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ABSTRACT: Regardless of many decades of research, the widespread availability of a vaccine and more recently 

highly visible WHO efforts to promote a unified global control strategy, Tuberculosis remains a leading cause of 
infectious mortality. In this paper, a Mathematical Model for Tuberculosis Epidemic with Passive Immunity and Drug-

Sensitivity is presented. We carried out analytical studies of the model where the population comprises of eight 

compartments: passively immune infants, susceptible, latently infected with DS-TB. The Disease Free Equilibrium 
(DFE) and the Endemic Equilibrium (EE) points were established. The next generation matrix method was used to 

obtain the reproduction number for drug sensitive (𝑅𝑜𝑠) Tuberculosis. We obtained the disease-free equilibrium for 

drug sensitive TB which is locally asymptotically stable when 𝑅𝑜𝑠 < 1 indicating that tuberculosis eradication is 
possible within the population. We also obtained the global stability of the disease-free equilibrium and results showed 

that the disease-free equilibrium point is globally asymptotically stable when 𝑅𝑜𝑠 ≤ 1 which indicates that tuberculosis 
naturally dies out. 
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Tuberculosis (TB) is a bacterial disease acquired 

through air-borne infection (Daniel, 2009). 

Mycobacterium Tuberculosis Complex (MTBC) is the 

causative agent of tuberculosis. According to the 

World Health Organization (WHO), one-third of the 

world's population is infected, either latently or active, 

with tuberculosis (WHO, 2016). It is an ancient 

disease with evidence of its existence being found in 

relics from ancient Egypt, India and China. In the 

eighteenth century, Western Europe suffered terribly 

from this disease with prevalence as high as 900 deaths 

per 100,000. This was largely due to poor ventilation, 

overcrowded housing, primitive sanitation and 

malnutrition among other risk factors that led to the 

epidemic (Daniel, 2009). Tuberculosis is spread 

through the air from one person to another. The 

bacteria get into the air when someone who has a 

tuberculosis lung infection coughs, sneezes, shouts, or 

spits. People who are nearby can then possibly breathe 

the, bacteria into their lungs and become infected. 

Even though the disease is airborne, it is believed that 

TB is not highly infectious and so, occasional contacts 

with infectious person rarely lead to infection. TB 

cannot be spread through handshakes, sitting on toilet 

seats or sharing dishes and utensils with someone who 

has TB (Abdul-halim, 2013). 

TB is the ninth leading cause of death worldwide and 

the leading cause from a single infectious agent, 

ranking above HIV/AIDS (WHO, 2017). In 2016, 

there were an estimated 1.3 million TB deaths among 

HIV-negative people (down from I .7 million in 2000) 

and an additional 374,000 deaths among HIV-positive 

people. An estimated 10.4 million people fell ill with 

TB in 2016: 90% were adults, 65% were male, 10% 

were people living with HIV (74% in Africa) and 56% 

were in five countries: India, Indonesia, China, the 

Philippines and Pakistan (WHO, 2017). Drug-

Resistant TB is a continuing threat, in 2016, there were 

600, 000 new cases with Resistance to Rifampicin 

(RR-TB), the most effective first-line drug, of which 

490, 000 had Multidrug-Resistant TB (MDR-TB). 

Almost half (47%) of these cases were in India, China 

and the Russian Federation (WHO, 2017). 

Tuberculosis (TB) is a preventable disease linked to 

poverty, was declared an emergency in Africa in 2005. 

Each year it claims the lives of half a million Africans, 

many young and in their most productive years. In the 

past 15 years, overall rates have doubled in Africa and 

tripled in high HIV areas. Africa has the highest per 

capital incidence 0.1 TB in the world (28%), with most 

of 1 5 the worst affected countries located in sub-

Saharan Africa. Those most at risk include the urban 

poor, migrants and refugees, who are forced to live in 
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overcrowded conditions (Ibrahim, et al, 2013). Africa 

is also the only continent where TB rates are 

increasing, with 1,500 TB deaths every day. Tragically 

and avoidably, 10% of these are children. TB is also a 

leading killer of HIV-positive people with weakened 

immune systems. About 200,000 people living with 

HIV/AIDS die from TB every year, most of them in 

Africa. Completing a particularly vicious circle, HIV 

itself has been the single most important factor in the 

rising incidence of TB in Africa since 1990. Treating 

co-infected people is hard as the drug therapies for 

each are hard to safely combine (Ibrahim, et al., 2013). 

However, the world is still far from defeating the 

disease. About 8 billion US dollars per year is needed 

for a full response to the global tuberculosis epidemic 

in low and middle income countries by the year 2025 

with a funding gap of 2.3 billion US dollars per year. 

This amount excluded resources required for research 

and development, which was estimated to be about 2 

billion US dollars yearly (WHO, 2017). Clearly, this 

reveals that the current investment in tuberculosis falls 

below the low and middle-income country's needs. 

