurately forecast the critical 

flowrate and the loading status of individual wells 

 

MATERIALS AND METHOD 
Two types of machine learning models were used to 

develop the models, a classification algorithm and two 

regression algorithms. The classification model was 

developed to give real time indication of state of the 
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well considering the existing conditions. For this 

purpose, Decision trees algorithm was used while the 

regression models were developed to indicate the 

critical rate for a producing well and this was achieved 

using the continuous variable algorithms such as Feed-

forward Neural Network and Support Vector 

Regression respectively. 

 

To develop the classification model, 102 data sets 

from different wells with their loading status obtained 

from Turner et al. (1969) was used while  the 

regression models were developed from data sets 

obtained from Coleman et al. The data from Coleman 

et al contain 56 data sets from different wells with their 

critical flowrates; and these were used to train the 

regression models. For the regression models, the 

characteristic threshold velocity to be obtained was the 

target variable while the loading status of the 

individual wells was the target variable for the 

classification model. The main idea behind the 

classification model is to help operators monitor 

increasing liquid density as liquids accumulate at the 

wellbore to discern the status of the well. Tables 1 

shows statistical summary of data from Turner et al 

showing the status of being loaded or unloaded while 

Table 2 shows statistical summary of  data from 

Coleman et al used for the analysis.  

 
Table 1 Statistical description of dataset for loaded and unloaded wells [9] 

 Depth [ft] WHP 

[psia] 

Oil 

Gravity  

Oil make 

[bbl/d] 

Water make 

[bbl/d] 

Tubing ID 

[inches] 

Test flow 

[bbl/d] 

Status 

count 106 106 106 106 106 106  106 106 

mean 7498.547

2 

2327.4

25 

57.336792 28.74151 2.578302 2.459236 3920.83 1.292453 

std 2275.509
3 

1459.0
55 

13.582554 35.63428 8.017006 1.14386 2531.341 0.792428 

min 2250 108 0 0 0 1.75 400 0 

25% 5934 1527.5 52.7 4.325 0 1.995 1986.5 1 

50% 7410.5 2193.5 56.7 12.2 0 1.995 3406 1.5 

75% 8690 3075.2

5 

65 31.8 0.4 2.441 5101.5 2 

max 11850 8215 71.7 130.8 45.1 7.386 11767 2 

 

Table 2. Statistical description of dataset for neural network prediction [10] 

 

Gravity  Depth [ft] Condensate 
[bbl/d] 

Water 
[bbl/d] 

WHFP 
[psia] 

qc      [bbl/d] 

count 56 56 56 56 56 56 

mean 0.637875 6776.521 2.710714 4.276786 149.4286 524.28571 

std 0.034548 1475.021 2.766204 4.72552 101.3064 190.87366 

min 0.582 5.15 0 0 39 90 

25% 0.61 6098.5 0 0 73.75 390 

50% 0.628 6652 2.4 3.05 130 538 

75% 0.66025 7864.25 4.075 6.625 183.5 636.25 

max 0.75 9445 14.8 17.6 495 1072 

 

Data Preprocessing: In the development of the neural 

network model, input data were preprocessed before 

performing the prediction to reduce noise, and also 

effect data normalization. The moving average 

smoothing filter was used to remove large peaks of 

data due to its simplicity and optimal performance in 

reducing random noise while retaining a sharp step 

(Smith, 1997). There was a slight difference in the 

tuning of the output variables for the classification and 

regression models. The regression models used 

continuous values, already contained in the dataset 

hence, no further tuning was needed. However, to 

develop the classification model, categorical data 

which could be read by the computer was needed. The 

output variables contained object data types which was 

unreadable. To convert the variables to readable form, 

categorical integers of  0, 1, and 2 were attached to the 

object variables. Near loaded wells were represented 

by 0, 1 was used to represent loaded wells and 2 was 

used to represent unloaded wells respectively. After 

normalization, smoothing, and categorization, the 

datasets were then made ready for training. The input-

output variables were also prepared based on the type 

of model to be developed. The preprocessed data was 

then split into two. The first portion was used to train 

the model, and the second was used to test the models. 

 

Development Of Ann  Network Model: The training 

processes for the three models are similar. The data 

was read into the Python environment as a Dataframe 

using Pandas, a machine learning library. For the 

development of the ANN network model, sequential 

model was used to build in layers and add weight was 

created. A three-layer network was used in this work. 

The first layer consists of five neurons representing the 

input parameters (oil gravity, well depth, condensate 
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make, and water make.). The second layer is the 

hidden layer, and the third layer contains one neuron 

representing, the output variables. The training group 

was split into two groups: the first was used to the train 

the network for the different algorithms and the second 

set was used to test for errors during the training for 

validation. This cross-validation process was used to 

monitor the performance of the network and prevent 

overfitting. Stochastic Gradient Descent (SDG), and 

mean absolute error were used as the optimizers and 

loss function for the development of the model. 

