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Abstract  In many application domains such as 
autonomous avionics, power electronics and process 
systems engineering there exist discretely controlled 
continuous processes (DCCPs) which constitute a 
special subclass of hybrid dynamical systems. We in-
troduce a novel simulation-based approach for 
DDCPs optimization under uncertainty using Rein-
forcement Learning with Gaussian Process models to 
learn the transitions dynamics descriptive of mode 
execution and an optimal switching policy for mode 
selection. Each mode implements a parameterized 
feedback control law until a stopping condition trig-
gers. To deal with the size/dimension of the state 
space and a continuum of control mode parameters, 
Bayesian active learning is proposed using a utility 
function that trades off information content with 
policy improvement. Throughput maximization in a 
buffer tank subject to an uncertain schedule of sev-
eral inflow discharges is used as case study address-
ing supply chain control in manufacturing systems. 
Keywords  Hybrid Systems, stochastic systems, 

Optimization, Reinforcement Learning (RL), Gauss-
ian Processes (GP). 

I. INTRODUCTION 
Modern automated systems are often constituted by in-
teracting components of heterogeneous continuous/ dis-
crete nature. Dynamical systems having such a hybrid 
continuous/discrete nature are named hybrid systems 
(HS). We can find HS in electrical systems, chemical 
plants, biological systems, supply chains, unmanned ve-
hicles, solar energy collectors, wind turbines and many 
others. A discretely controlled continuous process 
(DCCP) is a special type of hybrid systems where the 
discrete-event dynamics is the result of some event-
based control strategy used to respond to external dis-
turbances and endogenous inputs affecting the state evo-
lution of the controlled system as whole (Simeonova, 
2008; Goebel et al., 2009; Lunze and Lehmann, 2010).  

A control strategy is implemented by a switching 
policy which timely stops an operating mode due to goal 
achievement, a state constraint or an external event 
(Mehta and Egerstedt, 2006). Each control mode, or 
simply “mode,” implements a parameterized feedback 
control law until a terminating condition is activated. 
Then, each mode differs from other by its parameteriza-
tion which varies in a continuum. Duration time for 
each mode execution depends on the type of behavior or 
specific goal which is being pursued and occurrence of 
disturbances and events affecting the system dynamics. 
For optimal control, the switching policy must generate 

a sequence of control modes to complete a goal-directed 
control task from different initial states while minimiz-
ing some performance criterion (Görges et al., 2011). 
Thus, optimal operation of a DCCP gives room for re-
sorting to a Lebesgue sampling strategy of states to ad-
vantage (Xu and Cao, 2011). This paper deals with the 
problem of finding a switching policy for optimal opera-
tion of a DCCP under uncertainty so as to implement a 
goal-directed control strategy in real-time.  

For a finite number of modes, a novel modeling par-
adigm known as integral continuous-time hybrid autom-
ata (icHA) has been recently proposed for event-driven 
optimization-based control for which no a priori infor-
mation about the timing and order of the events is as-
sumed (Di Cairano et al., 2009). The solution of dynam-
ic optimization problems with continuous time hybrid 
automata embedded has been thoroughly reviewed by 
Barton et al. (2006). In a more recent work, approxi-
mate dynamic programming has been successfully ap-
plied to the discrete-time switched LQR control prob-
lem (Zhang et al., 2009). The important issue of opti-
mality in multi-modal optimal control has also been ad-
dressed by Mehta and Egerstedt using reinforcement 
learning (RL) techniques regarding a finite set of control 
modes (Mehta and Egerstedt, 2006).  