(MTB) bacteria spread through inhaling droplets from 

the cough or sneeze of a person suffering from active 

tuberculosis (WHO, 2017). The bacteria enter the 

body causing a MTB infection affecting majorly the 

lungs but it can also affect any other part of the body 

including the urinary tract, brain, lymph nodes, bones, 

joints and the ear. Person(s) with lowered immunity 

such as those with HIV, diabetes, immune disorders, 

end-stage renal disease, those on drugs that suppress 

immunity, young children and pregnant women 

among others are at a higher risk of contracting the 

disease (WHO, 2017). Population movements have 

significant implications for tuberculosis transmission 

as migration introduces tuberculosis problem to the 

areas to which the migrants migrate to. Temporary 

migrant workers often bring the bacteria to lower 

prevalence areas and local transmission can be readily 

established (Semenza, et al., 2010). Tuberculosis is 

curable provided an early diagnosis is made and one 

follows the proper treatment regimen which could take 

six months up to two years for the active tuberculosis 

to clear (Trauer, et al., 2014).  In 2016, there were an 

estimated 480. 000 new cases of Multidrug-Resistant 

TB (MDR-TB) and an additional 100, 000 people with 

Rifampicin-Resistant TB (RR-TB) who were also 

newly eligible for MDR-TB treatment. India, China 

and the Russian Federation accounted for 45% of the 

combined total of 580, 000 cases (WHO, 2017). 

Despite many decades of study, the widespread 

availability of a vaccine and more recently highly 

visible WHO efforts to promote a unified global 

control strategy, TB remains a leading cause of 

infectious mortality (WHO, 2017). Recent data 

indicate that the overall global incidence of TB is 

rising as a result of resurgence of the disease in Africa, 

parts of Eastern Europe and Asia (WHO, 2017). In 

2016, there were an estimated L3 million TB deaths 

among HIV-negative people (down from 1.7 million 

in 2000) and an additional 374, 000 deaths among 

HIV-positive people. An estimated 10.4 million 

people fell ill with TB in 2016: 90% were adults, 65% 

were male, 10% were people living with HIV (74% in 

Africa) and 56% were in five countries: India, 

Indonesia, China, the Philippines and Pakistan (WHO, 

2017). Waaler (1968) formulated a deterministic 

model for the transmission dynamics of tuberculosis. 

However, the model did not incorporate passive 

immunity, drug-sensitive 'I'B and drug-resistant TB. In 

view of this, we modified the model to investigate the 

effects of Passive Immunity, Drug-Sensitive and 

Drug-Resistance on transmission dynamics of 

tuberculosis. The aim of this study is to 

mathematically model the effects of Passive immunity 

and drug-sensitive on the transmission dynamics of 

tuberculosis. 

 

MODEL NOTATION 

TB Model (Waaler, 1968): We reviewed the existing 

model by Waaler, (1968) in terms of assumptions, 

model description, and model equations. This serves 

as a framework for the model with passive immunity 

and drug sensitivity TB on the transmission dynamic 

of tuberculosis. 

 

TB Model Assumptions: The model is based on the 

following assumptions  

i. Age, sex, social status, race occupied with 

climatic conditions in the district does not affect the 

probability of an individual being infected.  

ii. The disease is transmitted in a close 

environment. There is no emigration or immigration. 

iii. Susceptible individuals are moving to the 

infected class. 

iv. Individuals either die by infection or natural 

death 

v. It is also assumed that infected individuals 

either die or recover. 

 
Fig. 1: Schematic sDiagram of Existing Model 
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Description of the TB Model: In the model developed 

by Waaler (1968), the population is divided into four 

classes: susceptible class S(t), exposed E(t), infected 

I(t), and recovered R(t). The class of susceptible 

individuals S is increased by birth rate Ʌ. The class 

reduces due to the progression of individuals to the 

infectious class at the rate ρλSI, due to the progression 

of the individuals to the exposed class grows as a result 

of incoming of individuals at the rate (1 – ρ)λSI and as 

a result of natural death µS. The exposed class grows 

as a result of incoming individuals from susceptible 

class at the rate (1 – ρ)λSI, the class reduces as a result 

of progression of individuals to the infectious class at 

the rate KE and reduces due to the rate of natural death 

at the rate µE. 

 

The infectious class grows as a result of incoming 

individuals from the expose class at the rate KE and 

also as a result of coming in of individuals from the 

susceptible class at the rate ρλSI. the class reduces due 

to the progression of individuals to the recovered class 

at the rate rI, due to the TB mortality rate dI and due 

to the natural death at the rate µI. the recovered class 

grows as a result of successful treatment and cure of in 

infectious individuals at the rate and reduces as a result 

of natural death at the rate µR. 

 
Table 1: Variables and Parameters of the TB Model (Waaler, 

1968) 

VAR/PAR PAR DESCRIPTION 

S(t) the number of susceptible individuals at time 
t. 

E(t) the number of latently infected/ exposed 

individuals at time t. 
I(t) the number of infected individual at time t. 

R(t) the number of recovered individuals at time t 

Ʌ the recruitment number in the population. 
ρ the proportion of the new infectious that move 

directly into the infected class. 

