

electronic reprint

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Two solvatomorphic forms of a copper complex formulated as $Cu(L^1)(ClO_4)_2 \cdot 1.2H_2O$ and $Cu(L^1)(ClO_4)_2$, where L^1 is 3,10-C-*meso*-3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetra-azacyclotetradecane

Babul Chandra Nath, Sebastián Suarez, Fabio Doctorovich, Tapashi G. Roy and Ricardo Baggio

Acta Cryst. (2013). C69, 689-695

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr.

For further information see http://journals.iucr.org/services/authorrights.html

Acta Crystallographica Section C: Crystal Structure Communications specializes in the rapid dissemination of high-quality studies of crystal and molecular structures of interest in fields such as chemistry, biochemistry, mineralogy, pharmacology, physics and materials science. The numerical and text descriptions of each structure are submitted to the journal electronically as a Crystallographic Information File (CIF) and are checked and typeset automatically prior to peer review. The journal is well known for its high standards of structural reliability and presentation. Section C publishes approximately 1000 structures per year; readers have access to an archive that includes high-quality structural data for over 10000 compounds.

Crystallography Journals Online is available from journals.iucr.org

Acta Crystallographica Section C Crystal Structure Communications

Two solvatomorphic forms of a copper complex formulated as $Cu(L^1)(ClO_4)_2$.-1.2H₂O and $Cu(L^1)(ClO_4)_2$, where L^1 is 3,10-C-*meso*-3,5,7,7,10,12,14,14octamethyl-1,4,8,11-tetraazacyclotetradecane

Babul Chandra Nath,^a Sebastián Suarez,^{b*} Fabio Doctorovich,^b Tapashi G. Roy^a and Ricardo Baggio^c

^aUniversity of Chittagong, Chittagong 4331, Bangladesh, ^bDepartamento de Química Inorgánica, Analítica y Química Física/INQUIMAE–CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, and ^cGerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina Correspondence e-mail: seba@qi.ícen.uba.ar

Received 24 April 2013 Accepted 17 May 2013

Two copper complex solvatomorphs, namely (3,10-C-meso-3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetradecane)bis(perchlorato-*kO*)copper(II) 1.2-hydrate, [Cu(ClO₄)₂-(C18H40N4)]-1.2H2O, (I), and (3,10-C-meso-3,5,7,7,10,12,14,14octamethyl-1,4,8,11-tetraazacyclotetradecane)bis(perchlorato- κO)copper(II), [Cu(ClO₄)₂(C₁₈H₄₀N₄)], (II), are described and compared with each other and with a third, already reported, anhydrous diastereomer, denoted (III). Both compounds present very similar centrosymmetic coordination environments, with the Cu^{II} cation lying on an inversion centre in a distorted 4+2 octahedral environment, defined by the macrocyclic N₄ group in the equatorial sites and two perchlorate groups in *trans*-axial positions [one of the perchlorate ligands in (I) is partially disordered]. The most significant difference in molecular shape is seen in the orientation of the perchlorate anions, and the influence of this on the intramolecular hydrogen bonding is discussed. The (partially) hydrated state of (I) favours the formation of chains along [011], while the anhydrous character of (II) and (III) promotes loosely bound structures with low packing indices.

Comment

Synthetic macrocyclic complexes are important in view of their presence in many biologically significant and naturally occurring metal complexes, such as vitamin B12, haemoglobin and chlorophyll, all of which play vital roles in biological systems (Bernhardt & Lawrance, 1990; Reid & Schroder, 1990). Saturated tetraaza macrocycles have proven to be versatile macrocyclic ligands capable of forming stable inert complexes with a variety of biomedically important metal ions, the chemistry of which has attracted interest due to their involvement in a variety of catalytic, biochemical and industrial processes (Kimura *et al.*, 1992, 1994). Regarding biological applications, metal complexes of the 14-membered tetraaza macrocyclic ligands directly relevant to the present

study have been explored for their use in magnetic resonance imaging (MRI) and radioimmunotherapy (Norman *et al.*, 1995; Konig *et al.*, 1996). They are also useful in terms of their utility in pharmacological (Hollinshead & Smith, 1990), crystal engineering (Suh *et al.*, 2006) and analytical (Singh *et al.*, 1999) endeavours, and they have been found to have antifungal (Roy, Hazari, Dey, Meah *et al.*, 2007), antibacterial (Roy, Hazari, Dey, Miah *et al.*, 2007; Roy, Hazari, Dey, Nath *et al.*,

doi:10.1107/50108270113013711 electronic reprint

(a) Displacement ellipsoid plot of (II), drawn at the 40% probability level. (b) The hydrogen-bonding scheme for (II) (dashed lines). [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]

variety of cations (e.g. Cu, Co, Cr, Zn, Cd and Pd) are analysed.

As a continuation of a current area of research in our laboratory (Hazari *et al.*, 1999; Roy & Bembi, 2005; Roy *et al.*, 2006), we present herein the crystal structures of the title solvatomorphic variants $\text{Cu}(\text{ClO}_4)_2(L^1)\cdot 1.2\text{H}_2\text{O}$, (I), and $\text{Cu}(\text{ClO}_4)_2(L^1)$, (II), two mixed Cu^{II} complexes having perchlorate as the inorganic balancing anion and L^1 , an isomeric form of L (= 3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetradecane), as the organic ligand.

Even though a large number of analogous $Cu^{II}-L$ complexes have been reported with perchlorate as the counteranion, *viz*. those presented by Lee *et al.* (1985) and Hazari *et*

Figure 1

(a) Displacement ellipsoid plot of (I), drawn at the 40% probability level. (b) The hydrogen-bonding scheme for (I) (dashed lines). In both, only the major part of the disordered perchlorate anion is drawn. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y, -z.]

2007) and (in some cases) potential anticancer properties (Arai *et al.*, 1998; Gao *et al.*, 2010). All the aforementioned potential applications have promoted strong sustained research on the subject and, in this respect, we refer the interested reader to a recent review accounting for a 50 year period of research on this type of compound (Curtis, 2012), where a large number of differently *N*-substituted (*viz.* methyl, propyl and allyl) macrocyclic ligands complexed to a

Figure 3 Ball-and-stick plot of (III) (Lin *et al.*, 2006), showing the intramolecular hydrogen-bonding scheme (dashed lines).

al. (2001), only one has the anion behaving in the coordinating mode observed in (I) and (II), *i.e.* the anhydrate diastereomer reported by Lin *et al.* (2006), hereinafter (III), with which we shall compare our results.

Displacement ellipsoid views of (I) and (II) are shown in Figs. 1(a) and 2(a), respectively, while (III) is shown in Fig. 3. The very similar centrosymmetric coordination environments in (I) and (II) (a distorted 4+2 octahedron) present the macrocycle N₄ group occupying the equatorial (eq) sites and two perchlorate groups in *trans*-axial (ax) positions, one perchlorate group in (I) being partially disordered (see Refinement section for details). Coordination distances can be found in Tables 1 and 3. The 14-membered rings have the usual zigzag shape and present four equatorial and four axial methyl groups, the latter groups in pairs, trans to each other due to centrosymmetry. Independent amine atoms N1 and N2 present their H atoms on the same side of the coordination plane and opposite the neighbouring axial methyl groups (Figs. 1a and 2a). The similarity of both central cores can be envisaged from Fig. 4, which presents a least-squares fit of just the basal coordination planes. It is clearly seen that only the orientations of the pendant perchlorate anions differ substantially. We shall see below the influence this has on the intramolecular hydrogen bonding.

Due to coordination, the 14-membered ligand generates four smaller rings, two six-membered rings in chair conformations and two five-membered rings in half-chair forms.