 

RESULTS AND DISCUSSION  
Two continuous variable models  and a classification 

model was developed in this study and validated with 

field data.  Figure 1 shows the prediction of the critical 

rate using the feed forward neural network against the 

observed critical rates from Coleman et al model. The 

blue solid line with a circular marker are the predicted 

critical rates while orange dashed line with square 

markers are the observed values. From Figure 1, there 

is good match from the Neural Network model in 

predicting the actual critical rate values. 

 

Figure 2 shows the prediction of the critical rate using 

the Support Vector Regression model and again, was 

validated using data from Coleman et al. The 

predictions from SVR model is represented with blue 

solid lines with circular makers while the observed 

values are represented with orange dashed lines with 

square markers. As can be seen, from Figure 2, a close 

match was obtained as was seen in Figure 1. However, 

the accuracy of the models in the prediction of the 

actual values can only be ascertained from error 

analysis.    

 

Fig. 1:  Prediction of critical rates using Neural Network (blue solid line with circular makers) and observed critical rates from Coleman et 

al (orange dashed line with square markers), showing how close the Neural Network model predicted the actual critical rates.  

 
Fig. 2: Prediction of critical rates using the Support Vector Regression Model Showing (blue solid line) and observed critical rates obtained 
from Coleman et al (orange dashed line with square markers)  

 

Unlike the regression models, the classification model 

was built using the data from Turner et al. (1969). This 

model was used to predict the status of a well whether 

it is loaded, near loaded or unloading in order to 

eliminate the dependence on critical velocity models 

in predicting liquid loading in gas wells as shown in 

Figure 3. From Figure 3, the model was able to 

accurately predict 81% of the status of the wells and 
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differentiate them into loaded, near-loaded and 

unloading conditions respectively.  However, it was 

observed that near-loaded conditions were not as 

accurately predicted as the loaded and unloaded 

conditions by the model. The model either over-

predicted or under-predicted the near-loaded 

conditions in the investigation. 

   

In order to ascertain the predictive capabilities of the 

models, an error analysis was carried out using mean 

absolute error (MAE), mean square error (MSE), root 

mean square error (RMSE) and the coefficient of 

determination (R2) as shown in Table 3. As can be seen 

in Table 3, the Feed Forward Neural Network model 

gave the best prediction with an R2 value of 0.9833, 

followed by the Decision tree, with R2 of 0.8152 and 

lastly, the Support Vector Regression model with R2 

of 0.7536 respectively. The Support Vector 

Regression model did not perform very well with the 

obtained data and this may be due to the SVR 

algorithm behaving like a classifier hence, causing a 

mix up whereas, the classification model also had a 

slightly low accuracy and this could be attributed to 

the limited data used for the analysis. 

 

 
Fig. 3: Prediction of well status using the classification model. The blue solid line with square markers are the predicted status while orange 

dashed line with circular markers are the observed status obtained from Turner et al model. 

 
Table 3:  Comparison of the predictive performance of models 

Models MAE MSE RMSE R2 

SVR 0.2450 0.3459 0.5881 0.7536 

Neural Network 0.1667 0.0557 0.2360 0.9833 

Decision trees 0.2813 0.2364 0.4862 0.8152 

 

The Feed Forward Neural Network model was 

selected as the preferred model and compared with 

other critical rate prediction models as shown in Table 

4. Table 4 shows the percent errors from each 

predictive model. The closer the value of the percent 

error to zero on the number line, the better. As can be 

seen in Table 4, the feed forward neural network is the 

best  (5.571%), followed by Luan and He model (-

6.073%), then Bolujo et al model (-9.126%), and 

Turner et al model (-12.344%). Prediction from Li et 

al model gave the highest percent error and the least 

accurate prediction of the actual critical flow rates 

observed with a value of 24.545%  

 
Table 4: Comparison critical rate prediction models 

Model Percentage Error(%) 

Turner et al Model -12.344 

Li  et al Model 24.545 

Luan and He  Model -6.073 
Bolujo et al Model -9.126 

Neural Network 5.571 

Conclusion: This study involved applying machine 

learning algorithms to investigate the onset of liquid 

accumulation in gas wells. Three machine learning 

models were developed using the feed forward neural 

networks, least squares support vector machine, and 

decision trees algorithms; these were evaluated using 

statistical metrics and validated with actual data from 

obtained from literature. From the error analyses, the 

feed forward neural network model gave the best 

degree of accuracy compared to the support vector 

machine. The classification model also gave a good 

degree of accuracy as it was able to predict about 81% 

of the status of wells being investigated.  

 

NOMENCLATURE 

ANN = Artificial Neural Networks 

SVM = Support Vector Machines 

SVR = Support Vector Regression 

SDG = Stochastic Gradient Descent 

Qc = Critical Rate 

WHFP = Wellhead Flowing Pressure 

ID = Internal Diameter 

MAE = Mean Absolute Error 
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MSE = Mean Squared Error 

RMSE = Root Mean Squared Error 

R2 = Coefficient of Determination 
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