µ the natural mortality rate. 
k the reactivation rate. 

r the recovery rate. 

d the TB mortality rate. 
λ The force of infection 

 

Existing Model Equations  

 
𝑑𝑠

𝑑𝑡
= Ʌ − 𝜆(𝐼)𝑆 − µ𝑆           (1) 

𝑑𝐸

𝑑𝑡
= (1 − 𝜌)𝜆(𝐼)𝑆 − (µ + 𝐾)𝐸 (2) 

𝑑𝐼

𝑑𝑡
= 𝜌𝜆(𝐼)𝑆 + 𝐾𝐸 − (µ + 𝑑 + 𝑟)𝐼  (3) 

𝑑𝑅

𝑑𝑡
= 𝑟𝐼 − µ𝑅   (4) 

 

Model with Passive Immunity and Drug- Sensitivity 

TB: Below are the assumptions, description, diagram 

and model equations of the formulated modified 

model. 

 

Additional Assumptions for the Model with Passive 

Immunity and Drug-Sensitivity TB: The population is 

heterogeneous. That is, the individual that make up the 

population can be grouped into different compartment 

or classes according to their epidemiological state. 

i. It is assumed that the only way of entry into 

the population is through birth or new born babies and 

the only way of exist is via death from the natural 

causes or death from TB related causes 

ii. All newborns are previously uninfected by 

TB and therefore join either immunized compartment 

or the susceptible compartment depending on weather 

they vaccinated or not 

iii. The vaccinated individuals do not acquire 

permanent immunity 

iv. The effective treatment rate of drug- 

sensitivity is higher than that of drug-resistant  

 
Fig. 2: Schematic drawing for the Model with Passive Immunity 

and Drug Sensitivity TB 

 

Description of the Model with Passive Immunity and 

Drug Sensitivity TB: Based on the standard MSEIR 

Model, the population is partitioned into five (5) 

compartment or classes namely; passive immunized 

infants M(t), susceptible S(t), latently infected 

individuals with drug-sensitivity TB Es (t), infectious 

individuals with drug sensitivity TB Is (t), recovered 

individuals with drug sensitivity TB Rs (t). The passive 

immunized compartment increase due to the coming 

in of the immunized newborns into the population, 

where we assume that a population, σπ of the incoming 

individuals are immunized through vaccination. The 

compartment reduces due to the progression of 

individuals in this class to the susceptible class as a 

result of the expiration of the duration of vaccine 

efficiency at the rate of ƟM and also as a result of 

natural death at the rate µM. The susceptible 

compartment of the population grows due to the 

coming in of new born babies not immunized against 

TB infection into the population at the rate (1-σ) π and 

as a result of the expiration of the efficiency of the 

vaccine at the rate ƟM. This compartment decreases 

due to the progression of individuals into the latently 

infected individuals with drug-sensitivity TB at the 
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rate (1-ρ)βISSS,  infectious individuals with drug-

sensitivity at the rate ρβISSS, and also as a result of 

natural death at the rate of µS. The population of 

latently infected individuals with drug-sensitivity 

grows as a result of progression of individuals from 

the susceptible class at the rate (1-ρ)βISSS. This class 

reduces due to the progression of latently infected 

individuals with drug-sensitivity TB at the rate vES and 

as a result of death from natural causes at the rate µES. 

The population of the infectious individuals with drug-

sensitivity TB grows due to the progression of latently 

infected individuals with drug-sensitivity at the rate 

vES and due to the progression of susceptible 

individuals at the rate ρβISSS. this compartment 

reduces due to the progression of recovered 

individuals with drug-sensitivity at the rate r2(1-r)IS 

due to the death as a result of active TB with drug-

sensitivity at the rate µtIS and also as a result of death 

from natural causes at the rate µIS. The recovered 

compartment with drug-sensitivity TB grows as a 

result of successful treatment and cure of infectious 

with drug-sensitivity at the rate r2(1-r)IS and reduces 

as a result of death from natural causes at the rate µRS. 

 
Table 2: Parameter and Variable of the Model with Passive 

Immunity and Drug-Sensitivity TB 

VAR / PAR DESCRIPTION 

M(t) the number of people who were immunized 

against TB through vaccination at a time t. 

S(t) The number of susceptible individuals at a time 
t. 

Es(t) The number of latently infected individual with 

drug-sensitivity TB at a time t. 

Is(t) the number of infectious individuals with drug-

sensitivity TB at time t 

Rs(t) The number of recovered individuals with 
drug-sensitivity TB at a time t. 

βS the transmission rate of drug-sensitivity TB 

π  the recruitment rate 

r1 The treatment efficiency of drug-sensitivity TB 

σ The proportion of newborn that have been 

immunized through immunization. 

Ɵ The rate of expiration of vaccination. 