The Cu $-N_{eq}$ bond lengths are similar in (I) and (II) (see Tables 1 and 3), while the corresponding bond angles differ from the ideal value of 90° by ±4.25 (12) and 4.66 (7)° for (I) and (II), respectively. As expected, the Cu $-O_{ax}$ bond lengths for both compounds (*ca* 2.83 Å) are significantly longer than the Cu $-N_{eq}$ ones, and are also longer than the typical axial values for CuN₄O₂ complexes [mean value = 2.47 (16) Å for 1622 entries in the Cambridge Structural Database (CSD,

Figure 4

Schematic superposition of (I) (full lines) and (II) (broken lines), where only the CuN₄ cores were included in a least-squares match. Note the almost perfect fit displayed by the *L* ligands and the (rotational) misfit in the pendant perchlorate anions. [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]

Version 5.3; Allen, 2002)]. The axial coordination is rather tilted, *viz*. subtending angles with the basal mean plane of 15.32 (2) and 13.74 (3)° for (I) and (II), respectively. The structures appear more regular than in the diastereomer (III), which shows wider bond and angle ranges [Cu-N = 2.015 (2)–2.048 (2) Å and C-O = 2.570 (3)–2.731 (3) Å; basal angles = 90 ± 5.73 (7)°], but presents more 'vertical' apical bonds [angles to the basal mean plane = 9.30 (4) and 5.72 (5)°].

In a centrosymmetric L ligand, there are four independent chiral centres (N1, C4, N2 and C5) and, accordingly, $2^4 = 16$ possible configurations to be expected. The sequence observed for L^1 in both (I) and (II) is *RRRR–SSSS*. In compound (III), the complex we chose for comparison, the isomeric L^2 variant is not centrosymmetric and presents an *RRRS–SRSR* distribution of the same sequence of chiral centres. There are two main differences to be noted: (i) a different set-up in what would be the 'independent part' [*RRRR* in (I) and (II) and *RRRS* in (III), *viz*. different chirality at atom C5]; (ii) a noncentrosymmetric relationship at sites C4–C4A [*R–S* in (I) and (II), and *R–R* in (III)]. Fig. 5 presents a schematic view of all three configurations, with the critical zones encircled, highlighting the differences between the (I)–(II) pair and (III).

A search of the CSD disclosed, in addition to (I) and (II), 14 other transition metal complexes with different diastereomers of the L ligand and the same chiral centres (see Table 5 for some relevant information). Only two of these 16 structures crystallize in a noncentrosymmetric space group. Of the 14 centrosymmetric structures, seven present the central cation lying on a centre of symmetry. An analysis of the distribution

Figure 5

Schematic representation of the configurations in (I), (II) and (III). Encircled are the critical zones highlighting the differences between the (I)–(II) pair and (III). [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]

of chiral centres suggests the overall distribution to be far from random; there are a total of eight different arrays with quite uneven population structures presenting the *RRRR– SSSS* distribution reported here, referred to as type 1 in Table 5, and these correspond to centrosymmetric molecules. Half of the remaining cases are bunched into a threemembered group (type 2) and a two-membered group (type 3), while the remaining five distributions are unique and present no duplication.

These different configurations lead to different orientations between hydrogen-bonding donors and acceptors, either facilitating or hampering some intramolecular interactions. Those in (I) and (II) are presented in Tables 2 (entries 1–7) and 4 (entries 1–4), respectively, and shown in Figs. 1(*b*) and 2(*b*). For completeness, the interactions in (III) are shown in Fig. 3. The most notable difference is that (II) has both amino H atoms involved in hydrogen bonds with perchlorate O atoms as acceptors. In the case of (I), instead, the R(6) (N1– H1…O2–Cl1–O1–Cu1) ring present in (II) (Bernstein *et al.*, 1995) opens, making room for the (depleted) O1W water

Figure 6

A packing view of (I), showing the one-dimensional chains running in the [011] direction. Dashed lines indicate hydrogen bonds.

molecule, which thus gives rise to an enlarged $R_2^2(8)$ (N1–H1····O1W–H1WA···O2–Cl1–O1–Cu1) loop. In addition, a small $R_1^2(4)$ (H1WA···O1–Cl1–O2···) ring is built up. The presence of this (depleted) water molecule strongly anchored to the complex molecule gives rise to the second difference concerning intermolecular interactions, *viz.* the remaining atom H1WB, which is not involved in intramolecular contacts, forms a hydrogen bond to a neighbouring perchlorate ligand (eighth entry in Table 2), defining a pair of centrosymmetric hydrogen-bonded $R_4^4(12)$ rings and generating a one-dimensional structure parallel to [011], shown in Fig. 6 together with the rings generated.

A hasty hydrogen-bonding analysis might erroneously lead to the conclusion that the minor-occupancy perchlorate atom

A packing view of (II), with molecules drawn with thin lines lying at x = 0and those drawn with heavy lines lying at $x = \frac{1}{2}$.

Table 1					
Selected	bond	lengths	(Å)	for	(I).

Cu1-N1	2.020 (3)	Cu1-O1	2.833 (4)
Cu1-N2	2.023 (3)		.,

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$) for (I).

$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1N\cdotsO1W$	0.91	2.38	3.261 (9)	163
$N2-H2N\cdots O4$	0.91	2.23	3.138 (6)	173
$C7-H7C\cdots O1^{i}$	0.96	2.52	3.437 (7)	159
$C9-H9A\cdotsO1^{i}$	0.96	2.47	3.412 (7)	168
$O1W-H1WA\cdots O2$	0.85(1)	2.44 (9)	3.137 (9)	139 (12)
$O1W - H1WA \cdots O1$	0.85(1)	2.22 (4)	3.029 (9)	159 (11)
$O1W-H1WB\cdots O4^{ii}$	0.85 (1)	2.17 (6)	2.967 (8)	155 (12)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y, -z.

O3' 'bumps into' water atom H1WA [H1WA...O3' = 1.003 (3) Å]. However, this is only an artifact derived from the fact that both units (the water solvent and the minor part of the perchlorate anion) have incomplete occupancies, allowing for one of the groups to be present while the other is not, and *vice versa*, so that the apparent interaction is in fact only illusory.

In contrast with (I), the structure of (II) does not show any relevant intermolecular interactions, and the crystal structure can be described as the packing of 'spheres', held together by very weak forces of the van der Waals type. Fig. 7 shows a packing view where this set-up is apparent.

Structure (III) shares its anhydrous character with (II), and with this the lack of significant intermolecular interactions. This shows up in the rather low packing indices [66.1% for (II) and 66.2% for (III), calculated using *PLATON* (Spek, 2009)]. For comparison, the same index for (I) is 69.8% (only the major part of the disordered anion has been considered in the calculation).

Experimental

For the synthesis of L, reduction of 3,10-C-*meso*-Me₈[14]diene dihydroperchlorate (Curtis *et al.*, 1969) and resolution of isomeric Me₈[14]anes were carried out as described in the literature (Bembi *et al.*, 1989); ligand L in the present work corresponds to Lb in the latter cited paper. Regarding chirality, in the diene ligand there were originally two chiral centres and the reduction process gives rise to two further chiral centres.

For the synthesis of the copper(II) diperchlorate complexes (I) and (II), copper(II) perchlorate hexahydrate (0.371 g, 1.0 mmol) and L dihydrate (0.320 g, 1.0 mmol) were dissolved separately in hot methanol (50 ml). The colourless ligand solution was added as soon as possible to the copper salt solution while hot. An intense blue solution appeared within a few minutes. The resulting mixture was allowed to evaporate slowly and dark-blue crystals appeared. These were filtered off and recrystallized from a minimum quantity of aqueous methanol (1:1 ν/ν). Crystals of both (I) and (II), differentiated by their shape, appeared in the same recrystallization process.

metal-organic compounds

9475 measured reflections

 $R_{\rm int}=0.057$

3193 independent reflections 2285 reflections with $I > 2\sigma(I)$

40587 measured reflections

 $R_{\rm int} = 0.037$

3311 independent reflections

2614 reflections with $I > 2\sigma(I)$

Table 3

Selected bond lengths (Å) for (II).

