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[1] The Global Positioning System radio occultation (GPS RO) technique provides
vertical profiles of refractivity from which water vapor can be derived. It is possible to
reproduce global, synoptic, and regional climatological patterns. From Formosa

Satellite 3/Constellation Observing System for Meteorology Ionosphere and Climate
mission data (2006-2013), the variability of the moistest region of Southern Hemisphere
as the Amazon basin is analyzed. Applying different spatial and temporal filters,
oscillation modes of the integrated specific humidity (Q) are found. A slight decreasing
trend in Q is found during the studied period. Zonal variability of this variable averaged
in time between Amazon basin latitudes presents a main mode of oscillation of a
wavelength of one quarter of the Earth (T4). A secondary mode of wavelength at around
T6 wavelength is also found after high-pass filtering the original signal. In turn, temporal
variability averaged over Amazon basin latitudes shows a wavelength at around 12

months, while secondary modes of 6 months are found.

Citation: Hierro, R., P. Llamedo, A. de la Torre, and P. Alexander (2013), Oscillation modes of humidity over the Amazon basin
derived from GPS RO profiles, J. Geophys. Res. Atmos., 118, 13,121-13,127, doi:10.1002/2013JD020758.

1. Introduction

[2] The global energy transport and circulation within the
Earth weather and climate system are strongly influenced by
water vapor distribution through latent heat exchange. Also,
it constitutes one of the most important greenhouse gases in
the atmosphere. The radiative balance of the Earth surface
as well as the extent and type of biosphere is largely affected
by water vapor.

[3] The Amazon basin region, roughly enclosed between
0°S-20°S and 75°W-45°W, constitutes the largest extent of
tropical rainforest on Earth. As was pointed out by Richey
et al. [2004], it provides almost 15% of the global water
discharged to the oceans. Also, its influence on global
climatic fields is clear, since the magnitudes of convec-
tive associated energy and precipitation. The annual mean
regional precipitation becomes the most important heat
source for the tropical atmosphere. Nobre et al. [2004] stated
that changes in the Amazonian climate could affect the cli-
mate of other world regions through the propagation of
Rossby waves emanated from the heated region. Victoria
et al. [1998] found that Amazonian regional temperatures
had increased at around 0.4°C during the twentieth cen-
tury. However, they could associate this with global climate
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change and not with local land cover changes. As was sum-
marized by Satyamurty et al. [2012], the precipitation in
the Amazon basin varies in temporal as well as in spa-
tial domains. Marengo [2004] found a decadal variability in
the region precipitation, alternating maxima between north-
ern and the southern sectors of the basin. Later, Espinoza
Villar et al. [2009] revealed a decreasing trend in this vari-
able between 1975 and 2003, while Satyamurty et al. [2012]
found that the basin average did not show any significant
long-term trend.

[4] The Global Positioning System radio occultation (GPS
RO) technique provides vertical profiles of atmospheric
properties such as density (p), pressure (P), temperature (7),
and water vapor pressure (e). A detailed explanation of the
GPS RO techniques can be found in Kursinski et al. [1997].
This technique posses an error in 7 < 1 K, operates under
any weather conditions, and provides a global coverage.
However, RO events occur without a regular spacing, nei-
ther in time nor in spatial resolution. GPS RO constitutes a
powerful tool for atmospheric sounding which requires no
calibration and is not affected by clouds, aerosols, or precip-
itation [Kursinski et al., 1997]. The Constellation Observing
System for Meteorology Ionosphere and Climate/Formosa
Satellite 3 (hereafter referred to as COSMIC) mission pro-
vides post processed profiles from near the surface to up to
40 km, interpolated every 0.1 km. The COSMIC mission
provides approximately 1800 daily RO profiles, allowing to
reproduce global, synoptic, and regional climatological pat-
terns [Hierro et al., 2012]. The COSMIC retrievals use the
“open-loop” mode tracking routine [A4nthes et al., 2008],
which significantly reduces the inversion biases by elimi-
nating tracking errors [Sokolovskiy et al., 2007], extending
those retrievals deeper into the lower troposphere. As was
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stated by Ho et al. [2010], in the “open-loop” mode, more
than 90% of COSMIC soundings penectrate to the lowest
2 km of the troposphere. In order to retrieve both e and
T profiles, the one-dimensional variational method tech-
nique [Healy and Eyre, 2000] is employed in COSMIC
mission. This is an optimal way to process GPS RO, an
a priori atmospheric state (European Centre for Medium-
Range Weather Forecasts 7, P, and e data). During the last
years, several authors had analyzed the accuracy of COS-
MIC GPS RO humidity profiles over different regions of
the world. Ho et al. [2010] analyzed the period August—
November 2006, comparing COSMIC water vapor with
other observations and numerical simulations. They found a
good agreement between them and point out the usefulness
of COSMIC humidity as an independent reference for quan-
tifying humidity uncertainties among different sensor types.
The distribution of COSMIC water vapor between 50°S and
50°N was compared with radiosonde data sets by Kishore
et al. [2011]. Concordance between them was verified up to
8 km, yielding to the conclusion that water vapor data are
accurate within the troposphere. Hierro et al. [2012] repro-
duced the tropospheric mean fields of humidity variables and
pressure at different levels. They showed that this technique
is able to detect the behavior of humidity at different levels
both at global and at regional scales. This work is motivated
by the insufficient measurements from other sources over
the Southern Hemisphere, in general, and in particular over
South America (SA) and the Amazon basin. The aim is to
detect the main oscillation modes of the humidity over the
Amazon basin, using the GPS RO technique database.