µ natural mortality rate 

V progression rate for latent TB to active TB for 

drug-sensitivity cases 

µ the mortality rate due to TB 

Ρ the proportion of new infections that produces 

active TB for drug-sensitivity cases 

 

Model Equation with Passive Immunity and Drug-

Sensitivity TB 
𝑑𝑀

𝑑𝑡
= 𝜎𝜋 − (Ɵ + µ)𝑀    (5) 

𝑑𝑆

𝑑𝑡
= (1 − 𝜎)𝜋 + Ɵ𝑀 − (𝛽s𝐼s + µ)𝑆  (6) 

𝑑𝐸s

𝑑𝑡
= (1 − 𝜌s)𝛽s𝐼s𝑆 − (ʋ + µ)𝐸s   (7) 

𝑑𝐼s

𝑑𝑡
= 𝜌s𝛽s𝐼s𝑆 + ʋ𝐸S − (µ + µT + 𝑟2)𝐼s  (8) 

𝑑𝑅s

𝑑𝑡
=  𝑟2(1-r) 𝐼s − µRs   (9) 

 

Where 

 

M (0) =M0, S (0) =S0, Es (0) =E0, Is (0) =I0, Rs (0) 

=R0. 

 

Method of Model Analysis: In this section, various 

methods adopted in carrying out this study were 

discussed: 

 

Equilibrium State: The equilibrium state for the model 

is obtained by setting the model equations to be zero. 

i.e 

 

   
𝑑𝑀

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
=

𝑑𝐸s

𝑑𝑡
=

𝑑𝐼s

𝑑𝑡
=

𝑑𝑅s

𝑑𝑡
= 0 

 

Basic Reproduction Number: Dieckmann and 

Heesterbeek (2000) defined the basic reproduction 

number, R0 as the average number of secondary 

infections caused by an infectious individual during 

his/her entire life as an infectious person. In this 

model, we adopted the model of the next generation 

matrix to compute our reproduction number. We call 

FV-1 the next generation matrix for the model and set 

the reproduction number R0= ρ(FV-1) where 

F=(
Ə𝐹i(𝑥0)

Ə𝑥j
) and V=(

Ə𝑉i(𝑥0)

Ə𝑥j
)  for i ≥ 1 the number of 

compartments and 1 ≤ j ≤ m for the infected 

compartments only. ρ(FV-1) denotes the spectral 

radius of the matrix A. F and V are m×m matrices, 

where m is the number of infected classes (Dieckmann 

and Heesterbeek 2000). 

 

Local Stability Analysis of the Disease Free 

Equilibrium State: We use Routh-Hurwitz criterion to 

obtain the steady state of the model. The Routh-

Hurwitz criterion states that a necessary and sufficient 

condition that the equation xn+a 1xn-1+…+an=0, (with 

real coefficients) have only roots of negative real part 

if the values of the determinants of the matrices are all 

positive, D1=a1>0, D2=
𝑎1 𝑎3

1 𝑎2
> 0, where  

D3=
𝑎1 𝑎 𝑎5
1 𝑎2 𝑎4
0 𝑎 𝑎3

 

 

 Dk =      

⌈
⌈
⌈
⌈
 
𝑎1 𝑎3 .     
1 𝑎2 𝑎4      

. 0

. .
0 𝑎1 𝑎3     
0 1 𝑎2      

. .

. .
. . .                 . .

0 0           .. 𝑎k ⌉
⌉
⌉
⌉
 

 > 0   Called the 

Hurwitz matrix 

 

For quadratic and cubic polynomials, these conditions 

reduce to: 

 

n=2, a1  > 0,    a2  > 0 
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n=3, a1 > 0      a2  > 0   a1a2 > 0. 

 

RESULTS AND DISCUSSION  
Analytic Results: We developed a mathematical model 

for the effect of passive immunity and drug-sensitivity 

on the transmission dynamic of tuberculosis. The 

model equations are (5) to (9)  

Disease Free Equilibrium State: The equilibrium state 

for the system was obtained by setting the model 

equation to zero. i.e. 

 
𝑑𝑀

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
=

𝑑𝐸S

𝑑𝑡
=

𝑑𝐼S

𝑑𝑡
=

𝑑𝑅S

𝑑𝑡
= 0         (10) 

 

Thus, at equilibrium, equation (5) to (9) becomes 

 

 𝜎𝜋 − (Ɵ + µ)𝑀 = 0   (11) 

 

(1 − 𝜎)𝜋 + Ɵ𝑀 − (𝛽s𝐼s + µ)𝑆 = 0  (12) 

 

(1 − 𝜌s)𝛽s𝐼s𝑆 − (ʋ + µ)𝐸s = 0   (13) 

 

𝜌s𝛽s𝐼s𝑆 + ʋ𝐸s − (µ + µt + 𝑟2)𝐼s = 0  (14) 

 

 𝑟2(1-r) 𝐼s − µRs = 0    (15) 

 

At disease free, 

 

𝐸s = 0, 𝐼s = 0, Rs = 0    (16) 

 

Substituting equation (16) into equation (11), we have 

 

M=
𝜎𝜋

Ɵ+µ
      (17) 

Substituting equation (17) into equation (12), we have 

 

S=
𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)
     (18) 

 

Therefore, the disease-free equilibrium state is  

 