Uncertainty in the initial states is a major obstacle 
for multi-modal control since fixed control programs are 
derived from assumed initial conditions. Reinforcement 
Learning (RL) (Sutton and Barto, 1998) is a simulation-
based approach to solve optimal control problems under 
uncertainty. For optimal operation of DCCPs under un-
certainty a multi-modal control program should be able 
to adapt on-line in order to handle disturbances or 
events that may severely affect a control program per-
formance or renders it even unfeasible. In this work, the 
main argument is that for optimal operation of a DCCP 
under uncertainty a switching policy is required to im-
plement goal-directed control in real-time. A novel sim-
ulation-based algorithm which combines dynamic pro-
gramming with Lebesgue sampling and Gaussian pro-
cess (Rasmussen and Williams, 2006) approximation is 
proposed to learn a switching policy for mode selection. 
To deal with the size and dimension of the state space 
and a continuum of feedback law parameters, Bayesian 
active learning (Deisenroth et al., 2009) is proposed us-
ing a utility function that trades off information content 
with switching policy improvement. Probabilistic mod-
els of the state transition dynamics following each mode 
execution are learned upon data obtained by increasing-
ly biasing operating conditions.  
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Fig. 1. Discretely Controlled Continuous Process  

II. DISCRETELLY CONTROLLED 
CONTINUOUS PROCESSES (DCCPs) 

A DCCP is composed by the five components shown in 
Fig. 1: the continuous dynamics )( du,x,x f , where 
x(t) X Rm, u(t) U Rn is the control vector and 
d(t) D Rd the exogenous disturbances; the event gen-
erator (EG) is made up of stopping conditions that de-
fines the endogenous binary inputs e of the control 
mode, a parameterized feedback law u=K(x, ); the 
switching policy (x,d) which defines a decision rule 
for choosing control mode parameters Rp over 
time t in order to achieve a control goal G.

When the system operates under a certain control 
mode with parameter i, control actions are taken using 
u=K(x, i) which is applied until a stopping condition 

i
e e, i=1,…,ne triggers changing its value from “0” to 

“1.”  Then the switching policy  must select a different 
j. Thus, the system evolves according to: 

)(,1(),),,(,(/
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where t(k, j) denotes the time when an endogenous bi-
nary i

e changes its value from 0 to 1 and the control 
mode K(x, i) being executed in the kth decision stage is 
interrupted.  

The dynamics of a DCCP under a given switching 
policy  is shown in Fig. 2. The fact that execution 
times of control modes are different gives room for 
adopting a Lebesgue sampling strategy where sampling 
the system state is only needed when the execution of a 
certain mode is stopped. Thus, the system controlled 
under a switching policy converts the continuous time 
problem into an event-driven one based on stopping 
conditions for mode execution. The advantage of 
Lebesgue sampling is that it provides a finite state space 
which facilitates using RL algorithms. However, there is 
a continuum space for decision variables (control mode 
parameters) Rp and the uncertainty in the mode 
transition dynamics makes mandatory incorporating 
function approximation techniques.  

III. OPTIMAL OPERATION OF DCCPs 
A. Reinforcement Learning 
In this section, a brief review of the RL framework (Sut-

ton and Barto, 1998) is presented, and then, the tech-
nique of Dynamic Programming (DP) (Deisenroth et al., 
2009) is used to solve the Lebesgue-sampling based op-
timal control problem under uncertainty. Along this 
work it is assumed that the mode transition dynamics is 
given by (1). The process dynamics is assumed initially 
unknown, yet it is considered to evolve smoothly over 
time under a given control mode.  

The reinforcement learning problem consists in 
learning iteratively to achieve a goal (control task) from 
interactions with a real or simulated system. During 
learning, an agent (or controller) interacts with the pro-
cess by execution actions i Rp (setting mode pa-
rameters) and, after that, the system evolve from the 
state xk to xk+1 and the agent receive a numerical signal 

k called reward (or cost), that provides a measure of 
how good (or bad) the executed mode from xk is in 
terms of observed transition. Rewards are directly relat-
ed to the achievement of a sub-goal or behavior. 

