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Epidemic thresholds for bipartite networks
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It is well known that sexually transmitted diseases (STD) spread across a network of human sexual contacts.
This network is most often bipartite, as most STD are transmitted between men and women. Even though network
models in epidemiology have quite a long history now, there are few general results about bipartite networks. One
of them is the simple dependence, predicted using the mean field approximation, between the epidemic threshold
and the average and variance of the degree distribution of the network. Here we show that going beyond this
approximation can lead to qualitatively different results that are supported by numerical simulations. One of the
new features, that can be relevant for applications, is the existence of a critical value for the infectivity of each
population, below which no epidemics can arise, regardless of the value of the infectivity of the other population.
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I. INTRODUCTION

Mathematical models have been used to study the spread
of infectious diseases at least since the work of Bernoulli
in 1760. But it was only after the pioneering work of Ross,
and Kermack and McKendrick that the field of mathematical
epidemiology began to be considered as a serious alternative
for the prediction and control of infectious diseases [1,2].
The first models (still widely used today) were deterministic
models in which the population is divided into compartments
and the evolution of the number of individuals is given by
a set of differential equations. It is assumed that when an
infected individual interacts with a susceptible individual there
is a fixed probability that the disease is transmitted. The
models also need an assumption about the way in which
members of the different compartments can interact. The most
popular and simple assumption is the Law of Mass Action [3]
which, drawing an analogy with the movement of particles
in a gas, postulates that the probability that two individuals
meet is simply proportional to the product of the relative
populations of their respective compartments. This is also
known as homogeneous mixing. For diseases which confer
immunity (such as measles), or for which no cure is presently
known (such as AIDS), the simplest model is called a SIR
model because it has only three compartments: susceptibles
(S), infecteds (I), and removeds (R), corresponding either
to immune or dead individuals. If the disease does not
confer immunity, or if this immunity is rapidly lost (as is
the case for influenza or gonorrhea), the simplest possibility
is the SIS model, in which infected individuals become
susceptible after a certain amount of time (on average),
dependent on the disease at hand. The most remarkable feature
of these models is the existence of a threshold value for
the infectivity, such that the epidemic spread of the disease
depends on whether its infectivity is below or above this
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threshold. Even though adding compartments makes a model
more realistic, SIR and SIS models are still widely used.

As mentioned above, homogeneous mixing is achieved by
selecting at random from all the compartments the individuals
that are to interact. In general, however, real individuals can
interact only with a very limited set of the population. Thus,
one way to go beyond the homogeneous mixing assumption
is to consider that the members of the population form a
social network. The structure of such a network depends on
the disease being considered [4]. For example, for sexually
transmitted diseases the relevant structure of the population
is a bipartite graph representing the interactions between two
different groups, men and women (if homosexual interactions
are neglected) [5]. It has been shown that the SIR model
on networks is very closely related to the problem of bond
percolation [6,7] and can thus be solved using generating
functions, at least for networks without loops. On the other
hand, the SIS models on networks is equivalent to the contact
process on graphs [8] which, because of the possibility of
reinfection, is a much more difficult problem that has been
solved analytically only in a few cases. Thus, in this case
approximations can provide some useful insights. Probably the
simplest and best known is the mean field (MF) approximation
that leads to some interesting results. One example is the
simple relationship that exists between the network and the
epidemic threshold of the effective transmission rate, λc [1,9],
for SIS models:

λc = k

k2
, (1)

where k is the average of the degree distribution of the network,
and k2 the average of the squared degree. Interestingly, a
similar result holds for SIR models in networks [7]:

λc = k

k2 − 2k
. (2)

For sexually transmitted diseases it is well known that in
general the rate of infection is different for men and women [1].
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Using a mean field approach an equation can be found for the
critical value of both effective rates for SIS models in bipartite
networks [10]:

λMλF = kM kF

k2
M k2

F

, (3)

where the subindices M and F denote that the corresponding
quantities are calculated within the male and female popula-
tions. For SIR models the equation for the critical values is [7]

λMλF

(λM + 1)(λF + 1)
= kM kF(

k2
M − kM

)(
k2
F − kF

) ≡ λ2
SIR. (4)

Equations (3) and (4) define rectangular hyperbolas in
(λM,λF ) space. Both are symmetric, with asymptotes at λM =
λ∗ and λF = λ∗. The main difference between the models lies
in the position of the asymptotes: whereas for the SIS model
λ∗

SIS = 0, for the SIR model we have λ∗
SIR = λ2

SIR/(1 − λ2
SIR).

An important consequence of this is that in a SIR model
it is possible to avoid the epidemic spread of a disease by
acting on only one population because, if the infectivity of
that population is lowered below λ∗, an epidemic becomes
impossible, regardless of the infectivity of the other population.
According to Eq. (3) this would not be possible for diseases
of SIS type. However, it is well known that in some cases
the results obtained using the mean field approximation can
be qualitatively wrong. For instance, whereas Eq. (1) gives a
positive epidemic threshold for a contact process on a network
with a power law degree distribution if α > 2, it has been
shown rigorously that in fact the epidemic threshold vanishes
for all values of α [11,12].

In the next sections we show that when the thresholds for
bipartite networks are calculated with an approximation that
goes beyond mean field the result is qualitatively different
to Eq. (3). Our results suggest that for SIS models λ∗

SIS is
always a positive number, and that, unlike the result for SIR
models, it can have different values for men and women.
Even though these results are not exact, numerical simulations
seem to confirm their validity. In Sec. II we present the
model and the approximation used, and we analyze the case
of a regular bipartite network. In Sec. III we extend these
results to a network with an arbitrary degree distribution
and no assortativity. In the last section we draw some
conclusions. As in the rest of this paper only the SIS model is
analyzed, in the following the subindices that specify the model
(SIS or SIR) will be dropped.

II. PAIR APPROXIMATION FOR REGULAR
BIPARTITE NETWORKS

We consider a population of two types of agents, M (males)
and F (females), placed on the vertices of a bipartite network,
so that members of one group have only members of the other
group as neighbors. Infected M and F individuals can transmit
the disease to its neighbors at a rate βM and βF , respectively,
and they recover from the disease with rates γM and γF . The
probability Pt (I x

M ) that, at time t , the male at site x is infected

satisfies the equation:

Ṗt

(
I x
M

) = −γMPt

(
I x
M

) + βF

∑
y∈nx

Pt

(
I

y

F Sx
M

)
, (5)

where Pt (I
y

MSx
F ) is the probability that the female at site x and

the male at site y are infected and susceptible, respectively.
The sum runs over all the sites that are neighbors of site x. To
obtain the corresponding equation for Pt (I x

F ), M and F must be
swapped in Eq. (5). Because S and I are the only two possible
states, we have Pt (I x

M ) + Pt (Sx
M ) = Pt (I x

F ) + Pt (Sx
F ) = 1. The

single site and pair probabilities are related by equations
like Pt (I

y

MSx
F ) + Pt (I

y

MIx
F ) = Pt (I

y

M ), with the corresponding
permutations of indices and states. For the pair probabilities
the evolution equations are:

Ṗt

(
I

y

MSx
F

) = γF Pt

(
I

y

MIx
F

) − γMPt

(
I

y

MSx
F

) − βMPt

(
I

y

MSx
F

)
+βF

∑
z �=y

Pt

(
Sx

F S
y

MI z
F

) − βM

∑
z �=y

Pt

(
I

y

MSx
F I z

M

)

