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We analyze a universe filled with interacting dark matter, a scalar field accommodated as dark
radiation along with dark energy plus a decoupled radiation term within the framework of spatially
flat Friedmann-Robertson-Walker (FRW) spacetime. We work in a three-dimensional internal space
spanned by the interaction vector and use a transversal interactionQt for solving the source equation
in order to find all the interacting component energy densities. We asymptotically reconstruct the
scalar field and potential from an early radiation era to the late dominate dark energy one, passing
through an intermediate epoch dominated by dark matter. We apply the χ2 method to the updated
observational Hubble data for constraining the cosmic parameters, contrast with the Union 2 sample
of supernovae, and analyze the amount of dark energy in the radiation era. It turns out that our
model fulfills the severe bound of Ωφ(z ≃ 1100) < 0.018 at 2σ level, is consistent with the recent
analysis that includes cosmic microwave background anisotropy measurements from the Atacama
Cosmology Telescope and the South Pole Telescope along with the future constraints achievable by
Planck and CMBPol experiments, and satisfies the stringent bound Ωφ(z ≃ 1010) < 0.04 at 2σ level
in the big-bang nucleosynthesis epoch.
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I. INTRODUCTION

Accurate observational tests confirm that the universe
is currently speeding up due to a gravitationally repul-
sive unknown agent called dark energy and it contributes
nearly 70% of the total energy of the universe [1]. The
first evidence in favor of dark energy stems from measure-
ment of brightness-redshift relation of supernovae (SNe)
type Ia pointing out these exploding stars can be used as
standard candles for tracing a big portion of the cosmic
evolution of the universe [2]. Cosmic microwave back-
ground (CMB) anisotropies [3] are another observational
data that have provided strong indirect evidence in fa-
vor of dark energy along with the fact that the spatial
geometry of the universe is very close to being flat [3].
At present, there is a growing number of observational
methods for probing the dynamical behavior of dark en-
ergy at different scales, for example, galaxy redshift sur-
veys allow to obtain the Hubble expansion history by
measurement of baryon acoustic oscillation (BAO) in
the galaxy distribution [1], the geometric weak lensing
method applied to Hubble space telescope images helps
to find tighter constraints on the dark energy equation of
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state also [4]. A second key element in modern cosmol-
ogy is dark matter, its origin is simple and comes from
the need to understand the observed mismatch between
gravitational mass and the visible mass of galaxies or
clusters of galaxies [1], [5], [6]. Since galaxy clusters are
the largest structures in the universe that have undergone
gravitational collapse these are considered as a remark-
ably useful window for testing the content matter of the
universe; then the main astrophysical evidences for dark
matter come form colliding galaxies, gravitational lens-
ing of mass distribution or power spectrum of clustered
matter [6]. The aforesaid astrophysical observations also
suggest that dark matter is a substantial non-baryonic
(invisible) component representing nearly 25% of the to-
tal energy-matter of the universe [6] and the major agent
responsible for the large-structure formation in the uni-
verse [1], [5]. Even though we found the incredible role
that dark matter has played for resolving the riddle of
missing mass since its discovery by Zwicky in 1933 [7],
one open issue is a microscopic theory for describing dark
matter, actually many theoretical physics have claimed
that dark matter could be probably a new heavy weakly
interacting particle unable to be detected by particle ac-
celerator or cosmic rays experiments[5].

A natural question is whether dark matter and dark
energy can exchange energy between them, and if they
do, if such transfer of energy could alter the cosmic his-
tory, leaving testable imprints in the universe [8]. It is
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believed that a coupling between dark energy and dark
matter changes the background evolution of the dark sec-
tor allowing to constrain any type of interaction and giv-
ing rise to a richer cosmological dynamics compared with
non-interacting models [8]. A step forward for constrain-
ing dark matter and dark energy is to use the physic be-
hind recombination or big-bang nucleosynthesis epochs
by adding a decoupled radiation term to the dark sector
for taking into account the stringent bounds related to
the behavior of dark energy at early times [16], [17]. An-
other appealing possible way to extend the insight about
the dark matter-dark energy interacting mechanism is to
explore a bigger picture in which a third component is
added [10], [11],[12],[13], [14], [15].