Cu1-N1	2.0270 (19)	Cu1-O1	2.831 (3)
Cu1-N2	2.0295 (19)		

Compound (I)

Crystal data

 $\begin{bmatrix} Cu(ClO_4)_2(C_{18}H_{40}N_4) \end{bmatrix} \cdot 1.2H_2O & \gamma = 98.616 (11)^{\circ} \\ M_r = 596.61 & V = 672.67 (17) \text{ Å}^3 \\ \text{Triclinic, } P\overline{1} & Z = 1 \\ a = 8.5783 (10) \text{ Å} & \text{Mo } K\alpha \text{ radiation} \\ b = 8.7819 (12) \text{ Å} & \mu = 1.06 \text{ mm}^{-1} \\ c = 10.2156 (13) \text{ Å} & T = 294 \text{ K} \\ \alpha = 114.835 (13)^{\circ} & 0.35 \times 0.25 \times 0.20 \text{ mm} \\ \beta = 98.036 (10)^{\circ} \\ \end{bmatrix}$

Data collection

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$ H atoms treated by a mixture of
independent and constrained
refinementS = 0.93refinement3193 reflections $\Delta \rho_{max} = 0.73 \text{ e Å}^{-3}$ 183 parameters $\Delta \rho_{min} = -0.49 \text{ e Å}^{-3}$ 97 restraints $\Delta \rho_{min} = -0.49 \text{ e Å}^{-3}$

Compound (II)

Crystal data

$[Cu(ClO_4)_2(C_{18}H_{40}N_4)]$	$V = 2632.84 (11) \text{ Å}^3$
$M_r = 574.98$	Z = 4
Orthorhombic, Pbca	Mo $K\alpha$ radiation
a = 9.0206 (2) Å	$\mu = 1.08 \text{ mm}^{-1}$
b = 16.7979 (4) Å	T = 294 K
c = 17.3754 (5) Å	$0.35 \times 0.30 \times 0.23 \text{ mm}$

