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ABSTRACT 
 

This paper seeks to demonstrate the relation between homology group and homotopy group. The result 

in this paper is a construction of the homology of a complex torus. 
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INTRODUCTION 

 

The study of Poincare basic groups provided the 

initial motivation for homology theory in the history 

of Algebraic Topology. Several works on the 

configuration of points in higher-dimensional 

Euclidean space were published during his early  

 

years. The number of dimensional holes on a 

surface is computed using a notion called 

homology, which is comparable to Betti numbers. 

The fundamental group also introduced by Poincare 

was the foundation of topology [Brazas, 2011]. 

 

Figure 1: Homology cycles on a torus. With the red line indicating one cycle and blue line indicating the other 

cycle. 

A two-dimensional surface is a torus (that is, the 

torus itself consists of a 2-dimensional hole with any 

point consisting of a 0-dimensional hole but has two 

1-dimensional holes). Cycles are a term for the 

holes in the surface. In addition, it was through 

Emmy Noether that the homology groups were 

eventually recognized, as well as the assertion that 

the Betti numbers were essentially numerical 

invariants of isomorphism. This raises an interesting 

challenge of how to find a polyhedron’s homology 

groups. To compute the homology of a polyhedron, 

one must first define the chain complexes and chain 

mappings before computing the homology group on 

the chain complex [Hilton, 1988]. But the geometric 

construction of simplicial complex S with vertices 

vii∈I is also as follows. For Vii∈I being points of Rn, such 

that if vi,...,vn is a simplex of S, then the points 

Vi,...,Vn are linearly independent [Reynaud, 2003]. 

Also the notion of homotopy invariant seems to 

have been introduced by Hurewicz [Hurewicz, 1935] 

and well-studied by Dugindji [Dugundji, 1950]. 

Transferring topological data to algebraic homotopy 

groups is through endowing other structure with 

correlation to the algebraic structure [Brazas, 2011]. 
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Figure 2: Phase of Homology theory on polyhedra 

However, homology groups and homotopy groups 

do have a relationship. The close relation between 

Hn(X) and πn(X) arise from a map f: I −→ X that can 

be viewed as a path [Spanier, 1989]. In comparison 

to homology groups, homotopy groups generalize 

basic groups but are hard to quantify or compute. 

Hurewicz contributed significantly to history by 

establishing a relationship between homotopy and 

homology groups. Homology theory works with 

pairings (X, A) and the homotopy extension problem 

is required in order for such constructions to 

operate [Whitehead, 2012]. Homotopy groups are 

the strongest invariant of a topological space 

[Christensen and Scoccola, 2020]. Homology groups 

and homotopy groups have other close relation at 

least for certain class of topological spaces 

[Adhikari, 2016a]. 

2 Related works 
In Eilenberg and MacLane, (1945) Eilenberg 

investigated works on the influence of fundamental 

group on the homology structure of a space X. The 

paper introduced a relation between homotopy and 

homology on a finite simplicial connected polytype. 

J. P. Hlton has also elaborated on two 

decompositions of a continuous map of a connected 

space. When the map f : X −→ Y is retracted to a 

point, the homology decomposition of f becomes a 

homology decomposition of Y , while the homotopy 

decomposition of f becomes a homotopy 

decomposition of Y [Eckmann and Hilton, 1959]. 

3 Preliminaries 

Definition 1 ([Warner, 2018]Continuity). Let (X,τ) 

and (Y,µ) be topological spaces. A function f : X −→ Y 

is continuous if for each U ∈ µ there is f−1(U) ∈ τ 

Proposition 1. The function f : X −→ Y is continuous. 

Proof. For if A ⊆ Y is closed, then f−1A = ∪fi
−1(A); but 

fi
−1(A) is closed in X so that f  is continuous.  

Definition 2 ([Kinsey, 1997]Homology Group). The 

n-dimensional homology group of a polyhedron P is 

the quotient group ker∂n/Im∂n+1.The group Hn(P) is 

the denotion of the total homology group of P. 