Ṗt

(
S

y

MSx
F

) = γF Pt

(
S

y

MIx
F

) + γMPt

(
I

y

MSx
F

)
−βM

∑
z �=y

Pt

(
I z
MSx

F S
y

M

) − βF

∑
z �=y

Pt

(
I z
F S

y

MSx
F

)
,

(6)

where we now have triplet probabilities such as Pt (I
y

MSx
F Sz

M )
that represents the probability that the female at site x

and the males at sites y and z (both connected to x)
are susceptible, infected and susceptible, respectively. The
equation for Pt (Sx

MI
y

F ) is obtained from Eqs. (6) by swapping
the indices M and F , and Pt (I x

MI
y

F ) is obtained from the nor-
malization condition: Pt (Sx

MI
y

F ) + Pt (Sx
MS

y

F ) + Pt (I x
MS

y

F ) +
Pt (I x

MI
y

F ) = 1.
We begin our analysis by considering the case of a regular

bipartite network, where all males have kM female neighbors
(i.e., partners) and all females have kF male neighbors (which
implies that NF and NM must satisfy kMNM = kF NF ). If we
assume that the system is homogeneous, in the sense that the
probabilities do not depend on the sites involved, we can drop
the site indices and the equations become:

Ṗt (IM ) = −γMPt (IM ) + βF kMPt (IMSF )

Ṗt (IMSF ) = γF Pt (IMIF ) − (γM + βM )Pt (IMSF )

+βF (kM − 1)Pt (SF SMIF )

−βM (kF − 1)Pt (IMSF IM ) (7)

Ṗt (SMSF ) = γF Pt (SMIF ) + γMPt (IMSF )

−βM (kF − 1)Pt (IMSF SM )

−βF (kM − 1)Pt (IF SMSF ).

To avoid considering also the equations that correspond to
the evolution of triplets, it is necessary to choose an ansatz
for the relationship between pair and triplet probabilities. The
most often used ansatz is

Pt (IMSF SM ) = Pt (IMSF )Pt (SF SM )

Pt (SF )
, (8)

with analogous formulas for the other triplets. This is known
as the pair approximation (PA) [13–15]. As we are here
mostly interested in steady state properties, in the following
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we will drop the temporal dependencies from all quantities. Using the PA, the system of four equations for the pair
probabilities [Eqs. (7) with their left-hand sides set to 0] can be reduced to a system of two equations for the fraction of infected
M and F individuals nF = (kF βM/γF )P (IMSF ) and nM = (kMβF /γM )P (SMIF ):

0 = −(γM (1 + λM )(1 − nF ) + γF nF )
(1 − nF )2γF nF

γMλM

+ γMnM (1 − nF )(1 − nM )

(
kF − γF nF

γMλM

− γMβnM

γF λF

)

+ γF (1 − nM ) − γMnM

γM + γF

[
(1 − nF )γ 2

Mβn2
M

γF λF

γ 2
F (1 − nM )n2

F

γMλM

+ (1 − nF )(1 − nM )(γF nF + βγMnM )

]
, (9)

where β = kF /kM and λF and λM are the effective transmis-
sion rates, defined as λF = βF /γF and λM = βM/γM . The
remaining equation is obtained from Eq. (9) by swapping M

and F and replacing β by 1/β.
For unipartite networks it has been shown [15] that this

approximation provides a significant improvement in the
agreement between theory and numerical stochastic simula-
tions. Figure 1 shows that this is also the case for bipartite
networks. In particular, the figure shows that the approximation
for the epidemic threshold is much better than the one provided
by MF. To calculate explicitly the epidemic threshold we use
the standard method of linearizing the steady state equations
[Eqs. (7)]. The linearized equations can be compactly written
in matrix form as

0 = MP, (10)

where P = [P (IMSF ),P (SMIF )] and

M =
( −γF (1 + λF γ ) λM (kF − γ )

λF (kM − 1 + γ ) −γM (1 + λM (1 − γ ))

)
(11)

where γ = γF /(γF + γM ). The relationship between the crit-
ical values for the infectivities is obtained by imposing the
condition that the determinant of M vanishes. This gives(

1

λF

+ γ

)(
1

λM

+ 1 − γ

)
= (kF − γ )(kM + γ − 1).