In applying RL to DCCPs the objective of the agent 
is learning the optimal policy for timely mode switch-
ing, * , which defines the optimal mode parameters for 
any state the system may be in bearing in mind both 
short-and long term rewards. To this aim, the learning 
agent executes a sequence of modes to maximize the 
amount of reward received from an initial state/ disturb-
ance pair (x0,d0) until a certain goal state is reached. 
Under a given switching policy , let’s assume the ex-
pected cumulative reward V (x0,d0) or value function 
over a certain time interval is a function of (x ,d , t , ), 
where t ={t(k)}k=1

k=N are the time instants at which mode 
switches occur.  x ={x(k)}k=1

k=N are the corresponding 
state values, d ={d(k)}k=1

k=N are the corresponding dis-
turbance values and ={  (k)}k=1

k=N defines the policy-
specific sequence of control modes. The sequence x of 
state transitions gives rise to rewards {r(k)}k=1

k=N which 
are used to define a discounted value function 

1

100 )(.)(.),( N

k
iN krNrEV dx , (2) 

where (0,1] is the discount factor which weights fu-
ture rewards. An optimal policy * for the N-mode con-
trol problem maximizes Eq. (2) for any initial state x0.
The associated state-value function satisfies the Bell-
man’s equation:
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Fig. 2. Lebesgue sampled finite automaton.  
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The control value function Q* is defined by  
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such that V*(x,d)=argmax Q*(x,d, ) for all (x,d). Once 
Q* is known through interactions, then the optimal 
switching policy obtained directly through:  

),,(maxarg),( ** dxdx Q , (5) 
To find the Q*-values for alternative parameteriza-

tion of control modes the well known Dynamic Pro-
gramming for policy iteration can be used. DP algo-
rithms are obtained by turning the Bellman equation in-
to update rules for improving approximations of the de-
sired value functions. Using DP the optimal state-mode 
function V* is obtained by the well-known DP recursion:  

),,(.)(maxarg),( 1
*

1
* dxxdx kkkkk VkrV , (6) 

for all states xk and k=N 1,…,0. To apply DP a number 
of issues must be addressed. First, the transition dynam-
ics f must be known. Also, the state space X and mode 
parameter space  must be arbitrarily discretized. Final-
ly, the search for the optimal policy must sample X by 
selectively leading the system from an initial state to the 
goal state requiring only a small number of interactions 
with the real system. For this reason, a function approx-
imating technique is needed to have a compact represen-
tation of value functions and state transition dynamics.  

Inductive modeling using function approximation 
can be classified into two main types: parametric and 
non-parametric regression. Parametric regression using 
for instance polynomials, radial basis functions and neu-
ral networks requires choosing a model structure be-
forehand. The major drawback of resorting to paramet-
ric approximation of value functions in RL is that the 
model class is maintained as new data from interactions 
are obtained. Moreover when the size of the training set 
is small, is often the case that value function approxima-
tion is unreliable to say the least. Nonparametric regres-
sion is far more flexible and the model structure is also 
changed as the dataset increases. Nonparametric regres-
sion does not imply that fitted models are parameters-
free, but instead that the number of parameters and their 
values are simultaneously learned based on available 
data. Gaussian Process (GP) models are a powerful tool 
to deal with this type of problems. A Gaussian Process 
is a generalization of a Gaussian probability distribution 
where the distribution is over functions instead of sto-
chastic variables.  

B.  Gaussian Processes 
In the following, a brief introduction to GPs will be giv-
en based on the books by Rasmussen and Williams 
Rasmussen and Williams, 2006) using the value func-
tion Vk

*( ) as a representative example. Given a data set 
{Zk,Vk} from previous interactions with a DCCP and 
consisting of visited state/disturbance pairs z(k)=(x(k),
d(k)) Zk and the corresponding estimation of their val-
ues Vk

*, we want to infer an inductive model h of the 
(unknown) value function Vk

*( ) that generated the ob-
served data. Thinking that the observations are generat-

ed by Vk
*=h(z(k))+ , ~N(0, 2), within a Bayesian 

framework, the inference of the underlying function h is 
described by the posterior probability  
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where p(Vk|h,Zk) is the likelihood and is a p(h) a prior 
on plausible value functions assumed by the GP model. 
The term p(Vk|Zk) is called the evidence or the marginal 
likelihood. When modeling value functions in RL using 
GPs, a GP prior p(h) is placed directly in the space of 
functions without the necessity to consider an explicit 
parameterization of the approximating function h. This 
prior typically reflects assumptions on the, at least local-
ly, smoothness of h.