Example 1. The segment I=[0,1] can be represented 

as a simplicial polyhedron with 1-dimensional 

simplex α and 2-dimensional simplices α and β 

[Vasiliev and Vasiliev, 2001]. 

Definition 3 ([Hatcher, 2005]Homotopy Groups). 

Two continuous maps, f,g : X −→ Y are called 

homotopic(f ∼ g) if f can be class of continuous  
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maps. F: X×[0,1] −→ such that F(x,0) = f(x) and F(x,1) 

= g(x) for all x ∈ X. 

Definition 4 (Cycle). Given S as a topological space, 

a cycle is a continuous function f1 : [0,1] ←− X such 

that f(0) = f(1). 

Definition 5 ([Eilenberg and Steenrod, 

2015]Retract). A continuous map f : X −→ B is called 

a retraction if f is the identity on B such that f(b) = b 

for all b ∈ B. 

Definition 6 ([Kinsey, 1997]Deformation retract). f is 

called a deformation retract if for a continuous map 

f : X −→ B, f is homotopic to the identity map. 

Definition 7 ([Hurewicz, 1935]Homotopy extension 

property). Given a map, fi : X −→ Y and a subspace B 

⊂ X there exists a homotopy F : B −→ Y of fi|B that 

extends to a homotopy F : X −→ Y of fi. If the pair 

(X,B) is such that the extension problem can always 

be solved then (X,B) has the homotopy extension 

property. 

Definition 8 ([Hatcher, 2005]Null homotopy). Given 

f: X −→ Y, a null homotopy of f is a homotopy of f to 

a constant map, denoted as f ≃ 0. 

Definition 9 ([Eda and Higasikawa, 2001] Loops). A loop 

is a path f: [x,y] −→ 

P such that f(x) = f(y). 

Theorem 1 (Homotopy extension theorem). Let P be 

a complex, Q a subsimplex f1 : P −→ Y and g1 : Q −→  

 

Y a homotopy such that g1 = f1Q. Also there exists a 

homotopy f2 : P −→ Y such that g2 = f2Q. 

Proof. From the above theorem, we realized that g1 

: Q −→ Y is a homotopy map and can be extended 

to P. We also extended g2 to P and define a 

homotopy map F : P×0∪Q×1 −→ Y . To extend F to a 

map of P×1, we write Pn for the complex Pn ∪Q and 

also extend F to F1 : (P ×0)∪(P1×1) −→ Y for (u,x)F1 = 

uf1, where u is a vertex of P − Q. 

Suppose F extends to Fn : (P × 0) ∪ (Pn × 1) −→ Y and 

let Tn+1 ∈ P − Q, then Fn is defined on (t1×0)∪(t2×1) 

but we need to prove for the case when Fn is 

extended to (t1 × 1). Then Fn may be extended to 

Fn+1: (P × 0) ∪ (Pn+1 × 1) −→ Y being continuous on t1 × 

1 for each simplex t2 of Pn+1 and hence Fn+1 is 

continuous. 

We also show that there exists a map r: t1×1 −→ 

(t1×0) ∪ (t2×1) which is the retraction map (t1 ×0) ∪ 

(t2 ×1) from t1 ×1 and then rFn is an extension Fn to t1 

×1. For t embedded in Rn+1 has dimension n+1 then 

t×1 is embedded in Rn+2. We let c be the point (b, 2) 

with first coordinate (n + 1) coordinates and (n+2) 

being the second coordinate. The radial projection 

from c retracts t1 × 1 onto (t1 × 0) ∪ (t2 × 1)  

Theorem 2 ([Adams and Franzosa, 2008]Homotopy 

equivalence). The relation ≃ is an equivalence 

relation on the set of all continuous functions f: X 

−→ Y 

Proof. We show that the relation obeys the 

following properties; 

Reflexive 

Symmetric 

Transitive 

Therefore we show that ≃ is reflexive and define 

homotopy map F : X ×I −→ Y by F(x,t) = f(x), where t 

∈ [0,1]. Then F(x,0) = f(x) and F(x,1) = f(x), so f ≃ f. 