2. Method of Analysis

[s] Moist tropospheric air can be considered as an ideal
gas composed by water vapor and dry air. Taking the
ratio between the ideal gas state equation for each species,
we obtain

e MR,
P, MR,

where e and P, are the water vapor and dry air partial pres-
sure. M, and M, are the water vapor and dry air molar
weights, respectively, and R, and R, are the respective uni-
versal gas constant. Following Salby [1996], R® = M,R, =
MyRy, € = AMT, >~ (0.622,and w = ;"7[ is the mixing ratio. Thus,
the relationship given by (1) can be written as follow:

(M

w=sPid )

Taking into account that the specific humidity is defined by
q= %, from (1) and (2)

g= 0.622%, 3)

where P = Pd + e is the pressure of the moist air.

[6] COSMIC data oflevel 2 version “wet” vertical profiles
provide temperature (7), P, and e from near the surface up
to 40 km, interpolated every 0.1 km. Data are binned into
1° x 1° longitude-latitude and height cells, which are then
daily averaged. Thus, ¢ is calculated as in equation (3).

[7] As a measure of the total water content, we take the
integrated specific humidity (Q), defined as follows:

1 Pt
=__ d 4
0 g/psqp )

where g is the acceleration of gravity and Py and P, are the
pressure at the surface and at the top of the atmosphere,
respectively. Different space and temporal scale processes
are isolated, applying a nonrecursive filter which is able
to retain wavelengths lower than a selected cutoff. This
includes a Kaiser window [Kaiser, 1966] to minimize fil-
tering artifacts due to the noninfinite extension of the data.
Since its nonrecursive character, output does not depend on
the input signal. This avoids a feedback and gives stability
to the process. A well description about this tool is found in
Scavuzzo et al. [1998].

[8] A useful method to detect the main oscillation modes
present in a signal is the continuous wavelet transform
(CWT) analysis. This technique is a powerful tool for study-
ing multiscale and nonstationary processes occurring over
finite spatial and temporal domains [Lau and Weng, 1995].
It allows to detect short-period as well as long-period oscil-
lations. It compares the original signal against a set of
synthetical ones, which are called mother wavelets, obtain-
ing correlation coefficients. These mother wavelets, joint
with a CWT and the discreet wavelet transform, define the
theory of wavelets [Sang, 2013]. The comparison between
signals is carried out through a process of translation and
contraction or dilation of the mother wavelet [Lau and Weng,
1995] for each signal portion. This process is repeated for
all scales of mother wavelet, allowing to locate short life
and high-frequency signals like sharp changes, thus obtain-
ing detailed information. In this work, the mother wavelet
selected is the Morlet wavelet [Morlet, 1983], which con-
sists of a flat wave modified by a Gaussian envelope [Lau
and Weng, 1995]. This wavelet has been widely used to iden-
tify periodic oscillations of real-life signals [Labat, 2005], in
the analysis of climate related records [e.g., Lau and Weng,
1995; Yi and Shu, 2012] and in several tropospheric waves
studies [e.g., Llamedo et al., 2009; de la Torre et al., 2011,
2012; Hierro et al., 2013].

3. Results

[o] Figure 1 presents O seasonally averaged during 2006—
2013 period. The Intertropical Convergence Zone is clearly
visible around the equator, where the northeast and south-
east trade winds converge in a low-pressure zone. World
high-humidity zones like those dominated by the monsoon
systems are also observable, such as the North American
monsoon system, the African monsoon system, and the
Asian monsoon system during Northern Hemisphere sum-
mer (June—August (JJA)) and the South American monsoon
system and the Australian monsoon system during austral
summer (December—February (DJF)). Seasonal variabil-
ity of O is observable over these areas. In the Northern
Hemisphere, over the Indian monsoon system the strongest
contrast is found, with differences of about 15-20 kg/m?
between JJA and DJF seasons. In the Southern Hemisphere,
over the South American monsoon system region, QO dif-
ferences reach values of about 10-15 kg/m? between both
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Figure 1. Q derived from GPS RO COSMIC data, seasonally averaged during the period 2006-2013.