Similar to a Gaussian distribution, which is fully 
specified by a mean vector and a covariance matrix, a 
GP is specified by a mean function m( ) and a covari-
ance function Cov( , ), also known as a kernel. A GP 
can be considered a distribution over functions. Howev-
er, regarding a function as an infinitely long vector, all 
necessary computations for inference and prediction of 
value functions can be broken down to manipulating 
well-known Gaussian distributions. The fact that the 
value function Vk

*( ) is GP distributed is indicated by 
Vk

*( )~GP
v
(m,Cov) hereafter.  

Given a GP model of the value function Vk
*( ), we 

are interested in predicting the value function for an ar-
bitrary input zk

*. The predictive (marginal) distribution 
of the value function approximation Vk

*~GP
v
(zk

*) for a 
test input zk

* is Gaussian distributed with mean and vari-
ance given by:  

kkkkk kVE VIKZzz 22*** )(),()( , (8) 
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where K is the kernel matrix with Kij=Cov(zk
i, zk

j)
zk Zk. A common covariance function is the squared 

exponential (SE):  
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2
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where =diag([ 1
2, 2

2, …, nx
2]) and r, r=1,…, nx, be-

ing the characteristic length scales. The parameter 2 de-
scribes the variability of the inductive model h. The pa-
rameters of the covariance function are the hyper-
parameters of the GP

v
 and collected within the vector 

. To fit parameters to value function data the evidence 
maximization or marginal likelihood optimization ap-
proach is recommended (see Rasmussen and Williams, 
2006, for details). The log-evidence is given by:  
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In Eq. (11), h(Zk)=[V*(zk
1), …, V*(zk

n)], where n is the 
number of training points. We made the dependency of 
K on the hyper-parameters  explicit by writing K  in 
Eq. (11). Evidence maximization yields an inductive 
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model of the value function that (a) rewards data fitting, 
and (b) rewards simplicity of the model. Hence, it au-
tomatically implements Occam’s razor, i.e. preferring 
the simplest hypothesis (model).  

C.  Learning algorithm for mode switching 
Assuming that the continuous dynamics evolve smooth-
ly while a given control mode is implemented, learning 
a switching policy through interactions demands learn-
ing also the transition dynamics. We implicitly assume 
that output variability is due to uncertainty about stop-
ping conditions activation. Due to the uncertainty about 
the resulting state due to a mode execution, a GP is used 
for inductive modeling state/disturbance transitions. 
Thus, the dynamics GP, is used to describe the state/ 
disturbance transition dynamics. For each output dimen-
sion d, a separate GP model is trained in such a way the 
effect of uncertainty about in which state the system 
may be in when stopping condition triggers is modeled 
statistically:  

),(~)()1( ddd
dd Covmkzkz GP , (12) 

where md is the mean function, Covd is the covariance 
function. The training inputs to the transition dynamics 
GPs are (z, ) pairs whereas the targets are the state dif-
ferences in Eq. (12).  

To learn an optimal policy we propose in this work 
the novel mGPDP algorithm which is based on Gaussian 
process dynamic programming (GPDP) (Deisenroth et 
al., 2009) through incorporating the use of modes to the 
basic GPDP algorithm based on a mode-based abstrac-
tion. GPDP describes the value functions Vk ( ), Qk ( , )
in DP iterations directly in function space by represent-
ing them using fully probabilistic GP models that allow 
accounting for uncertainty in dynamic optimization. A 
sketch of the mGPDP algorithm using transition dynam-
ics GPd(md, Covd) and Bayesian active learning for data 
selection is given in Fig. 3. It is worth noting that 
mGPDP is definitively superior to the multi-modal 
learning algorithm proposed in (Mehta and Egerstedt, 
2008) since the entire state space may be explored. 
However, by means of Bayesian active learning only the 
most promising states are visited during learning.  