Data collection

```
Oxford Gemini S Ultra CCD area-
detector diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Oxford
Diffraction, 2009)
T_{min} = 0.69, T_{max} = 0.78
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	155 parameters
$wR(F^2) = 0.116$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.58 \ {\rm e} \ {\rm \AA}^{-3}$
3311 reflections	$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$

Structure (I) posed some problems due to disorder. Water molecule O1W appeared depleted and refinement of its site-occupancy factor converged to 0.60 (2). The perchlorate anion, in turn, appeared split into two almost 'mirror-related' parts with very different occupancies [0.922 (3) and 0.078 (3)]. Three O atoms in the major

Nath et al. • $[Cu(ClO_4)_2(C_{18}H_{40}N_4)] \cdot 1.2H_2O$ and $[Cu(ClO_4)_2(C_{18}H_{40}N_4)]$ 693 electronic reprint

Table 4

		0		
Hydrogen-bond	geometry	(À, °) for	(II).

$D-\mathrm{H}\cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N1-H1N···O2	0.91	2.31	3.188 (3)	161
$N2 - H2N \cdots O4$	0.91	2.54	3.403 (3)	159
$N2 - H2N \cdots O1$	0.91	2.48	3.099 (3)	126
$C7-H7A\cdotsO1^{i}$	0.96	2.42	3.295 (4)	151

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Table 5

Comparison of reported transition metal complexes with diastereomers of the L ligand and similar chiral sites.

CSD refode (Reference)	Space group	Cation (symmetry)	Sequence (type)
DEFJIH (Lee et al., 1985)	$P2_{1}/c$	Cu (1)	RRRR-SSSS (1)
OCMENH (Ferguson et al., 1990)	$P2_1/n$	Ni $(\overline{1})$	RRRR-SSSS (1)
POTPUJ (Hazari et al., 1997)	$P2_{1}/c$	$Cu(\overline{1})$	RRRR-SSSS (1)
QOPJIO (Horn et al., 2001)	$P\overline{1}$	$Co(\overline{1})$	RRRR-SSSS (1)
(I) (this work)	Pbca	$Cu(\overline{1})$	RRRR-SSSS (1)
(II) (this work)	$P\overline{1}$	$Cu(\overline{1})$	RRRR-SSSS (1)
IDAQIP (Roy, Hazari, Barua &	Pbca	Zn (1)	SRRR-SSRS (2)
Tiekink, 2011)			. ,
LIFHAJ (Choi & Suh, 1999)	$P\overline{1}$	Zn (1)	SRRR-SSRS (2)
YAVFOS (Roy et al., 2012)	C2/c	Cd (1)	SRRR-SSRS (2)
BAQHAC (Choi et al., 1999)	$P\overline{1}$	Ni (1)	RSSR-RSSS (3)
MAKPOF (Roy et al., 2010)	C2/c	Cd (1)	RSSR-RSSS (3)
ECUREA (Lin et al., 2006)	$P2_{1}2_{1}2_{1}$	Ni (1)	SSSR-SSRS (4)
(III) (Lin et al., 2006)	$P2_1/c$	Cu (1)	RRRS-SRSR (5)
EQOGIB (Roy, Hazari, Dey et al., 2011)	$P\overline{1}$	Zn (1)	RRSR-RSSS (6)
OCMENI (Ito et al., 1981)	$P4_{3}2_{1}2$	Ni (1)	SSSR-SSSR (7)
VIVSUO (Bembi et al., 1991)	$P2_{1}/c$	$Co(\overline{1})$	SRSR-RSRS (8)

component (O1, O2 and O4) appear relatively near their O1', O2' and O4' counterparts, and the least-squares plane through the sixmembered group corresponds roughly to the 'mirror' relating the two components. The Cl atoms (Cl1 and Cl1') and the fourth O atoms (O3 and O3') lie on both sides, at 0.358 (2) and -0.372 (2) Å, and at 1.703 (3) and -1.708 (3) Å, respectively, from the plane.

Due to the very small site-occupancy factor for the minor component [0.078 (2)], strong similarity restraints (in both metrics and displacement factors) were introduced in order to link them to the corresponding parameters in the major component.

C- and N-bound H atoms were found in a difference map, further idealized and finally allowed to ride. Methyl groups were also free to rotate. Water H atoms in (I) were difficult to find, due to depletion, but the hydrogen-bonding donor-acceptor scheme for O1W clearly defined a restrained solid angle for them. The inclusion of an idealized water molecule (O-H = 0.85 Å and H···H = 1.35 Å) resulted in the H atoms lying in slightly positive zones in the difference Fourier map and involved in strong hydrogen bonding. The final positions came from a restrained refinement, with O-H = 0.85 (1) Å and H···H = 1.35 (1) Å. In all cases, H-atom displacement parameters were taken as $U_{\rm iso}({\rm H}) = kU_{\rm eq}({\rm host})$, with C-H = 0.96 Å and k = 1.5 for methyl H atoms, C-H = 0.93 Å and k = 1.2 for aromatic H atoms, N-H = 0.85 Å and k = 1.2, and O-H = 0.85 Å and k = 1.5.

For both compounds, data collection: *CrysAlis PRO* (Oxford Diffraction, 2009); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008);

software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

The authors acknowledge ANPCyT (project No. PME 2006–01113) for the purchase of the Oxford Gemini CCD diffractometer

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK3486). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Arai, H., Matshima, Y., Eguchi, T., Kazutoshi, S. & Katsumi, K. (1998). Tetrahedron Lett. 39, 3181–3184.
- Bembi, R., Drew, M. G. B., Singh, R. & Roy, T. G. (1991). Inorg. Chem. 30, 1403–1406.
- Bembi, R., Sondi, S. M., Singh, A. K. & Roy, T. G. (1989). *Bull. Chem. Soc. Jpn*, **62**, 3701–3705.
- Bernhardt, P. V. & Lawrance, G. A. (1990). Coord. Chem. Rev. 104, 297-343.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Choi, K.-Y., Chun, K.-M. & Suh, I.-H. (1999). Inorg. Chem. Commun. 2, 210–213.
- Choi, K.-Y. & Suh, I.-H. (1999). Main Group Met. Chem. 22, 123-125.
- Curtis, N. F. (2012). Coord. Chem. Rev. 256, 878-895.
- Curtis, N. F., Swann, D. A., Waters, T. N. & Maxwell, I. E. (1969). J. Am. Chem. Soc. 91, 4588–4589.
- Ferguson, G., Lough, A. J. & Bembi, R. (1990). Acta Cryst. C46, 213-215.
- Gao, Z., Tian, G., Zhao, G. & Si, C. (2010). Inorg. Chem. Commun. 13, 461–463.
- Hazari, S. K. S., Roy, T. G., Dey, B. K., Chakraborty, S. & Tiekink, E. R. T. (1999). Z. Kristallogr. New Cryst. Struct. 214, 51–52.
- Hazari, S. K. S., Roy, T. G., Dey, B. K., Das, S. C. & Tiekink, E. R. T. (1997). *Met. Based Drugs*, 4, 255–263.
- Hazari, S. K. S., Roy, T. G., Dey, B. K., Miah, H. A., Dutta, S. & Tiekink, E. R. T. (2001). Z. Kristallogr. New Cryst. Struct. 216, 441–442.