(12)

0 0.2 0.4 0.6 0.8
λM

0.0

0.2

0.4

0.6

0.8

ni γF=γM=1 λF=10
N=10000
N=900
Mean field
Pair approximation

FIG. 1. Fraction of the population that is infected, in the steady
state, for a regular bipartite network with kF = kM = 3. The curves
give the predictions of the mean field (dashed) and the pair
approximation (full). The points represent the average fraction of
infecteds obtained from 100 simulations of an epidemic process in
networks with 20 000 (triangles) and 1800 (circles) individuals.

Figure 2 shows that the PA provides a much better
approximation to the simulation results than the MF. For the
sake of comparison we also show the results of numerical
simulations of a SIR epidemic in the same network and
with the same infectivities, together with the theoretical curve
obtained within the generating functional formalism [7], which
is generally held to be in good agreement with simulations.
The figure shows that the PA curve is above the MF curve
in the whole range. From Eq. (12) it can be demonstrated
that this is also the case for all values of kF , kM , and γ .
There are also some important qualitative differences between
the predictions of MF and PA. One of them is that the
dependence on the recovery rates is not restricted to a rescaling
of the infectivities, because γ appears explicitly in Eq. (12).

Another significant difference is the presence of nonvanish-
ing horizontal and vertical asymptotes. This has the important
consequence that an epidemic can be avoided by acting on only
one population. Note that in the MF scenario this is not the
case: If the infectivity of one population is lowered, the system
can enter an epidemic-free region but only if the infectivity of
the other group is small enough. In the PA scenario there
are critical values for both infectivities, below which no
epidemic is possible, no matter how large the infectivity of
the other group. These values, defined by the asymptotes to

0 0.2 0.4 0.6 0.8
λM

0

5

10

λ F

SIS
γΜ=4γF
γM=γF
γF=4γM

SIR
γF=4 γM
γM=γF
γM=4 γF

FIG. 2. Epidemic thresholds for a regular bipartite network with
kf = km = 3. Full curves correspond to mean field predictions for
SIS (left) and SIR (right) epidemics. The other curves correspond,
from left to right, to the prediction of the PA for γ = 1/5, γ = 1/2,
γ = 4/5. The position of the asymptotes is shown by a vertical arrow
to the left of each curve. The points represent the thresholds obtained
from simulations of an epidemic process in a network with 20 000
males and 20 000 females. They are given by the infectivities for
which the average number of infecteds is ≈1/

√
N (N = 40 000).
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D. G. HERNÁNDEZ AND S. RISAU-GUSMAN PHYSICAL REVIEW E 88, 052801 (2013)

the rectangular hyperbola of Eq. (12) are

λ∗
F = 1 − γ

kMkF − γ kM − (1 − γ )kF
(13)

λ∗
M = γ

kMkF − γ kM − (1 − γ )kF

.

Note that λ∗
M is an increasing function of γ , whereas λ∗

F is a
decreasing function of γ .

So far the distinctive features of the PA approximation have
only been shown for a very simple regular network. In the next
section we show that, even though the calculations are less
straightforward, the same qualitative features can be shown to
appear when the approximation is applied to bipartite networks
with an arbitrary distribution of contacts.

III. GENERALIZATION TO ARBITRARY
DEGREE DISTRIBUTIONS

In this section we consider a connected bipartite network
where the agents in each group can belong to different
subgroups with different connectivity properties. For example,
one subgroup could be the husbands (or wives), i.e., people
having only one partner that in turn has no other partner,
which would be different to the subgroup of people connected
with one sex worker (i.e., individuals having a very large
number of partners). Note that networks with the same degree
distributions might have different divisions into subgroups.
The relationship between subgroups is characterized by the
numbers NF

ij (NM
ij ), which give for a female (male) of group i,

the number of partners belonging to subgroup j . For the sake
of clarity, female subgroups are indicated by even numbers
and male subgroups by odd numbers.