The algorithm mGPDP starts from a small set of ini-
tial input locations X0

S to generate the set of reachable 
states X. Using Bayesian active learning (line 13), new 
locations (states) are added to the current set X0

S at any 
stage k. Support sets X0

S serve as training input locations 
for both the dynamics GPd and the value function GPv.
At each time step k, the dynamics GP is updated (line 
15) to incorporate most recent information. Further-
more, the GP models for the value functions Vk ( ) and 
Qk ( , ) are also updated. After each mode is executed 
the function r(k) is used to reward the transition. A key 
idea in the algorithm mGPDP is that the set X={Xk

S

k=1,…,N} is a support set of reachable states based on 
Lebesgue sampling. As a result, X is the set of all states 
that are reachable from given initial states using a se-
quence of modes of length less than or equal to N. For 

example, XN-1
S is a set of observable states from which 

the goal state can be achieved by executing only one 
mode. Lebesgue sampling is far more efficient than 
Riemann sampling which uses fixed time intervals for 
control. As switching policies in successive iterations 
are also modelled using GPs, policy iteration can be 
stopped when the Kullback-Leibler (KL) distance be-
tween two successive policy distributions is lower than 
a tolerance . It is noteworthy that the resulting optimal 
switching policy * can be implemented on-line for un-
seen states 

4. CASE STUDY 
A. Problem Statement 
As a representative case study, let’s consider a hybrid 
dynamical system made up of two tanks in series and a 
five on-off taps intermittently discharging inflows into 
the upper tank (the smoother) as shown in Fig. 4.  

Algorithm 1.m GPDP
1: Input: X0

S, S, , c, , T
2: Simulate T trajectories of length N applying 0 from X0

S

observe  X={X0
S, k = 1,…,N}

3: Train each GPd with simulation data  
4: 0

*= 0
5: Train GP 0

*.with observed X and with selected parameters 
S through 0

*

6: iter=1
7:  = 
8: Until  < do  
9:    Compute VN (zN

1
) =r(N)  zN

1
 X0

S  X

10:   Train GPv with X0
S and VN

11:  For k=N-1 to 0 do  
12:    Estimates X S

k+1 with each GPd from X S
k  X.

13:  Determine the most promising V´ from XS
k+1

Bayesian active learning
14:  Augment XS

k with V´ selected states from XS
k+1

15:    Update dynamics GPs with the augmented set XS
k

16:    For all zi  Xk
S  do     For all states in XS

k
.

17:        For all j
S do     For all modes in S

18:      Q(zi, j)=r(k)+ E[Vk+1(zk+1|zi, j dynamics GPs] 
19:        End for  
20:        Qk

*(zi, )~ GPq
   
    GP model for Q*

k

21:        *(zi) argmax Q(zi, j); j
S

22:        Vk (zi)= Q(zi, *(zi))
23:    End for  
24: Vk (.) ~ GPv      GP model for V*

k(.) 
25:   End for  
26:   X = XS

0 XS
1 … XS

N

27:   Approximate *
iter~GP *iter with X and *(zi) zi  X.

28:    = KL(GP *ite(X) |GP *ite-1(X))
29:   *

iter := GP *ite

30:  iter= iter+1
31:  End Loop  
32:  Return *:= *

iter-1 Return optimal policy for X.

Figure3. mGPDP algorithm 
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Fig. 4. Two-tank system with stochastic loading.

Fig. 5. Nominal discharge schedule for 5 taps  

Fig. 6. Inflow rate to the upper tank  

The smoother tank discharges its content to the con-
trolled tank following the Torricelli’s law. In the con-
trolled tank, the control task is to maximize the average 
outflow rate while avoiding sudden changes whereas 
overflowing or emptying the tank are heavily penalized 
events. What makes this optimizing control task chal-
lenging is that there exists an unknown stochastic pat-
tern for tap opening and closing. In Fig.5, a nominal re-
alization of the discharge schedule is shown. The corre-
sponding overall inflow rate to the smoother tank is 
shown in Fig. 6. As there is no control available in the 
upper tank, the capacity of the controlled tank must be 
properly managed despite uncertainty and variability.  