E0 = (M, S, Es, Is, Rs) = 
𝜎𝜋

Ɵ+µ
, 
𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)
, 000

 (19) 

 

Endemic Equilibrium State: The endemic equilibrium 

point is the point at which the disease persists in a 

given population 

 

From equation (11), we have 

 

𝜎𝜋 − (Ɵ + µ)𝑀 = 0  

 

M=
𝜎𝜋

Ɵ+µ
     (20) 

 

Substituting equation (20) in (12), we have  

 

(1 − 𝜎)𝜋 + Ɵ
𝜎𝜋

Ɵ+µ
− (𝛽s𝐼s + µ)𝑆 = 0  (21) 

 

S=  
(Ɵ+µ)(1−𝜎)𝜋+Ɵ𝜎𝜋

(Ɵ+µ)(𝛽s𝐼s+µ)
      (22)    

 

Substituting equation (22) into equation (13), we have 

 

(1 − 𝜌s)𝛽s𝐼s
(Ɵ+µ)(1−𝜎)𝜋+Ɵ𝜎𝜋

(Ɵ+µ)(𝛽s𝐼s+µ)
− (ʋ +

µ)𝐸s = 0  (23) 

𝐸s = 
(1−𝜌S)𝛽S𝐼S(Ɵ+µ)(1−𝜎)𝜋+Ɵ𝜎𝜋

(Ɵ+µ)(ʋ+µ)(𝛽s𝐼s+µ)
  (24) 

 

Substituting equation (24) into equation (14), we have  

 

𝜌s𝛽s𝐼s𝑆 + ʋ
(1−𝜌s)𝛽s𝐼s(Ɵ+µ)(1−𝜎)𝜋+Ɵ𝜎𝜋

(Ɵ+µ)(ʋ+µ)(𝛽s𝐼s+µ)
− (µ + µT + 𝑟2)𝐼s = 0  (25) 

 

𝐼S = 
ʋ(1−𝜌 S)𝛽S𝐼S(Ɵ+µ)(𝛽s𝐼s+µ)𝜌S𝛽S𝐼S𝑆(Ɵ+µ)(1−𝜎)𝜋+Ɵ𝜎𝜋

(Ɵ+µ)(ʋ+µ)(𝛽s𝐼s+µ)(Ɵ+µ)(µ+µT+𝑟2)(𝛽s𝐼s+µ)−𝜌S𝛽S(Ɵ+µ)(1−𝜎)𝜋+Ɵ𝜎𝜋
 (26) 

 

𝐼s = A 

Substituting equation (26) into (15), we have 

 

𝑟2(1-r) 𝐴 − µRs = 0   (27) 

 

Rs =
𝑟2(1−r) 𝐴

µ
     (28) 

 

Hence the endemic equilibrium point of the model (𝑀, 𝑆, 𝐸S, 𝐼S, RS ) is expressed as follows: 

 

M=
𝜎𝜋

Ɵ+µ
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S=  
(Ɵ+µ)(1−𝜎)𝜋+Ɵ𝜎𝜋

(Ɵ+µ)(𝛽s𝐼s+µ)
    

 

𝐸s = 
(1−𝜌s)𝛽s𝐼s(Ɵ+µ)(1−𝜎)𝜋+Ɵ𝜎𝜋

(Ɵ+µ)(ʋ+µ)(𝛽s𝐼s+µ)
 

 

   𝐼s = 
ʋ(1−𝜌s)𝛽s𝐼s(Ɵ+µ)(𝛽s𝐼s+µ)𝜌S𝛽s𝐼s𝑆(Ɵ+µ)(1−𝜎)𝜋+Ɵ𝜎𝜋

(Ɵ+µ)(ʋ+µ)(𝛽s𝐼s+µ)(Ɵ+µ)(µ+µT+𝑟2)(𝛽s𝐼s+µ)−𝜌s𝛽s(Ɵ+µ)(1−𝜎)𝜋+Ɵ𝜎𝜋
  

 

Rs =
𝑟2(1−r) 𝐴

µ
      (29) 

 

Reproduction Number for Drug-Sensitivity TB: The 

basic reproduction number of drug-sensitivity is 

denoted by R0S. It is an important parameter that is 

used in studying the behavior of epidemiological 

model. It is defined as the average number of 

secondary infections infected by an infective 

individual during an infective period provided that the 

all members of the population are susceptible. It is an 

important threshold parameter that determines 

whether or not, an infection will spread through a 

given population. We apply the next generation matrix 

technique by Diekman and Heesterbeek (2000) to 

obtain the basic reproduction number for drug-

sensitivity, R0S by considering the infected 

compartment of the system (5) to (9) that is equation 

(7) and (8). Let F1 be the rate of appearance of new 

infection in the I compartment and V1 be the rate of 

transfer of individuals out of i. given the disease free 

equilibrium, then R0S spectral radius (largest Eigen 

values) of the next generation matrix denoted by 

G=FV-1 

 