- Hollinshead, A. C. & Smith, P. K. (1990). Antibiot. Annu. 313, 1959-1960.
- Horn, E., Roy, T. G., Hazari, S. K. S., Dey, B. K. & Tiekink, E. R. T. (2001). Z. Kristallogr. New Cryst. Struct. 216, 71–72.
- Ito, T., Ito, H. & Toriumi, K. (1981). Acta Cryst. B37, 1412-1415.
- Kimura, E., Bu, X., Shionoya, M., Wada, S. & Maruyama, S. (1992). Inorg. Chem. 31, 4542–4546.
- Kimura, E., Wada, S., Shionoya, M. & Okazai, Y. (1994). Inorg. Chem. 33, 770– 778.
- Konig, B., Pelka, M., Zieg, H., Jones, P. G. & Dix, I. (1996). *Chem. Commun.* pp. 471–472.
- Lee, T.-J., Lee, T.-Y., Juang, W.-B. & Chung, C.-S. (1985). Acta Cryst. C41, 1596–1598.
- Lin, Y.-C., Mistra, T.-K., Lu, T.-H., Maddirala, S. J. & Chung, C.-S. (2006). *Eur. J. Inorg. Chem.* pp. 994–1005.
- Norman, T. J., Parker, D., Smith, F. C. & King, D. J. (1995). J. Chem. Soc. Chem. Commun. pp. 1879–1880.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Reid, G. & Schroder, M. (1990). Chem. Soc. Rev. 19, 239-269.
- Roy, T. G. & Bembi, R. (2005). Indian J. Chem. Sect. A, 44, 700-704.
- Roy, T. G., Hazari, S. K. S., Barua, K. K., Anwar, N., Zukerman-Schpector, J. & Tiekink, E. R. T. (2010). Appl. Organomet. Chem. 24, 878–887.
- Roy, T. G., Hazari, S. K. S., Barua, K. K. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m1659–m1660.
- Roy, T. G., Hazari, S. K. S., Dey, B. K., Dutta, S., Monsur, M. A. & Tiekink, E. R. T. (2006). J. Coord. Chem. 59, 1757–1767.
- Roy, T. G., Hazari, S. K. S., Dey, B. K., Meah, H. A., Rahman, M. S., Kim, D. I. & Park, Y. C. (2007). J. Coord. Chem. 60, 1567–1578.
- Roy, T. G., Hazari, S. K. S., Dey, B. K., Miah, H. A., Olbrich, F. & Rehder, D. (2007). *Inorg. Chem.* 46, 5372–5380.
- Roy, T. G., Hazari, S. K. S., Dey, B. K., Nath, A., Anwar, N., Kim, D. I., Kim, E. H. & Park, Y. C. (2007). J. Inclusion Phenom. Macrocycl. Chem. 58, 249– 255.

- Roy, T. G., Hazari, S. K. S., Dey, B. K., Nath, B. C., Dutta, A., Olbrich, F. & Rehder, D. (2011). Inorg. Chim. Acta, 371, 63-70.
- Roy, T. G., Hazari, S. K. S., Nath, B. C., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m494-m495.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Singh, A. K., Kumar, A., Panwar, S. & Baniwal, S. (1999). Analyst, 124, 521-525.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. Suh, M.-P., Moon, H.-R., Lee, E.-Y. & Jang, S.-Y. (2006). J. Am. Chem. Soc. 128, 4710-4718.

supplementary materials

Acta Cryst. (2013). C69, 689-695 [doi:10.1107/S0108270113013711]

Two solvatomorphic forms of a copper complex formulated as $Cu(L^1)$ (ClO₄)₂·1.2H₂O and $Cu(L^1)$ (ClO₄)₂, where L^1 is 3,10-C*meso*-3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetradecane

Babul Chandra Nath, Sebastián Suarez, Fabio Doctorovich, Tapashi G. Roy and Ricardo Baggio

Computing details

For both compounds, data collection: *CrysAlis PRO* (Oxford Diffraction, 2009); cell refinement: *CrysAlis PRO* (Oxford Diffraction, 2009); data reduction: *CrysAlis PRO* (Oxford Diffraction, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

(I) (3,10-C-*meso*-3,5,7,7,10,12,14,14-Octamethyl-1,4,8,11-tetraazacyclotetradecane)bis(perchloratoκO)copper(II) 1.2-hydrate

Crystal data	
$[Cu(ClO_4)_2(C_{18}H_{40}N_4)] \cdot 1.2H_2O$ $M_r = 596.61$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.5783 (10) Å b = 8.7819 (12) Å c = 10.2156 (13) Å $a = 114.835 (13)^{\circ}$ $\beta = 98.036 (10)^{\circ}$ $\gamma = 98.616 (11)^{\circ}$ $V = 672.67 (17) \text{ Å}^3$	Z = 1 F(000) = 315.0 $D_x = 1.473 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2039 reflections $\theta = 3.7-29.0^{\circ}$ $\mu = 1.06 \text{ mm}^{-1}$ T = 294 K Block, red $0.35 \times 0.25 \times 0.20 \text{ mm}$
Data collection	
Oxford Gemini S Ultra CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans, thick slices Absorption correction: multi-scan	9475 measured reflections 3193 independent reflections 2285 reflections with $I > 2\sigma(I)$ $R_{int} = 0.057$ $\theta_{max} = 29.1^{\circ}, \ \theta_{min} = 3.7^{\circ}$ $h = -11 \rightarrow 11$
(CrysAlis PRO; Oxford Diffraction, 2009)	$k = -11 \rightarrow 11$

 $T_{\rm min} = 0.72, \ T_{\rm max} = 0.82$

 $l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from
$wR(F^2) = 0.170$	neighbouring sites
S = 0.93	H atoms treated by a mixture of independent
3193 reflections	and constrained refinement
183 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0891P)^2 + 0.8414P]$
97 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.73 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.49 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cu1	0.5000	0.5000	0.5000	0.0396 (2)	
N1	0.4193 (4)	0.4998 (4)	0.3045 (3)	0.0432 (7)	
H1N	0.4850	0.4473	0.2459	0.052*	
N2	0.3720 (4)	0.2576 (4)	0.4358 (3)	0.0399 (7)	
H2N	0.4379	0.1906	0.3899	0.048*	
C1	0.4601 (5)	0.6810 (5)	0.3304 (5)	0.0516 (9)	
H1A	0.3821	0.7410	0.3777	0.062*	
H1B	0.4557	0.6853	0.2367	0.062*	
C2	0.2487 (5)	0.4023 (5)	0.2150 (5)	0.0518 (10)	
C3	0.2286 (5)	0.2165 (5)	0.1939 (4)	0.0499 (9)	
H3A	0.1324	0.1470	0.1163	0.060*	
H3B	0.3201	0.1750	0.1574	0.060*	
C4	0.2151 (4)	0.1818 (5)	0.3250 (4)	0.0435 (8)	
H4	0.1333	0.2381	0.3713	0.052*	
C5	0.3710 (5)	0.2314 (5)	0.5712 (4)	0.0462 (9)	
Н5	0.3524	0.1075	0.5421	0.055*	
C6	0.2299 (9)	0.3967 (8)	0.0608 (6)	0.094 (2)	
H6A	0.3201	0.3615	0.0201	0.141*	
H6B	0.2265	0.5092	0.0694	0.141*	
H6C	0.1313	0.3159	-0.0031	0.141*	
C7	0.1256 (5)	0.4880 (6)	0.2930 (7)	0.0729 (15)	
H7A	0.0217	0.4085	0.2532	0.109*	
H7B	0.1192	0.5881	0.2783	0.109*	
H7C	0.1579	0.5218	0.3969	0.109*	
C8	0.1590 (5)	-0.0120 (5)	0.2735 (5)	0.0593 (11)	