For ≃ to be symmetric, we define a function g : X 

−→ Y such that G : X × I −→ Y such that G(x,t) = F(x,1 

− t) is a homotopy between g and f. Therefore f ≃ g 

and g ≃ f 

To prove the transitive property, we define another 

function h: X −→ Y. We assume that f ≃ g via F and g 

≃ h via G and define a homotopic map 

 

Since H(x,0) = f(x) and H(x,1) = h(x) and hence f ≃ g 

and g ≃ h implies that f ≃ h  

Remark. Homeomorphic spaces are homotopy 

equivalent but its converse is not true in general 

[Adhikari, 2016b]. 

Definition 10 ([Whitehead, 2012] Homology 

equivalence). A map f: X −→ Y such that fn : Hp(X) ≈ 

Hq(Y ) for all p is called a homology equivalence. 
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4 Relation between Homology Group and Homotopy Group 
In this section, we look at the Hurewicz theorem 

and the homology of a torus with relation to the 

torus homotopy. 

Definition 11 ([Hatcher, 2005] Chain complex). A 

sequence of abelian groups given below;  

 ··· → Gi −→∂i Gi−1 −−→ ···∂i−1 −∂→1 G0 

iss called a chain complex if ∂i−1 ◦ ∂1 = 0 for all i. And 

the above complex is exact if im∂i = ker∂i−1 

Proposition 2. A simply connected space C is 

homotopy equivalent to a onepoint union of Moore 

spaces if and only if hn(C) is a split surjective for all 

n. 

Definition 13 ([Christensen and Scoccola, 

2020]Hurewicz homomorphism). The Hurewicz 

homomorphism hn(X): πn(X) −→ Hn(X) is defined by hn(f) 

≃ f 

Theorem 3 (Hurewicz Theorem). The 

homomorphism hn is an isomorphism if X is path-

connected. 

Proof. Omitted  

Theorem 4. Given a topological space X and two 

subspace A and B such that 

A ⊆ X and B ⊆ X. If f: X −→ Y, then 

Hn(X, A) ≃ Hn (X, B) 

Proof. Let X be a torus,T2 = S1 × S1 with A = S1 × {0} 

and B = S1 × {1}. We define a homotopy map H : X × 

[0,1] −→ Y and identify each S1 of the torus with the 

subspace. If A ≃ B, then A is homeomorphic to B. 

We therefore define an inclusion map i⋆ : A −→ X 

and retract the X to A. This means that X is 

homotopic equivalence to A and 

∴ H⋆(A) −→ H⋆(X) 

is an isomorphism. 

Also the map j⋆ : B −→ X is an inclusion map on B = S1 × 

{1} such that X can be retracted to B. Finally we can use 

the exact sequence in homology to show that 

H1(X,A) ≃ H1(X,B) 

.  

Definition 14 ([Lisica, 2010]). Two points on Mn are 

called homological if they can be connected by a 

path in Mn. 

4.1 Computing the Homology of a torus 

The n−dimensional torus is the product of n−circle 

groups S1 [Dleck, 1982]. The torus can be 

constructed from the gluing of the opposite sides of 

the square in the figure below, 

 

Figure 3: The complex of a torus on the left and the result after construction on the right 

Construct a triangulation of the torus. Computing 

the O-dimensional homology gives Z. Note that the 

one-skeleton of the torus is a connected graph and 

its 0-dimensional homology coincides with the 

graph since only the complex G0 and G1 participate 

in H0. The 1-dimensional homology of a torus is 

hardly to compute. To compute the 1-dimensional 

homology of a torus, we user the Euler 

characteristics of the torus as basis. Since the Euler 

characteristics of a torus is 0, therefore we conclude 

that H1 = Z ⊕ Z. 