Let x=(ES,IS)T, so that 
𝑑𝑥

𝑑𝑡
= 𝐹1(X) − 𝑉1(𝑋), where 

 

F1(X)= (F1
𝐹2

) = ((1−𝜌S𝛽S𝐼S)
𝜌S𝛽S𝐼S

)                          (30) 

 

Evaluating the Jacobean matrix of F(X)  

 
ƏF1

Ə𝑋2
= [

ƏF1

Ə𝐸S

ƏF1

Ə𝐼S
Ə𝐹2

Ə𝐸S

Ə𝐹2

Ə𝐼S

]   (31) 

 

Substituting equation (30) into equation (31) and 

evaluating at disease free equilibrium E0, we obtain  

F= [
0

(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)

0
𝜌S𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)

]  (32) 

 

 

And  

V1(x)=(V1
V2

) = (
(ʋ+µ)𝐸S

(µ+µT+𝑟2)𝐼S−ʋ𝐸S
)  (33) 

 

Evaluating the Jacobean matrix of V(x) 

 

ƏV1

Ə𝑋2
= [

ƏV1

Ə𝐸S

ƏV1

Ə𝐼S
Ə𝑉2

Ə𝐸S

Ə𝑉2

Ə𝐼S

]               (34) 

Substituting equation (33) into equation (34) and 

evaluating at disease free equilibrium E0, we obtained  

V= [
(ʋ + µ) 0

−ʋ (µ + µT + 𝑟2)
]  (35) 

 

Thus, we evaluate equation (35) to get  

 

det (V)= (ʋ + µ) (µ + µT + 𝑟2)  (36) 

 

and   

adj(V) = [
(µ + µT + 𝑟2) 0

ʋ (ʋ + µ)
] (37) 

Hence, 

V-1 = [

1

(ʋ+µ)
0

1

(ʋ+µ)(µ+µT+𝑟2)

1

(µ+µT+𝑟2)

] (38) 

 

Hence, we obtain the matrix G=FV-1 by multiplying equation (32) and equation (38) to obtain  

F V-1 = [

ʋ(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(ʋ+µ)(µ+µT+𝑟2)

(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(ʋ+µ)(µ+µT+𝑟2)

ʋ𝜌S𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(ʋ+µ)(µ+µT+𝑟2)

(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(µ+µT+𝑟2)

]  (39) 

 

Therefore, we evaluate the characteristic equation | F V-1 – λI| =0 of equation (39) to get  
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[

ʋ(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(ʋ+µ)(µ+µT+𝑟2)
− 𝜆

(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(ʋ+µ)(µ+µT+𝑟2)

ʋ𝜌S𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(ʋ+µ)(µ+µT+𝑟2)

(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(µ+µT+𝑟2)
− 𝜆

] = 0 (40) 

 

(
ʋ(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(ʋ+µ)(µ+µT+𝑟2)
− 𝜆) (

(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(µ+µT+𝑟2)
− 𝜆)-(

ʋ𝜌S𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(ʋ+µ)(µ+µT+𝑟2)
) = 0 

  

λ2-λ[
ʋ(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(ʋ+µ)(µ+µT+𝑟2)
+

(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(µ+µT+𝑟2)
] = 0 (41) 

 

Hence, simplifying (41) yields  

 

λ = 
(
ʋ(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(ʋ+µ)(µ+µT+𝑟2)
+

𝜌S𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(ʋ+µ)(µ+µT+𝑟2)
)±√(

ʋ(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(ʋ+µ)(µ+µT+𝑟2)
+

𝜌S𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(ʋ+µ)(µ+µT+𝑟2)
)² 

2
  

 

λ= 
(
ʋ(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(ʋ+µ)(µ+µT+𝑟2)
+

𝜌S𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(ʋ+µ)(µ+µT+𝑟2)
)±(

ʋ(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(ʋ+µ)(µ+µT+𝑟2)
+

𝜌S𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(ʋ+µ)(µ+µT+𝑟2)
)²

2
 

 

Hence, λ 1=0; λ2= 
ʋ(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(ʋ+µ)(µ+µT+𝑟2)
+

𝜌S𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(ʋ+µ)(µ+µT+𝑟2)
 

 

The reproduction number for drug-sensitivity is the largest Eigen value, that is  

 

Ros=ρ(F V-1)
ʋ(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(ʋ+µ)(µ+µT+𝑟2)
+

𝜌S𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)(ʋ+µ)(µ+µT+𝑟2)
 (42) 

 

Local Stability of Disease Free Equilibrium Point with 

Drug-Sensitivity TB: Theorem 1: The disease free 

equilibrium point, Eo is locally asymptotically stable if 

Ros  < 1 and unstable if Ros  > 1 

Let 

F1= 𝜎𝜋 − (Ɵ + µ)𝑀 = 0   (43) 

F2=(1 − 𝜎)𝜋 + Ɵ𝑀 − (𝛽S𝐼S + µ)𝑆 = 0 (44) 

F3=(1 − 𝜌S)𝛽S𝐼S𝑆 − (ʋ + µ)𝐸S = 0  (45) 