Even though the generalization of Eqs. (5), (6), and (7)
for this case is straightforward, it is in general not possible
to obtain analytical results for the evolution of the fraction of
infected individuals in the population. However it is possible
to study the epidemic threshold and to obtain some general
results. For this we turn to the linearization of the full set
of equations [i.e., the generalization of Eq. (9)] using the
PA, obtaining the same equation as in the previous section
[Eq. (10)], but with a different matrix. In the general case, the
matrix M can be written as

M =
(−γF (1 + λF γ )) I γMλMAF

γ

γF λF AM
γ −γM (1 + (1 − γ )λM ) I

)
. (14)

The matrices AF
γ and AM

γ have dimension cF cM × cF cM ,
where cF (cM ) is the number of different connectivities of
the degree distribution of women (men), and are defined as
AF

γ = AF − γ I and AM
γ = AM − (1 − γ )I. AF and AM only

depend on the network, and are defined as:

AF = C
[
D

(
NF

21,N
F
41, . . .

)
,D

(
NF

23,N
F
43, . . .

)
, . . .

]
(15)

AM = D
[
C

(
NM

12 ,NM
14 , . . .

)
,C

(
NM

32 ,NM
34 , . . .

)
, · · · ],

where C(X1,X2, . . .) is a singular block matrix where X1 is
repeated in all the blocks of the first column, X2 in all the blocks
of the second column, etc., and D(X1,X2, . . .) is a diagonal
block matrix whose diagonal blocks are X1, X2, etc. As in the
previous section, the equation for the critical values of λF and
λM is obtained by setting the determinant of M to 0. Using

Schur complements [16], it is straightforward to check that
this is equivalent to solving the equation

0 = det
[
λMλF AM

γ AF
γ − (1 + λF γ )(1 + (1 − γ )λM )I

]
, (16)

which, in turn, is equivalent to solving an eigenvalue equation.
Thus, the critical equation for the infectivities can be written
as: (

1

λF

+ γ

)(
1

λM

+ 1 − γ

)
= μ, (17)

where μ is the largest eigenvalue of the matrix AM
γ AF

γ . This
describes a hyperbola whose asymptotes are

λ∗
F = 1 − γ

μ − γ (1 − γ )
(18)

λ∗
M = γ

μ − γ (1 − γ )
.

The fact that all NF
ij and NM

ij are natural numbers implies
that, for all values of γ , both AF

γ and AM
γ are nonnegative

matrices, whose product is a primitive matrix. Furthermore,
it can be shown that, for all networks, μ � γ (1 − γ ), which
implies that there always exists a pair of critical values for the
infectivities.

Unfortunately, in most empirical studies, in the form of
surveys on sexual behavior, detailed information for the
connectivity between subgroups is not available. Furthermore,
in general only the degree distribution is available. In this case
each subgroup i of men and women has a different connectivity
kM
i or kF

i , and it is necessary to propose an ansatz for the
quantities NF

ij and NM
ij . Note that any ansatz must satisfy the

identities NM
ij kM

i = NF
jik

F
j . The most natural ansatz is to as-

sume that, even though it has a prescribed degree distribution,
the network is otherwise random. In this case, we have:

NF
ij = kF

i kM
j

kF

nF
i

(19)

NM
ij = kM

i kF
j

kM

nM
i ,

where kF and kM are the average number of contacts for
females and males, respectively, and nF

i and nM
i are the

fraction of females and males in group i, respectively. In this
case, the matrices AF and AM have simpler expressions:

AF = (kM kF )−1C
[
kM

1 nM
1 ,kM

3 nM
3 , . . .

] ⊗ D
[
kF

2 ,kF
4 , . . .

]
AM = (kM kF )−1D

[
kM

1 ,kM
3 , . . .