(a) DJF, (b) MMA, (c) JJA, and (d) SON.

seasons. Figure 2a shows Q for the Southern Hemisphere,
averaged between 2006 and 2013 period (Q). We define
the Amazon basin region (AR) as in previous works [e.g.,
Satyamurty et al., 2012], within the area enclosed between
0°S-20°S and 75°W-45°W (marked on Figure 2a, as
A-B and C-D, respectively). Figure 2b (top) presents the
longitudinal variability of Q averaged within the latitudes
A and B (Q,,, in Figure 2a). Large-scale processes seem
to dominate the planetary behavior of Q, with a fair peak
centered at 60°W between the two drier zones of the hemi-
sphere. These two minimums correspond to the west branch
of the Pacific and Atlantic anticyclones (dark areas at each
side of SA in Figure 2a). Along the Eastern hemisphere,
the wet zones associated to West African Monsoon System
(WAMS) and the Asian Monsoon System (AMS) are vis-
ible. CWT is applied to Q,p, resulting in the correlations
shown in Figure 2a (bottom). A main mode corresponding
to the T4 wavelength (1) (of around 9 x 10* km) along
all longitudes for this band latitude is observable. This
large-scale wave is removed by filtering Q, to obtain a
space-filtered signal @iB. The obtained signal is observed
in Figure 2c (top), which shows the persistence of the
60°W maximum in accordance with the South American

Monsoon System (SAMS) location [e.g., Marengo et al.,
2012, and references therein]. Removing the larger plane-
tary processes, the WAMS is more noticeable while in turn,

the AMS appears as a relative QZB maximum between two
dry zones. CWT analysis (Figure 2c, bottom) shows oscilla-
tions of A ~ 7 x 10* km from 120°W to 120°E. Evolution
of Q along 100°W-10°W averaged between A and B bands
is shown in Figure 3a, where the vertical lines indicate
February. A periodic signal of maximum values during
summer is observable, between 70°W and 40°W indi-
cates the time average of Figure 2b. The dry zone west of
the Andes (close to 80°W) is a characteristic feature of
this region; since even at these latitudes, the Andes range
affects the easterly flow as a barrier. A clear decreasing of
averaged Q is evident year to year; although taking into
account the short time period considered, it could well be
due to the effect of particular dry years. Similar features
are observed in Hovmoller diagram between latitudes C
and D (Figure 3b), where the decreasing Q intensity with
time as well as the maximum during February is evident.
White lines in both figures show the latitude/longitude
region enclosed by lines A, B, C, and D, hereinafter AR.
Time evolution of the resulting averaged signal enclosed
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Figure 2. (a) Q averaged in time (0); A, B, C, and D indicate latitudes/longitudes corresponding to
Amazon region (AR). (b) Q averaged between A and B latitudes (top) and its CWT (bottom); (c) Q
filtered for waves longer than T4~ 9 x 10* km (top) and its CWT (bottom). Dotted line in CWT indicates

regions of greater than 95% confidence level.
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Figure 3. Hovmodller diagrams: (a) O averaged between A
and B and (b) averaged between C and D.