H8A	0.0548	-0.0546	0.2064	0.089*	
H8B	0.1516	-0.0330	0.3576	0.089*	
H8C	0.2354	-0.0700	0.2240	0.089*	
С9	0.2394 (6)	0.2996 (6)	0.6470 (5)	0.0617 (11)	

Acta Cryst. (2013). C69, 689-695

H9A	0.2454	0.4158	0.6614	0.093*	
H9B	0.2539	0.2979	0.7413	0.093*	
H9C	0.1355	0.2284	0.5865	0.093*	
O1W	0.5853 (11)	0.2881 (8)	0.0354 (8)	0.094 (3)	0.60 (2)
H1WB	0.519 (13)	0.197 (9)	-0.031 (10)	0.141*	0.60 (2)
H1WA	0.618 (16)	0.263 (14)	0.105 (9)	0.141*	0.60(2)
Cl1	0.72465 (13)	0.12868 (15)	0.28330 (15)	0.0532 (4)	0.922 (3)
03	0.8372 (4)	0.1240 (5)	0.3979 (4)	0.0814 (12)	0.922 (3)
01	0.6966 (7)	0.2981 (5)	0.3343 (6)	0.0854 (12)	0.922 (3)
O2	0.7911 (5)	0.0887 (6)	0.1564 (4)	0.0908 (14)	0.922 (3)
O4	0.5759 (4)	0.0117 (5)	0.2537 (5)	0.0791 (13)	0.922 (3)
Cl1′	0.7019 (16)	0.1550 (18)	0.2246 (19)	0.0532 (4)	0.078 (3)
O3′	0.699 (4)	0.191 (5)	0.101 (3)	0.0814 (12)	0.078 (3)
01′	0.684 (6)	0.302 (4)	0.348 (4)	0.0854 (12)	0.078 (3)
O2′	0.852 (3)	0.115 (6)	0.261 (4)	0.0908 (14)	0.078 (3)
O4′	0.572 (4)	0.012 (5)	0.189 (5)	0.0791 (13)	0.078 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U ²³
Cu1	0.0338 (3)	0.0382 (4)	0.0424 (4)	0.0018 (2)	0.0053 (2)	0.0174 (3)
N1	0.0450 (17)	0.0383 (16)	0.0443 (17)	0.0071 (13)	0.0103 (13)	0.0174 (13)
N2	0.0370 (15)	0.0378 (16)	0.0435 (16)	0.0080 (12)	0.0115 (12)	0.0166 (13)
C1	0.053 (2)	0.048 (2)	0.051 (2)	0.0045 (18)	0.0040 (18)	0.0253 (19)
C2	0.048 (2)	0.050 (2)	0.047 (2)	0.0023 (17)	-0.0038 (17)	0.0198 (18)
C3	0.047 (2)	0.045 (2)	0.043 (2)	0.0026 (16)	0.0026 (16)	0.0114 (17)
C4	0.0391 (19)	0.0356 (18)	0.047 (2)	0.0038 (14)	0.0083 (15)	0.0124 (16)
C5	0.048 (2)	0.0383 (19)	0.051 (2)	0.0022 (16)	0.0088 (17)	0.0227 (17)
C6	0.118 (5)	0.083 (4)	0.057 (3)	-0.019 (3)	-0.022 (3)	0.037 (3)
C7	0.042 (2)	0.054 (3)	0.106 (4)	0.011 (2)	0.001 (2)	0.026 (3)
C8	0.050 (2)	0.040 (2)	0.070 (3)	-0.0036 (17)	0.002 (2)	0.017 (2)
C9	0.063 (3)	0.066 (3)	0.054 (2)	0.002 (2)	0.020 (2)	0.026 (2)
O1W	0.132 (7)	0.065 (4)	0.076 (5)	0.012 (4)	0.015 (4)	0.030 (4)
Cl1	0.0441 (6)	0.0503 (6)	0.0659 (8)	0.0112 (4)	0.0200 (5)	0.0243 (6)
O3	0.064 (2)	0.091 (3)	0.087 (3)	0.017 (2)	0.005 (2)	0.042 (2)
01	0.081 (3)	0.058 (2)	0.122 (3)	0.0243 (18)	0.042 (2)	0.037 (2)
O2	0.094 (3)	0.111 (4)	0.069 (3)	0.035 (3)	0.042 (2)	0.031 (3)
O4	0.055 (2)	0.071 (2)	0.109 (4)	0.0029 (17)	0.016 (2)	0.043 (3)
Cl1′	0.0441 (6)	0.0503 (6)	0.0659 (8)	0.0112 (4)	0.0200 (5)	0.0243 (6)
O3′	0.064 (2)	0.091 (3)	0.087 (3)	0.017 (2)	0.005 (2)	0.042 (2)
01′	0.081 (3)	0.058 (2)	0.122 (3)	0.0243 (18)	0.042 (2)	0.037 (2)
O2′	0.094 (3)	0.111 (4)	0.069 (3)	0.035 (3)	0.042 (2)	0.031 (3)
O4′	0.055 (2)	0.071 (2)	0.109 (4)	0.0029 (17)	0.016 (2)	0.043 (3)

Geometric parameters (Å, °)

Cu1-N1 ⁱ	2.020 (3)	C5—C1 ⁱ	1.520 (6)
Cu1—N1	2.020 (3)	С5—Н5	0.9800
Cu1—N2 ⁱ	2.023 (3)	С6—Н6А	0.9600

Cu1—N2	2.023 (3)	C6—H6B	0.9600
Cu1—O1 ⁱ	2.833 (4)	C6—H6C	0.9600
Cu1—O1	2.833 (4)	С7—Н7А	0.9600
N1C1	1.476 (5)	С7—Н7В	0.9600
N1—C2	1.518 (5)	С7—Н7С	0.9600
N1—H1N	0.9100	C8—H8A	0.9600
N2—C4	1.486 (5)	C8—H8B	0.9600
N2—C5	1.496 (5)	C8—H8C	0.9600
N2—H2N	0.9100	С9—Н9А	0.9600
C1—C5 ⁱ	1.520 (6)	C9—H9B	0.9600
C1—H1A	0.9700	С9—Н9С	0.9600
C1—H1B	0.9700	O1W—H1WB	0.850 (10)
C2—C7	1.511 (7)	O1W—H1WA	0.851 (10)
С2—С3	1.532 (6)	Cl1—O2	1.418 (3)
C2—C6	1.539 (6)	Cl1—O3	1.428 (3)
C3—C4	1.509 (5)	Cl1—O4	1.419 (3)
С3—НЗА	0.9700	Cl1—O1	1.427 (3)
С3—Н3В	0.9700	Cl1'—O3'	1.422 (4)
C4—C8	1.528 (5)	Cl1'—O4'	1.423 (4)
C4—H4	0.9800	Cl1′—O2′	1.422 (4)
С5—С9	1.513 (6)	Cl1′—O1′	1.423 (4)
N1 ⁱ —Cu1—N2 ⁱ	94.25 (12)	C3—C4—H4	108.2
N1—Cu1—N2 ⁱ	85.75 (12)	C8—C4—H4	108.2
N1 ⁱ —Cu1—N2	85.75 (12)	N2—C5—C9	112.1 (3)
N1—Cu1—N2	94.25 (12)	N2C5C1 ⁱ	105.9 (3)
N1 ⁱ —Cu1—O1 ⁱ	81.43 (14)	C9—C5—C1 ⁱ	113.0 (4)
N1-Cu1-O1 ⁱ	98.57 (14)	N2—C5—H5	108.6
N2 ⁱ —Cu1—O1 ⁱ	78.20 (13)	С9—С5—Н5	108.6
N2-Cu1-O1 ⁱ	101.80 (13)	C1 ⁱ —C5—H5	108.6
Nl ⁱ —Cul—Ol	98.57 (14)	С2—С6—Н6А	109.5
N1—Cu1—O1	81.43 (14)	С2—С6—Н6В	109.5
N2 ⁱ —Cu1—O1	101.80 (13)	H6A—C6—H6B	109.5
N2-Cu1-01	78.20 (13)	С2—С6—Н6С	109.5
C1—N1—C2	114.2 (3)	H6A—C6—H6C	109.5
C1—N1—Cu1	106.5 (2)	H6B—C6—H6C	109.5
C2—N1—Cu1	120.1 (2)	С2—С7—Н7А	109.5
C1—N1—H1N	104.9	С2—С7—Н7В	109.5
C2—N1—H1N	104.9	H7A—C7—H7B	109.5
Cu1—N1—H1N	104.9	С2—С7—Н7С	109.5
C4—N2—C5	114.2 (3)	H7A—C7—H7C	109.5
C4—N2—Cu1	122.3 (2)	H7B—C7—H7C	109.5
C5—N2—Cu1	108.0 (2)	C4—C8—H8A	109.5
C4—N2—H2N	103.3	C4—C8—H8B	109.5
C5—N2—H2N	103.3	H8A—C8—H8B	109.5
Cu1—N2—H2N	103.3	C4—C8—H8C	109.5
$N1-C1-C5^{i}$	109.6 (3)	H8A—C8—H8C	109.5
N1—C1—H1A	109.8	H8B—C8—H8C	109.5
C5 ⁱ —C1—H1A	109.8	С5—С9—Н9А	109.5

N1—C1—H1B	109.8	С5—С9—Н9В	109.5
C5 ⁱ —C1—H1B	109.8	H9A—C9—H9B	109.5
H1A—C1—H1B	108.2	С5—С9—Н9С	109.5
C7—C2—N1	110.6 (3)	Н9А—С9—Н9С	109.5
C7—C2—C3	111.7 (4)	H9B—C9—H9C	109.5
N1—C2—C3	107.4 (3)	H1WB—O1W—H1WA	105.1 (17)
C7—C2—C6	110.4 (5)	O2—Cl1—O3	109.2 (2)
N1—C2—C6	108.9 (4)	O2—Cl1—O4	112.4 (3)
C3—C2—C6	107.7 (4)	O3—Cl1—O4	108.8 (2)
C4—C3—C2	118.7 (3)	O2-Cl1-O1	109.4 (3)
C4—C3—H3A	107.6	O3—Cl1—O1	108.7 (3)
С2—С3—НЗА	107.6	O4—Cl1—O1	108.3 (2)
C4—C3—H3B	107.6	Cl1—O1—Cu1	140.1 (3)
С2—С3—Н3В	107.6	O3'—Cl1'—O4'	109.4 (5)
НЗА—СЗ—НЗВ	107.1	O3'—C11'—O2'	109.6 (5)
N2—C4—C3	110.0 (3)	O4'—C11'—O2'	109.5 (5)
N2—C4—C8	112.1 (3)	O3'—Cl1'—O1'	109.5 (5)
C3—C4—C8	110.0 (3)	O4'—Cl1'—O1'	109.3 (5)
N2—C4—H4	108.2	O2'—Cl1'—O1'	109.5 (5)
$N2^{i}$ —Cu1—N1—C1	-14.7(3)	C5—N2—C4—C3	179.5 (3)
N2—Cu1—N1—C1	165.3 (3)	Cu1—N2—C4—C3	46.2 (4)
$O1^{i}$ —Cu1—N1—C1	62.7 (3)	C5—N2—C4—C8	-57.7(4)
01— $Cu1$ — $N1$ — $C1$	-117.3(3)	Cu1-N2-C4-C8	169.0 (3)
$N2^{i}$ —Cu1—N1—C2	-146.4(3)	C_{2} C_{3} C_{4} N_{2}	-68.5(4)
N2— $Cu1$ — $N1$ — $C2$	33.6 (3)	$C_2 - C_3 - C_4 - C_8$	167.5 (4)
01^{i} —Cu1—N1—C2	-69.0(3)	C4-N2-C5-C9	-55.8(4)
01— $Cu1$ — $N1$ — $C2$	1110(3)	$C_{11} = N^2 = C^5 = C^9$	83 9 (3)