F4= 𝜌S𝛽S𝐼S𝑆 + ʋ𝐸S − (µ + µT + 𝑟2)𝐼S = 0 (46) 

F5= 𝑟2(1-r) 𝐼S − µRS = 0   (47) 

 

Thus the Jacobean Matrix J for the system (43) to (47) 

is given by 

J =

⌈
⌈
⌈
⌈
⌈
⌈
 
ƏF1

ƏM

ƏF1

ƏM

ƏF1 

ƏM     
ƏF2

ƏM

ƏF2

ƏM

ƏF2

ƏM
  

ƏF3
ƏM
ƏF4
ƏM
ƏF5
ƏM

ƏF3
ƏM
ƏF4
ƏM
ƏF5
ƏM

ƏF3
ƏM
ƏF4
ƏM
ƏF5
ƏM

  

ƏF1

ƏM

ƏF1

ƏM
ƏF2

ƏM

ƏF2

ƏM
ƏF3
ƏM
ƏF4
ƏM
ƏF5
ƏM

ƏF3
ƏM
ƏF4
ƏM
ƏF5
ƏM ⌉

⌉
⌉
⌉
⌉
⌉
 

 (48) 

 

Substituting equation (43) to (47) into equation (48) 

and evaluating at the disease free equilibrium, we 

obtain  

 

J(E0 )=   

⌊
⌈
⌈
⌈
⌈
⌈
⌈−(Ɵ + µ) 0 0

0 −µ 0

0 0 −(ʋ + µ)      

0 0

−
𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)
0

(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)
0

 0     0        ʋ      
0    0           0

          

(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)
          0

𝑟2(1 − r)         −µ⌋
⌉
⌉
⌉
⌉
⌉
⌉

 (49) 

 

Given  

| J(E0 )-λI|=0 

Substituting equation (48) into equation (49), we obtain  
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⌊
⌈
⌈
⌈
⌈
⌈
⌈−(Ɵ + µ) − 𝜆 0 0

0    −µ − 𝜆 0

0 0 −(ʋ + µ) − 𝜆      

0 0

−
𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)
0

(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)
0

        
 0     0        ʋ      
0    0           0

      

(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)
− 𝜆                     0

𝑟2(1 − r)         −µ − 𝜆 ⌋
⌉
⌉
⌉
⌉
⌉
⌉

=0 (50) 

 

From equation (50), we observe that λ1= µ1, λ2= µ1 and λ3=−(Ɵ + µ), thus equation (50) reduces to  

 

⌊
−(ʋ + µ) − 𝜆

(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)

ʋ −(µ + µT + 𝑟2) −
𝜌S𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)
− 𝜆

⌋=0 (51) 

 

Now, equation (51) becomes  

 

⌊
−𝑑1 − 𝜆 𝑐1

ʋ −𝑑2 − 𝜆
⌋ = 0   (52) 

 

Where  

 

𝑑1 = ʋ + µ,  𝑑2 = (µ + µT + 𝑟2) −
𝜌S𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)
  and 𝑐1 =

(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)
 

 

From (52), we have Ros 

 

(−𝑑1 − 𝜆)(−𝑑2 − 𝜆) − ʋ𝑐1 = 0  

 

𝜆2 +  𝑑1𝜆 + 𝑑2𝜆 + 𝑑1𝑑2 − ʋ𝑐1 = 0   
 

𝜆2 + (𝑑1 + 𝑑2) + 𝑑1𝑑2 − ʋ𝑐1 = 0   (53) 

 

𝜌2𝜆2 + 𝜌˳ = 0                    (54)    

 

Where: 𝜌2 = 1; 𝜌1 = 𝑑1 + 𝑑2  and 𝜌˳ =  𝑑1𝑑2- ʋ𝑐1= (ʋ + µ)(µ + µT + 𝑟2)1 − Ros 

 

We apply Routh-Hurwitz criterion which states that all roots of the polynomials (54) have negative real part if 

and only if the coefficients 𝜌I, are positive and the determinant of the matrices 𝐻I= 𝜌1 = 𝑑1 + 𝑑2 >0 iff  𝑑1𝑑2 

and 

 

H2=|
𝜌1 0
1 𝜌˳

|= 𝜌1𝜌˳ = ( 𝑑1 + 𝑑2)(𝑑1𝑑2 − ʋ𝑐1) 

= 𝑑12𝑑2 − 𝑑1ʋ𝑐1 +  𝑑1𝑑22 − C2ʋ𝑐1= 𝑑22 𝑑2 + 𝑑1𝑑22 − ʋ𝑐1( 𝑑1 + 𝑑2) > 0 iff 

= 𝑑12𝑑2 + 𝑑1𝑑22 > ʋ𝑐1( 𝑑1 + 𝑑2) 

 

Therefore, all the Eigen values of the polynomial (54) 

have negative real parts, implying that λ2 < 0 and λ5 <0. 

Since all the value of λ1<0, for i = 1,2,3,4,5 when Ros< 

1, we conclude that the disease-free equilibrium point 

is locally asymptotically stable. 