within AR (Qar) is shown in Figure 4a (top). A simple
linear regression analysis is applied to O, considering as
initial/ending points the first summer day and the last winter
day of the time series, respectively. As a result, a slight
trend of around —0.325 (kg/m?)/year is observed (red line)
in accordance with the decreasing with time of Q observed
in Figures 3a and 3b. CWT analysis for Oar depicts, in
Figure 4a (middle), an oscillation mode (M1) of temporal
wavelength (A,) at around 1 year. More detailed informa-
tion about M1 is detected isolating the Morlet correlation
coefficient for a period of 12 months in Figure 4a (bottom).
It shows minimum (M1-)/maximum (M1+) values during
April-October/November-December periods, respectively.
In Figure 4b (top) high frequencies modes of QOsr are
obtained, filtering A, >12 months (Q%y). CWT analysis
for this signal (Figure 4b (middle)) reveals the presence of
waves with periods close to 3 months (M2). The isolated
Morlet correlation coefficient for a period of 5 months is pre-
sented in Figure 4b (bottom). Clearly, maximum Q, occurs
between March and May/September and November periods
(M2+), and minimum occurs between December and Febru-
ary/June and August periods (M2-). We represent O and
QOF for each averaged oscillation mode in Figures 5a-5f.
Clear differences between M1+ and M1— are observable
over Amazon basin (Figures 5a and 5b). With respect to
MI-, higher values of Q are present in M1+ over the conti-
nental area, while over both the Atlantic and Pacific Oceans
these differences are not so marked. M1+ is characterized
by strong zonal land-ocean contrasts with respect to M1—.
This Q pattern seems to be influenced by the presence of the
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Figure 4. (a) O averaged between Amazon region (Qar) along time (top), its CWT (middle), and the
Morlet coefficients for period between 10 and 14 months (bottom). (b) The same as 4a but for filtered
Oar (see text) and Morlet coefficients between 4 and 6 months. Dotted dashed line in CWT indicates
regions of greater than 95% confidence level. Dashed lines indicate subdivisions within 1 year.
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Figure 5. Q averaged for (a) maximum M1 (see text), (b) minimum M1, (c) M2+ (MAM), (d) M2—
(JJA), (e) M2+ (SON), and (f) M2— DJF.
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semipermanent Atlantic anticyclone system, which gen-
erates dry zones over its west flank (eastern to 40°W
in midlatitudes) and provides humidity to the Amazon
basin and the northern of SA. The M1 field shows a more
barotropic feature, with the maximum values of Q restricted
to the equator lower values over south of SA. Q7 M2+
and M2— for March-May (MAM), June—August (JJA),
September—November (SON), and December—February
(DJF) are represented in Figures 5c—5f. Continental zones,
in general, and AR in particular present maximum values
of OF during MAM (Figure 5c). Positive perturbations of
QO are observed between the equator and 15°S along the
whole domain, while in southern of SA dominates O <0.
OF within AR seems to acquire similar values than South
American Convergence Zone (SACZ), which extends
from NW to SE between center of SA up to 20°W in
Figure 5c. M2— for JJA is shown in Figure 5d. Amazon
basin presents negative perturbations, reaching the lower
values over the continental zone. Although southern of
South America is wetter, a moderate contrast between
this region and AR is present in this mode. Although not
so high as M2+ MAM, SON (M2+) field shows posi-
tive O over Amazon region. Equatorial zone, however,
presents negative values. This gives place to a strong merid-
ional contrast along the continent as well as to enhance
the SACZ with respect to the other cases. Finally, DJF
(M1-) seems to be the opposite case of MAM (M2+). The
Amazon basin is dominated by negative perturbations,
while southern of South America presents the higher values
of OF.

4. Conclusions

[10] 1. Integrated specific humidity (Q) averaged between
Amazon region (AR) latitudes (equator to 20°S) shows a
main oscillation mode at around 9 x 10* km, between lon-
gitudes 180°W and 80°E. AB humidity is clearly observed,
reaching an absolute maximum of averaged Q between
80°W and 40°W. This indicates that this region presents the
higher water content of the Southern Hemisphere.

[11] 2. Zonal and longitudinal time evolution of O show
an enhancement over AB as well as the decreasing with time.
Hovmoller diagram (equator to 20°S) presents maximum
values between 80°W and 40°W centered around February.
Similar features are found in a Hovmoller (75°W—-45°W),
with a maximum between equator and 25°S and a decreasing
with time.

[12] 3. Time evolution of the resulting averaged signal
enclosed within AB (Qar) shows a slight decreasing trend
present, in accordance with Hovmolle diagrams. An oscil-
lation mode of 1 year (M1) is found applying a CWT
analysis. From this technique, minimum/maximum values
during April-October/November—December periods are
found, respectively.

[13] 4. Averaged fields of M1+ and M1- depict higher
values of QO in M1+ with respect to M1— over the continent,
as well as strong zonal land-ocean contrasts. The M1- field
shows a more barotropic feature, with the maximum val-
ues of Q restricted to the equator lower values over south of
South America.

[14] 5. Filtering Qar signal for A, >12 months (QF),
waves with periods close to 3 months are obtained (M2). For

this higher frequencies modes, maximum occurs between
MAM and SON periods (M2+) and minimum occurs
between DJF and JJA periods (M2-).

[15] 6. M2+ for MAM presents the higher values of OF
over Amazon basin (AR), while in Southern of SA domi-
nates Q7 <0. The SACZ seems to be present in this mode. In
turn, M2+ (SON) shows also positive O over AR, however,
lower than those observed during MAM. The AR humidity
seems to be provided mainly by the SACZ activity, yielding
to a meridional contrast of Q.

[16] 7. The more negative values of QF over AR are
obtained during JJA (M2-). However, over the continental
zone, the meridional contrasts are lower than in other cases.
Finally, DJF (M1-) seems to be the opposite case of MAM
(M2+). The Amazon basin is dominated by negative pertur-
bations, while southern of South America presents the higher
values of OF.
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