Each buffer tank has a volume of 1 m3 and the max-
imum level allowable is 1 m. At any time the system 
state is defined by the number of open taps that are dis-
charging, tank levels in both tanks, and the actual inflow 
rate to the controlled tank. The controlled tank outflow 
discharged downstream is varied using the feedback 
law:  

otherwise,0;0)(if,~
2 FthhF , (13) 

where  is the control mode parameter, h2(t) is the in-
stantaneous level in the controlled tank and h~ is its ex-
ponentially smoothed level defined by:  

025.0);()1()()(~
22 tththth  (14) 

The algorithm mGPDP has been applied to deter-
mine an optimal switching policy that maximize the 
plant throughput by rewarding mode transitions in such 
a way that the average outflow rate ( F~ ) is maintained as 
high as it is possible without overflowing or interrupting 
the discharge downstream. Also, sudden changes to the 
outflow rate ( F) are heavily penalized to prevent such 
undesirable events especially when the modes switches. 
Then, the reward function is designed according to Eq. 
(15) such that, following a mode execution, the corre-
sponding immediate reward r(k) is calculated as:  

2

2
2

2
11

2
1exp)1(1

2
1exp1)(

Fb
F

a
kr (15) 

whenever 0 h2(t) h2
max and r(k)=0, otherwise. F  is the 

average flow rate for the mode, F is the net change in 
the outflow rate when the modes switches, whereas re-
ward function parameters are: =0.7; a=1/12; b=5. All 
control modes are stopped whenever a tap is open or 
closed. The reward function in Eq. (15) makes possible 
a smooth tank operation and prevents sudden outflow 
changes due to the modes switches while maximizing 
throughput.  
B.  Results 
In Fig. 7, results obtained when the optimal switching 
policy obtained using the mGPDP algorithm is used to 
vary the flow rate downstream assuming the nominal 
discharge schedule. For training, the learning system 
was presented with schedules that were stochastic varia-
tions of the nominal schedule in Fig. 5. To generate 
such schedule variability, times for valve opening and 
closing were obtained by sampling from triangular dis-
tributions such that their mean values correspond to the 
nominal scheduling times, whereas the maximum and 
minimum values of each distribution were obtained by 
adding and subtracting 15 min from the corresponding 
nominal values. In Fig. 7 and Fig. 8, results obtained for 
the controlled tank under the nominal schedule which 
has not been used for training. As can be seen by vary-
ing mode parameter the multi-modal controller is able to 
handle appropriately the nominal schedule of on-off 
discharges from the taps by changing the parameter .
To address the robustness of the learned switching poli-
cy we take a testing schedule which is a significant vari-
ation of the nominal schedule in Fig. 5. Figure 9 depicts 
the inflow rate to the smoother tank associated with the 
schedule used for testing. As can be seen, the discharge 
pattern from taps is noticeable different from the nomi-
nal schedule shown. In Fig. 10, the controlled and ma-
nipulated variables for the lower tank when the switch-
ing policy is applied are shown. Finally, in Fig. 11 the 
sequence of control mode parameters during testing are 
given. It is worth noting that the uncertainty for the 
mode parameter at each switching time is quite low 
despite the difference between tap schedules.  

V. FINAL REMARKS 
From supply chains to hybrid chemical plants, from bi-
oprocesses and biological systems to solar collectors 
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and wind turbines are all representative examples of a 
special type of hybrid dynamical systems known as 
DCCPs. For optimal operation under uncertainty, timely 
switching to different control modes is necessary. A 
novel integration of dynamic programming with Gauss-
ian Processes using modes has been proposed to deter-
mine an optimal switching policy. Data gathered over a 
number of simulated interactions with the system is 
used to learn a regression metamodel of the transition 
dynamics which is instrumental in making the proposed 
algorithm mGPDP ideal for both learning via intensive 
simulation the switching policy and adapting it to the 
true operating environment a DCCP is facing over time.  

Fig. 7. Multi-modal control for the nominal schedule  

Fig. 8. Mode switching for the nominal schedule  

Fig. 9. Smoother inflow rate for the testing schedule  

Fig. 10. Switching control for the testing schedule  

Fig. 11. Mode switching for the testing schedule  
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