] ⊗ C
[
nM

2 kF
2 ,nF

4 kF
4 , . . .

]
,

(20)

where ⊗ denotes the Kronecker matrix product. It is straight-
forward to show that the largest eigenvalue of the positive

matrix AMAF is 〈k2
M 〉〈k2

F 〉
〈kM 〉〈kF 〉 . On the other hand the matrix AM

γ AF
γ

is componentwise smaller than AMAF , which implies [16] that

μ <
〈k2

M 〉〈k2
F 〉

〈kM 〉〈kF 〉 . In turn, this implies that the curve given defined
by Eq. (17) is always above the curve defined by Eq. (3).

It is important to note that in the ansatz used, Eq. (19),
the quantities obtained are in general not natural numbers.
This does not change any of the features mentioned, unless
the numbers obtained are smaller than 1. In this case the
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matrix may not be positive for all values of γ and the largest
eigenvalue could even be negative. In order to avoid this,
the formalism should be modified in some way. We have
chosen the most obvious one, which is simply to set to 0
all negative components of the matrices AF

γ and AM
γ . The

product of the resulting matrices is again componentwise
smaller than AMAF , and thus the curves obtained for the
critical infectivities are always above the corresponding curve
for the MF.

To test this approximation we apply it to a real network,
obtained from data from the National Survey of Sexual
Attitudes (NATSAL 2000) [17,18], conducted in Britain in
2000. Note that given the ansatz of random connectivity, we
have to “extract” the connected part of the network, which
usually has a different degree distribution. For example, in
general there is an important fraction of the population that
reports only one partner, which implies the existence of many
couples, which, by definition, are not connected to the main
component of the network. Thus, these individuals (and some
others) must be removed from the network in order to obtain
the connected component. An additional problem that arises
in the analysis of data obtained in sexual behavior surveys
is the inconsistency between the reported number of sexual
partners of men and women. More specifically, the number
of female partners reported by men usually [19] is larger
than the number of male partners reported by women. Many
different hypothesis have been advanced to account for this
effect. If these data are to be used for a model, they have
to be corrected to make both degree distributions consistent,
which implies choosing one of the many explanations that
exist [20]. As our purpose here is only to test the accuracy of the
pair approximation, we have chosen the hypothesis of women
underreporting, which provides one of the simplest corrections
to the data. Thus, we modify the partner distribution of
women by randomly augmenting the number of contacts of
females until their total number of contacts is the same as
the total reported by men. Afterwards, to build a plausible
degree distribution for the connected part of this network,
we have used only the individuals with degrees larger than
1, rescaling the distribution accordingly. This ensures that
the resulting degree distribution corresponds to a connected
random bipartite network [21]. The cumulative distributions
of contacts obtained is shown in the inset of Fig. 3.

Once the degree distributions of the connected part of the
network have been obtained, μ can be calculated, and the
curves for the epidemic thresholds can be drawn. In Fig. 3 we
compare the results from a numerical simulation of the spread
of an STD in a network as the one mentioned above, with the
theoretical prediction obtained by using the mean field and
pair approximations. We show the case of identical values of
the recovery rates, and also the case where the recovery rate
for men is four times larger than the rate for women, which is
close to the relationship between the values used in models of
gonorrhea transmission [22,23]. The figure also displays the
curve that results when this relationship is inverted, in order to
show the asymmetry between men and women. We see that,
as happens in the case of a regular network, the PA provides
a more accurate prediction than MF. It is important to note
that in this case the dependence of the thresholds on γ is even
stronger than predicted by the PA.