 

Global Stability of Disease Free Equilibrium Point 

with Drug Sensitivity TB: The local dynamic of a 

general MSEIR model is determined by the 

reproduction number Ros. If Ros ≤ 1, then each infected 

individuals in its entire period of infectiousness will 

produce less than one infected individuals on average. 

This means that the disease will be wiped out of the 

population. if Ros > 1, then each infected individuals in 

its entire infectious period having contact with 

susceptible individuals will produce more than one 

infected individuals implying that the disease persists 

in the population if Ros = 1 and this is defined as the 

disease threshold, then one individual infected one 

more individual. For Ros ≤ 1 the disease free 

equilibrium, is locally asymptotically stable while for 

Ros>1 the disease free equilibrium becomes unstable. 



Drug-Sensitivity and Passive Immunity Mathematical Epidemiological…..                                                    1669 

DANHAUSA, AA; DANIEL, EE; SHAWULU, CJ; NUHU, AM; PHILEMON, L 

By using the theory of Lasalle-Lyapunov function V, 

we have will show the global asymptotic stability. The 

disease free equilibrium point is (ES, IS) = (0, 0). 

 

Theorem 2: If Ros≤1, then the disease free equilibrium 

(ES, IS) = (0, 0) of the system is globally asymptotically 

stable on Ω. We construct the following Lasalle-

Lyapunov function V (ES, IS) on the positively 

invariant compact set Ω. Thus on Ω, V (ES, IS) is 

continuous and non-negative. We define V (ES, IS) = 

ES+( ʋ + µ) IS. consider the system of ordinary 

differential equation given by: 

 
𝐸S

𝑑𝑡
= (1 − 𝜌S)𝛽S𝐼S𝑆 − (ʋ + µ)𝐸S   (55) 

 

 
𝐼S

𝑑𝑡
𝜌S𝛽S𝐼S𝑆 + ʋ𝐸S − (µ + µT + 𝑟2)𝐼S  (56) 

 

The above system can be written as 

(
𝐸S
𝐼S

) =

⌈
−(ʋ + µ)

(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)

ʋ
𝜌S𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)
− (µ + µT + 𝑟2)

⌉ (
𝐸S
𝐼S

) 

 (57) 

Thus, equation (57) can be written as 𝐼 = 𝐴(𝐼) 

𝐴 = [
−(ʋ + µ)

(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)

ʋ
𝜌S𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)
− (µ + µT + 𝑟2)

] 

and 𝐼 = (
𝐸S
𝐼S

) 

 

If we define VT=(ʋ, ʋ + µ), then the derivative along 

the trajectories is given by V= VT  𝐴(𝐼) as 

VT 𝐴(𝐼)=(ʋ, ʋ +

µ) [
−(ʋ + µ)

(1−𝜌S)𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)

ʋ
𝜌S𝛽S 𝜋(Ɵ+µ−µ𝜎)

µ(Ɵ+µ)
− (µ + µt + 𝑟2)

]

 (58) 

Simplifying equation (58), we have  

 

=(■(0@(ʋ(1 − 𝜌S)𝛽S 𝜋(Ɵ + µ − µ𝜎))/(µ(Ɵ +
µ) ) + (ʋ + µ)  (𝜌S𝛽S 𝜋(Ɵ + µ − µ𝜎))/(µ(Ɵ +
µ) ) − (µ + µT + 𝑟2) )) 

=(■(0@(ʋ + µ)(µ + µT + 𝑟2)  (𝜌S𝛽S 𝜋(Ɵ + µ −
µ𝜎))/(µ(Ɵ + µ)(µ + µT + 𝑟2) )  (ʋ(1 −
𝜌S)𝛽S 𝜋(Ɵ + µ − µ𝜎))/(µ(Ɵ + µ) ))) 

=(
0

(ʋ + µ)(µ + µT + 𝑟2)(Ro − 1)
) 

 

Which is strictly decreasing when Ros  < 1. Thus, 𝑉 

≤ (ʋ + µ)(µ + µT + 𝑟2)(RoS − 1). We define the set 

𝐸 = {(ES, IS) ∈ 𝛺/𝑉(ES, IS) = 0}. The largest 

invariant set is contained in the set 𝐸 for which ES =0 

or IS = 0 . thus 𝑉 < 0 when Ros>1. If IS = 0 or Ros=1, 

𝑉 = 0. Thus, by Lasalle’s invariance principle the 

disease free equilibrium is globally asymptotically 

stable on Ω. 

 

Conclusion: This study presents a simple yet more 

realistic deterministic model for the transmission 

dynamics of tuberculosis. In contrast to many 

tuberculosis models in literature, we incorporated 

passive immunity, drug sensitive class to the first line 

of treatment for tuberculosis into the existing model by 

Waaler (1968). Analytical study was carried out using 

linearized stability and the results shows that the 

disease free equilibrium (DFE) points are locally 

asymptotically stable (LAS) whenever Ro < I and 

global asymptotically stable (GAS) whenever Ro ≤ l 
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