$N1^{i}$ —Cu1—N2—C4	150 3 (3)	$C4-N2-C5-C1^{i}$	-1794(3)
N1— $Cu1$ — $N2$ — $C4$	-29.7(3)	$Cu1 - N2 - C5 - C1^{i}$	-398(3)
Ω_{1}^{i} Ω_{1}^{i} Ω_{2}^{i} Ω_{2	70.0(3)	0^{2} - Cl1 - Ol - Cu1	155 8 (4)
01 - Cu1 - N2 - C4	-1100(3)	03-C11-01-Cu1	-850(5)
$N1^{i}$ Cu1 N2 C1	146(2)	04-C11-01-Cu1	33 1 (6)
N1 - Cu1 - N2 - C5	-1654(2)	$N1^{i}$ $Cu1$ $O1$ $Cu1$	62.7(5)
Ω_{1}^{i} Ω_{2}^{i} Ω_{2	-65.7(3)	N1 - Cu1 - O1 - Cl1	-1173(5)
01 - Cu1 - N2 - C5	1143(3)	N^{2i} Cu^{1} O^{1} Cl^{1}	117.5(3)
C_{2} N1 C_{1} C_{5}^{i}	174.3(3)	$N_2 - C_{u1} - O_1 - C_{11}$	-21.1(5)
$C_2 = N_1 = C_1 = C_3$	170.4(3)	04' Cll' $03'$ $01'$	21.1(3) 119.8(7)
C1 N1 C2 C7	-50.0(5)	0^{2} -0^{2} 0^{2} 0^{2} 0^{1}	-1201(7)
$C_1 = N_1 = C_2 = C_7$	59.9 (5) 68 5 (4)	02 - 01 - 03 - 01	120.1(7)
$C_1 N_1 C_2 C_3$	178 1 (2)	03 - 01 - 01 - 04	-120.0(7)
$C_1 = N_1 = C_2 = C_3$	-526(4)	02 - 01 - 01 - 04	120.0(7)
$C_1 = N_1 = C_2 = C_3$	-33.0(4)	03 - 01 - 02 - 01	120.1(7)
$C_1 = N_1 = C_2 = C_0$	01.0(3) -1700(2)	04 - 01 - 02 - 01	-119.9(7)
$C_1 = C_1 = C_2 = C_4$	-1/0.0(3)	04 - 01 - 02 - 011	33.3 (4) 110.0 (7)
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-49.0(3)	03 - 01 - 04 - 01	-119.9(/)
$1 \times 1 - \mathbb{C}_2 - \mathbb{C}_3 - \mathbb{C}_4$	12.5 (4)	$02^{-}-01^{-}-04^{-}-01^{-}$	119.9 (7)
0 - 02 - 03 - 04	-1/0.4(4)		

Symmetry code: (i) -x+1, -y+1, -z+1.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1 <i>N</i> ···O1 <i>W</i>	0.91	2.38	3.261 (9)	163
N2—H2 <i>N</i> ···O4	0.91	2.23	3.138 (6)	173
C7—H7 <i>C</i> ···O1 ⁱ	0.96	2.52	3.437 (7)	159
C9—H9A····O1 ⁱ	0.96	2.47	3.412 (7)	168
O1 <i>W</i> —H1 <i>WA</i> ···O2	0.85(1)	2.44 (9)	3.137 (9)	139 (12)
O1 <i>W</i> —H1 <i>WA</i> ···O1	0.85 (1)	2.22 (4)	3.029 (9)	159 (11)
O1 <i>W</i> —H1 <i>WB</i> ····O4 ⁱⁱ	0.85 (1)	2.17 (6)	2.967 (8)	155 (12)

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*, -*z*.

(II) (3,10-C-meso-3,5,7,7,10,12,14,14-Octamethyl-1,4,8,11-tetraazacyclotetradecane)bis(perchlorato-

кО)copper(II)

Crystal data

$[Cu(ClO_4)_2(C_{18}H_{40}N_4)]$	F(000) = 1212
$M_r = 574.98$	$D_{\rm x} = 1.451 {\rm Mg} {\rm m}^{-3}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 10594 reflections
a = 9.0206 (2) Å	$\theta = 3.8 - 28.9^{\circ}$
b = 16.7979 (4) Å	$\mu = 1.08 \text{ mm}^{-1}$
c = 17.3754 (5) Å	T = 294 K
$V = 2632.84 (11) \text{ Å}^3$	Prism, blue
Z = 4	$0.35 \times 0.30 \times 0.23 \text{ mm}$

Data collection

Oxford Gemini S Ultra CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans, thick slices Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009) $T_{\min} = 0.69, T_{\max} = 0.78$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.116$ S = 1.073311 reflections 155 parameters 0 restraints Primary atom site location: structure-invariant direct methods 40587 measured reflections 3311 independent reflections 2614 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 29.0^{\circ}, \theta_{min} = 4.1^{\circ}$ $h = -12 \rightarrow 11$ $k = -22 \rightarrow 22$ $l = -23 \rightarrow 23$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0452P)^2 + 2.9167P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.58 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.37 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1	0.5000	0.5000	0.5000	0.03007 (13)	
N1	0.5404 (2)	0.52047 (11)	0.38696 (11)	0.0316 (4)	
H1N	0.4785	0.4866	0.3617	0.038*	
N2	0.3222 (2)	0.57382 (11)	0.50517 (10)	0.0322 (4)	
H2N	0.2454	0.5424	0.4899	0.039*	
C1	0.6913 (3)	0.48889 (16)	0.37144 (15)	0.0412 (6)	
H1A	0.7651	0.5264	0.3897	0.049*	
H1B	0.7050	0.4820	0.3165	0.049*	
C2	0.5087 (3)	0.60077 (15)	0.35222 (14)	0.0377 (5)	
C3	0.3492 (3)	0.62349 (15)	0.37188 (14)	0.0392 (5)	
H3A	0.3224	0.6684	0.3397	0.047*	
H3B	0.2862	0.5794	0.3567	0.047*	
C4	0.3101 (3)	0.64493 (14)	0.45420 (15)	0.0410 (6)	
H4	0.3791	0.6858	0.4724	0.049*	
C5	0.2891 (3)	0.58991 (15)	0.58827 (14)	0.0379 (5)	
Н5	0.1849	0.6059	0.5927	0.046*	
C6	0.5180 (4)	0.5943 (2)	0.26429 (17)	0.0628 (9)	
H6A	0.6170	0.5797	0.2496	0.094*	
H6B	0.4931	0.6446	0.2416	0.094*	
H6C	0.4498	0.5544	0.2466	0.094*	
C7	0.6183 (3)	0.66191 (16)	0.3822 (2)	0.0560 (8)	
H7A	0.6257	0.6574	0.4371	0.084*	
H7B	0.5848	0.7144	0.3689	0.084*	
H7C	0.7138	0.6526	0.3595	0.084*	
C8	0.1528 (4)	0.6789 (2)	0.4556 (2)	0.0660 (9)	
H8A	0.0846	0.6398	0.4363	0.099*	
H8B	0.1485	0.7257	0.4239	0.099*	
H8C	0.1265	0.6926	0.5075	0.099*	
C9	0.3847 (3)	0.65576 (17)	0.62169 (17)	0.0516 (7)	
H9A	0.4870	0.6454	0.6101	0.077*	
H9B	0.3716	0.6576	0.6765	0.077*	
H9C	0.3561	0.7059	0.5997	0.077*	
C11	0.16768 (7)	0.40599 (4)	0.38324 (4)	0.04963 (19)	
01	0.2652 (4)	0.40146 (17)	0.44882 (15)	0.0861 (8)	
O2	0.2631 (3)	0.42568 (17)	0.31962 (14)	0.0775 (7)	
03	0.0934 (4)	0.33385 (16)	0.3735 (2)	0.0996 (10)	
04	0.0700 (3)	0.47002 (17)	0.3996 (2)	0.1034 (11)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	<i>U</i> ¹³	<i>U</i> ²³
Cul	0.0301 (2)	0.0285 (2)	0.0316 (2)	0.00372 (15)	0.00700 (15)	-0.00055 (15)
N1	0.0297 (9)	0.0321 (9)	0.0329 (10)	-0.0021 (8)	0.0048 (8)	-0.0026 (8)
N2	0.0294 (9)	0.0301 (9)	0.0371 (10)	0.0012 (8)	0.0030 (8)	-0.0033 (7)
C1	0.0324 (12)	0.0490 (14)	0.0423 (13)	0.0026 (10)	0.0134 (10)	0.0010 (11)
C2	0.0400 (12)	0.0371 (12)	0.0361 (12)	-0.0021 (10)	0.0014 (10)	0.0054 (10)
C3	0.0397 (13)	0.0368 (12)	0.0410 (13)	0.0034 (10)	-0.0047 (10)	0.0049 (10)
C4	0.0437 (13)	0.0303 (11)	0.0489 (14)	0.0063 (10)	0.0034 (11)	0.0010 (10)
C5	0.0299 (11)	0.0416 (13)	0.0423 (13)	0.0068 (10)	0.0096 (10)	-0.0067 (10)
C6	0.068 (2)	0.083 (2)	0.0375 (15)	0.0095 (17)	0.0067 (14)	0.0124 (15)
C7	0.0481 (15)	0.0379 (14)	0.082 (2)	-0.0105 (12)	-0.0052 (15)	0.0052 (14)
C8	0.064 (2)	0.0592 (19)	0.075 (2)	0.0334 (16)	0.0099 (17)	0.0083 (16)