0 0.1 0.2
λM

0

0.5

1

1.5

2

λ F

γM=4γF
γM=γF
γF=4γM

100 101 10210-4

10-3

10-2

10-1

100

M
F

FIG. 3. Epidemic thresholds for a bipartite network obtained from
data from NATSAL. The cumulative degree distributions for males
(M) and females (F) are shown in the inset. The full curve in the
main figure corresponds to the MF prediction. The other curves
correspond, from left to right, to the prediction of the PA for γ = 1/5,
γ = 1/2, γ = 4/5. The points represent the thresholds obtained from
simulations of an epidemic process in a network with 13 000 males
and 20 000 females. They are given by the infectivities for which the
average number of infecteds is ≈1/

√
N (N = 33 000).

IV. CONCLUSIONS

The importance of understanding the spread of sexually
transmitted diseases in sexual networks can hardly be over-
estimated. Furthermore, perhaps the most important type of
network in this regard are bipartite networks, because they are
necessary to model those diseases that are transmitted between
men and women. However, very few general results are known
for the spread of STD on such networks, and they are in
general obtained using the mean field approximation. Thus,
it is important to see whether such results can be improved (at
least in terms of accuracy) using a different approach. One of
the possible ways to go beyond the mean field approach is to
use the pair approximation.

In the previous sections we have shown that the pair
approximation provides better predictions not only in a
quantitative but also in a qualitative sense. In (λM,λF ) space,
MF gives a critical curve (i.e., a curve that separates the parts
of the space where the endemic state is stable or not) which is a
rectangular hyperbola with asymptotes at λ∗

M = 0 and λ∗
F = 0.

On the other hand, the PA also gives a hyperbola but with
asymptotes at nonvanishing values of the infectivities, λ∗

M > 0
and λ∗

F > 0. If this was true for real systems, it would have
the important consequence that, by lowering the infectivity of
only one population below a critical value (λ∗

M or λ∗
F ), it would

be possible to arrive at a disease free state, independently of
the infectivity of the other population. This situation is not
possible in the MF approach. Numerical simulations seem to
confirm that such critical values do exist.

The other qualitatively different prediction concerns the
effects of the duration of the disease on the spread of it.
MF predicts that the epidemic threshold depends only on the
quotient of the infectivity and the recovery rate. In other words,
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a shorter duration of the disease in any population should
be equivalent to a proportionally smaller infectivity. In the
PA approximation this does not hold, and consequently, for
different recovery rates the critical hyperbolas are different
even when the infectivities are rescaled by the recovery rates.
This is also seen in numerical simulations, in which the
difference seems to be even larger than predicted by the PA.

The differences mentioned also imply that the role that the
network plays is more important in the PA. To see this, note
that in the MF approach the critical values do not change if men

and women are “swapped” in the network. On the other hand,
in the PA swapping is not enough, and the network must be
rescaled for the situation to be epidemiologically equivalent.

All these features justify the use of the PA to make better and
more accurate predictions. Here we have assumed that only the
degree distribution of the sexual network is known. However,
the PA is best suited for the case when more information is
available about the network. Thus, it provides a useful tool to
study the spread of epidemics in bipartite assortative networks,
which are generally more realistic.

[1] R. M. Anderson and R. M. May, Infectious Diseases of Humans
(Oxford University Press, Oxford, UK, 1991).

[2] O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemi-
ology of Infectious Diseases (Wiley, Chichester, 2000).

[3] H. Heesterbeek, in Ecological Paradigms Lost: Routes of Theory
Change, edited by K. Cuddington and B. Beisner (Elsevier,
Amsterdam, 2005).

[4] M. J. Keeling and K. T. D. Eames, J. R. Soc. Interface 2, 295
(2005).

[5] M. Kretzschmar, Sexually Transmitted Diseases 27, 627
(2000).

[6] E. Kenah and J. M. Robins, Phys. Rev. E 76, 036113
(2007).

[7] M. E. J. Newman, Phys. Rev. E 66, 016128 (2002).
[8] T. M. Liggett, Stochastic Interacting Systems: Contact, Voter

and Exclusion Processes (Springer, Berlin, 1999).
[9] R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 86, 3200

(2001).
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