References 

[Adams and Franzosa, 2008] Adams, C. C. and 

 Franzosa, R. D. (2008). Introduction to 

 topology: pure and applied. Number Sirsi) 

i9780131848696. Pearson Prentice Hall Upper 

Saddle River. 

109       William Obeng-Denteh  and David Adjei 



[Adhikari, 2016a] Adhikari, M. R. (2016a). Basic 

 algebraic topology and its applications. 

 Springer India. 

[Adhikari, 2016b] Adhikari, M. R. (2016b). Basic 

 algebraic topology and its applications. 

 Springer. 

[Brazas, 2011] Brazas, J. (2011). The topological 

 fundamental group and free topological 

 groups. Topology and its Applications, 

 158(6):779–802. 

[Christensen and Scoccola, 2020] Christensen, J. D. 

 and Scoccola, L. (2020). The hurewicz 

 theorem in homotopy type theory. arXiv 

 preprint arXiv:2007.05833. 

[Dleck, 1982] Dleck, T. T. (1982). Homotopy 

 representations of the torus. Archiv der 

 Mathematik, 38(1):459–469. 

[Dugundji, 1950] Dugundji, J. (1950). A topologized 

 fundamental group. Proceedings of the 

 National Academy of Sciences of the United 

 States of America, 36(2):141. 

[Eckmann and Hilton, 1959] Eckmann, B. and Hilton, P. 

 J. (1959). On the homology and homotopy 

 decomposition of continuous maps. 

 Proceedings of the National Academy of 

 Sciences of the United States of America, 

 45(3):372. 

[Eda and Higasikawa, 2001] Eda, K. and Higasikawa, 

 M. (2001). Trees, fundamental groups and 

 homology groups. Annals of Pure and Applied 

 Logic, 111(3):185–201. 

[Eilenberg and MacLane, 1945] Eilenberg, S. and 

 MacLane, S. (1945). Relations between 

 homology and homotopy groups of spaces. 

 Annals of mathematics, pages 480–509. 

[Eilenberg and Steenrod, 2015] Eilenberg, S. and 

 Steenrod, N. (2015). Foundations of algebraic 

 topology. In Foundations of Algebraic 

 Topology. Princeton University Press. 

[Hatcher, 2005] Hatcher, A. (2005). Algebraic  

  topology.  

[Hilton, 1988] Hilton, P. (1988). A brief, subjective 

 history of homology and homotopy theory in 

 this century. Mathematics magazine, 

 61(5):282–291. 

[Hurewicz, 1935] Hurewicz, W. (1935). Homotopie, 

 homologie und lokaler zusammenhang. 

 Fundamenta Mathematicae, 25(1):467–485. 

[Kinsey, 1997] Kinsey, L. C. (1997). Topology of 

 surfaces. Springer Science and Business 

 Media. 

[Lisica, 2010] Lisica, J. T. (2010). Topological vector 

 spaces problems in homology and homotopy 

 theories. Topology and its Applications, 

 157(17):2715– 2735. 

[Reynaud, 2003] Reynaud, E. (2003). Algebraic 

 fundamental group and simplicial complexes. 

 Journal of Pure and Applied Algebra, 

 177(2):203–214. 

[Spanier, 1989] Spanier, E. H. (1989). Algebraic 

 topology. Springer Science & Business Media. 

[Vasiliev and Vasiliev, 2001] Vasiliev, V. A. and 

 Vasiliev, V. A. (2001). Introduction to 

 topology. Number 14. American 

 Mathematical Soc. 

[Warner, 2018] Warner, S. J. (2018). Pure Mathematics 

 for Beginners: a rigorous introduction to logic, 

 set theory, abstract algebra, number theory, 

 real analysis, topology, complex analysis, and 

 linear algebra. Get 800. 

[Whitehead, 2012] Whitehead, G. W. (2012). Elements 

 of homotopy theory, volume 61. Springer 

 Science & Business Media. 

 

 

COMPARATIVE ANALYSIS BETWEEN HOMOTOPY GROUP AND HOMOLOGY GROUP                              110 
 