C9	0.0552 (16)	0.0449 (14)	0.0549 (16)	0.0080 (13)	-0.0023 (13)	-0.0181 (13)
C11	0.0419 (3)	0.0424 (3)	0.0646 (4)	-0.0072(3)	-0.0027 (3)	0.0043 (3)
01	0.100 (2)	0.0914 (19)	0.0664 (15)	-0.0083 (16)	-0.0196 (15)	0.0034 (14)
O2	0.0775 (16)	0.0961 (19)	0.0589 (13)	-0.0171 (14)	0.0028 (13)	0.0070 (13)
03	0.093 (2)	0.0633 (16)	0.143 (3)	-0.0362 (15)	0.0096 (19)	-0.0193 (17)
04	0.0609 (16)	0.0619 (15)	0.187 (3)	0.0083 (14)	0.0214 (19)	0.003 (2)

Atomic displacement parameters (\mathring{A}^2)

Geometric parameters (Å, °)

Cu1—N1	2.0270 (19)	C4—C8	1.530 (4)
Cu1—N1 ⁱ	2.0270 (19)	C4—H4	0.9800
Cu1—N2	2.0295 (19)	C5—C1 ⁱ	1.508 (4)
Cu1—N2 ⁱ	2.0295 (19)	C5—C9	1.518 (4)
Cu1—O1 ⁱ	2.831 (3)	С5—Н5	0.9800
Cu1—O1	2.831 (3)	C6—H6A	0.9600
N1—C1	1.486 (3)	C6—H6B	0.9600
N1—C2	1.505 (3)	C6—H6C	0.9600
N1—H1N	0.9100	C7—H7A	0.9600
N2C4	1.491 (3)	С7—Н7В	0.9600
N2—C5	1.499 (3)	C7—H7C	0.9600
N2—H2N	0.9100	C8—H8A	0.9600
$C1-C5^{i}$	1.508 (3)	C8—H8B	0.9600
C1—H1A	0.9700	C8—H8C	0.9600
C1—H1B	0.9700	С9—Н9А	0.9600
C2—C7	1.517 (4)	С9—Н9В	0.9600
C2—C3	1.527 (3)	С9—Н9С	0.9600
C2—C6	1.534 (4)	Cl1—O3	1.395 (2)
C3—C4	1.517 (3)	Cl1—O4	1.419 (3)
С3—НЗА	0.9700	Cl1—O2	1.439 (2)
С3—Н3В	0.9700	Cl1—O1	1.442 (3)
N1—Cu1—N1 ⁱ	180.000 (1)	НЗА—СЗ—НЗВ	107.0
N1—Cu1—N2	94.66 (7)	N2—C4—C3	110.66 (19)
N1 ⁱ —Cu1—N2	85.34 (7)	N2—C4—C8	111.0 (2)
N1—Cu1—N2 ⁱ	85.34 (7)	C3—C4—C8	108.7 (2)
N1 ⁱ —Cu1—N2 ⁱ	94.66 (7)	N2—C4—H4	108.8

Acta Cryst. (2013). C69, 689-695

N2—Cu1—N2 ⁱ	180.0	C3—C4—H4	108.8
N1—Cu1—O1 ⁱ	94.06 (8)	C8—C4—H4	108.8
N1 ⁱ —Cu1—O1 ⁱ	85.94 (8)	$N2-C5-C1^{i}$	105.40 (18)
$N2$ — $Cu1$ — $O1^i$	102.72 (9)	N2—C5—C9	112.7 (2)
$N2^{i}$ —Cu1—O1 ⁱ	77.28 (9)	C1 ⁱ —C5—C9	113.3 (2)
N1—Cu1—O1	85.94 (8)	N2—C5—H5	108.4
N1 ⁱ —Cu1—O1	94.06 (8)	C1 ⁱ —C5—H5	108.4
N2—Cu1—O1	77.28 (9)	С9—С5—Н5	108.4
N2 ⁱ —Cu1—O1	102.72 (9)	С2—С6—Н6А	109.5
O1 ⁱ —Cu1—O1	180.0	С2—С6—Н6В	109.5
C1—N1—C2	114.89 (18)	H6A—C6—H6B	109.5
C1—N1—Cu1	106.25 (15)	С2—С6—Н6С	109.5
C2—N1—Cu1	120.44 (14)	H6A—C6—H6C	109.5
C1—N1—H1N	104.5	H6B—C6—H6C	109.5
C2—N1—H1N	104.5	С2—С7—Н7А	109.5
Cu1—N1—H1N	104.5	С2—С7—Н7В	109.5
C4-N2-C5	114 40 (18)	H7A - C7 - H7B	109.5
C4 - N2 - Cu1	121 41 (15)	$C_2 - C_7 - H_7C$	109.5
$C_{1} = N_{2} = C_{11}$	108.07(14)	H7A - C7 - H7C	109.5
$C_4 = N_2 = C_{41}$	103.6	H7B C7 H7C	109.5
C_{-} N2 H2N	102.6	$\Pi/D = C/ = \Pi/C$	109.5
C_{11} N2 H2N	103.6	C4 C8 H8B	109.5
Cu1 12 12 112	103.0		109.5
NI = CI = UIA	109.00 (19)	$H\delta A = C\delta = H\delta B$	109.5
NI-CI-HIA	109.7	C4 - C8 - H8C	109.5
C5'-CI-HIA	109.7	H8A—C8—H8C	109.5
NI-CI-HIB	109.7	H8B—C8—H8C	109.5
C5'—C1—HIB	109.7	С5—С9—Н9А	109.5
H1A—C1—H1B	108.2	С5—С9—Н9В	109.5
N1—C2—C7	110.2 (2)	Н9А—С9—Н9В	109.5
N1—C2—C3	108.23 (19)	С5—С9—Н9С	109.5
C7—C2—C3	111.6 (2)	Н9А—С9—Н9С	109.5
N1—C2—C6	109.0 (2)	H9B—C9—H9C	109.5
C7—C2—C6	110.7 (2)	O3—C11—O4	112.60 (19)
C3—C2—C6	107.0 (2)	O3—C11—O2	113.16 (18)
C4—C3—C2	119.3 (2)	O4—C11—O2	110.55 (18)
C4—C3—H3A	107.5	O3—Cl1—O1	110.10 (19)
С2—С3—НЗА	107.5	O4—Cl1—O1	105.1 (2)
C4—C3—H3B	107.5	O2—C11—O1	104.72 (17)
С2—С3—Н3В	107.5	Cl1—O1—Cu1	132.38 (16)
N2—Cu1—N1—C1	165.81 (15)	C1—N1—C2—C6	62.7 (3)
N2 ¹ —Cul—Nl—Cl	-14.19 (15)	Cu1—N1—C2—C6	-168.19 (19)
Ol ¹ —Cul—Nl—Cl	62.68 (16)	N1—C2—C3—C4	70.6 (3)
01—Cu1—N1—C1	-117.32 (16)	C7—C2—C3—C4	-50.8 (3)
N2—Cu1—N1—C2	32.98 (17)	C6—C2—C3—C4	-172.1 (2)
$N2^{i}$ —Cu1—N1—C2	-147.02 (17)	C5—N2—C4—C3	178.52 (19)
O1 ⁱ —Cu1—N1—C2	-70.15 (17)	Cu1—N2—C4—C3	46.0 (3)
O1—Cu1—N1—C2	109.85 (17)	C5—N2—C4—C8	-60.8 (3)
N1—Cu1—N2—C4	-29.46 (18)	Cu1—N2—C4—C8	166.7 (2)

Acta Cryst. (2013). C69, 689-695

N1 ⁱ —Cu1—N2—C4	150.54 (18)	C2—C3—C4—N2	-67.7 (3)
O1 ⁱ —Cu1—N2—C4	65.77 (18)	C2—C3—C4—C8	170.2 (2)
O1—Cu1—N2—C4	-114.23 (18)	$C4-N2-C5-C1^{i}$	-179.7 (2)
N1—Cu1—N2—C5	-164.56 (15)	Cu1—N2—C5—C1 ⁱ	-41.1 (2)
N1 ⁱ —Cu1—N2—C5	15.44 (15)	C4—N2—C5—C9	-55.6 (3)
Ol ⁱ —Cu1—N2—C5	-69.33 (15)	Cu1—N2—C5—C9	83.0 (2)
O1—Cu1—N2—C5	110.67 (15)	O3—Cl1—O1—Cu1	166.2 (2)
$C2-N1-C1-C5^{i}$	177.8 (2)	O4—Cl1—O1—Cu1	-72.3 (3)
$Cu1$ — $N1$ — $C1$ — $C5^{i}$	42.0 (2)	O2-Cl1-O1-Cu1	44.3 (3)
C1—N1—C2—C7	-59.0 (3)	N1—Cu1—O1—Cl1	-33.1 (2)
Cu1—N1—C2—C7	70.1 (2)	N1 ⁱ —Cu1—O1—Cl1	146.9 (2)
C1—N1—C2—C3	178.7 (2)	N2—Cu1—O1—Cl1	62.6 (2)
Cu1—N1—C2—C3	-52.2 (2)	N2 ⁱ —Cu1—O1—Cl1	-117.4 (2)

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H…A
N1—H1 <i>N</i> ···O2	0.91	2.31	3.188 (3)	161
N2—H2 <i>N</i> ···O4	0.91	2.54	3.403 (3)	159
N2—H2 <i>N</i> ···O1	0.91	2.48	3.099 (3)	126
C7—H7A····O1 ⁱ	0.96	2.42	3.295 (4)	151

Symmetry code: (i) -x+1, -y+1, -z+1.

Comparison of reported structures having the same L ligand and similar chiral sites

CSD refode (Reference)	Space group	Cation (symmetry)	Sequence (type)
DEFJIH (Lee et al., 1985)	$P2_1/c$	$\operatorname{Cu}(\overline{1})$	RRRR–SSSS (1)
OCMENH (Ferguson <i>et al.</i> , 1990)	P2 ₁ /n	Ni (1)	RRRR-SSSS (1)
POTPUJ (Hazari et al., 1997)	$P2_1/c$	$\operatorname{Cu}(\overline{1})$	RRRR–SSSS (1)
QOPJIO (Horn et al., 2001)	P1	$\operatorname{Co}(\overline{1})$	RRRR–SSSS (1)
(I) (this work)	Pbca	$\operatorname{Cu}(\overline{1})$	RRRR–SSSS (1)
(II) (this work)	P1	$\operatorname{Cu}(\overline{1})$	RRRR–SSSS (1)
IDAQIP (Roy, Hazari, Barua & Tiekink, 2011)	Pbca	Zn (1)	SRRR-SSRS (2)
LIFHAJ (Choi & Suh, 1999)	P1	Zn (1)	SRRR-SSRS (2)
YAVFOS (Roy et al., 2012)	C2/c	Cd (1)	SRRR-SSRS (2)
BAQHAC (Choi et al., 1999)	P1	Ni (1)	RSSR-RSSS (3)
MAKPOF (Roy et al., 2010)	C2/c	Cd (1)	RSSR-RSSS (3)
ECUREA (Lin et al., 2006)	P2 ₁ 2 ₁ 2 ₁	Ni (1)	SSSR-SSRS (4)
(III) (Lin et al., 2006)	$P2_1/c$	Cu (1)	RRRS-SRSR (5)
EQOGIB (Roy, Hazari, Dey et al., 2011)	Pī	Zn (1)	RRSR-RSSS (6)
OCMENI (Ito et al., 1981)	P4 ₃ 2 ₁ 2	Ni (1)	SSSR-SSSR (7)
VIVSUO (Bembi et al., 1991)	$P2_{1}/c$	$\operatorname{Co}(\overline{1})$	SRSR-RSRS (8)