Recently, the authors have explored the behavior of a
cosmological scenario in which a spatially flat FRW uni-
verse contains three interacting components, i.e., dark
energy, dark matter, and dark radiation [9] plus a de-
coupled radiation term. Here, we follow Ref. [9] and
develop a model with a transversal interaction propor-
tional to a linear combination of the total energy density
and its derivative up to third order. We perform a cos-
mological constraint using the updated Hubble data [18]
of 29 points, the severe bounds for dark energy at early
times [30], [32] in the recombination era or nucleosyn-
thesis epoch [41], [42], compare the theoretical distance
modulus µ(z) with the Union 2 compilation of supernovae
Ia [48] but we also compare our constraints on cosmo-
logical parameters with the bounds reported by Planck
measurements [49] and WMAP-9 project [50] . We will
use units such that 8πG = 1 and signature for the metric
of the spacetime is (−,+,+,+).

II. THE MODEL

We consider a spatially flat homogeneous and isotropic
universe described by FRW spacetime with line element
given by ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) being a(t)
the scale factor. The universe is filled with a matter com-
ponent interacting with a scalar field, they have energy
densities ρm and ρφ, respectively, plus a decoupled com-
ponent ρr, so that the evolution of the FRW universe is
governed by the Friedmann and conservation equations,

3H2 = ρt = ρm +
1

2
φ̇2 + V (φ) + ρr, (1)

ρ̇+ 3H(ρm + φ̇2) = 0, (2)

ρ̇r + 3Hγrρr = 0, (3)

where H = ȧ/a is the Hubble expansion rate and

ρ = ρm +
1

2
φ̇2 + V (φ), (4)

includes all dark components, so ρt = ρ + ρr. Because
of the additivity of the stress-energy tensor we identify

the scalar field with a fluid having energy density and
pressure

ρφ =
1

2
φ̇2 + V (φ), pφ =

1

2
φ̇2 − V (φ), (5)

and describe it as a mix of two fluids, namely, ρsm = φ̇2/2
and ρv = V (φ), with equations of state psm = ρsm and
pv = −ρv respectively. We assume that the equations of
state have the barotropic form pi = (γi− 1)ρi, where the
constants γi indicate the barotropic index of each com-
ponent being i = v,m, sm, r, so γv = 0, γm = 1, γsm = 2
and γr will be estimated later on. Then, ρv plays the role
of some kind of vacuum energy, ρm represents a pressure-
less matter component, while ρsm can be associated with
stiff matter.

Even in the absent of the matter component, we ob-
serve from Eq. (2) that the two fluids in which the scalar
field was split are interacting. In fact, we have

ρ′v = Q (6)

ρ′sm + 2ρsm = −Q, (7)

where we have introduced the variable η = ln(a/a0)
3,

with a0 the present value of the scale factor, ′ ≡ d/dη,
and the interaction term 3HQ, which describes the en-
ergy transfer between these components, so we find that
Q = dV (φ)/dη is an intrinsic interaction, between the po-

tential V (φ) and the corresponding kinetic energy 1/2φ̇2,
which leads to the ordinary Klein-Gordon equation

φ̈+ 3Hφ̇+ V ′(φ) = 0, (8)

after summing the last two equations.
When additionally the matter interacts with the scalar

field, we introduce the three interaction terms 3HQv,
3HQm, and 3HQsm, so that the conservation equation
(2) is split into three balance equations

ρ′v = Qv, (9)

ρ′m + ρm = Qm, (10)

ρ′sm + 2ρsm = Qsm, (11)

where the interaction terms satisfy the condition

Qv +Qm +Qsm = 0, (12)

to recover the whole conservation equation

ρ′ = −ρm − 2ρsm. (13)

In this scalar field model, we have a mix of interacting
vacuum energy, ordinary matter and stiff matter, where
the vacuum energy and stiff fluid are accommodated as
a scalar field, its dynamic being governed by a modified
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Klein-Gordon (MKG) equation, easily obtained from the
first derivative of ρφ along with the help of Eq. (10):

φ̈+ 3Hφ̇+ V ′(φ) =
−3HQm

φ̇
. (14)

Essentially, this is an interesting model to describe a uni-
verse which transits between a dominated stiff matter
era at early times and a de Sitter scenario at late times.
However, our goal in this paper is to construct a more
realistic cosmological model where the dynamic of the
universe is controlled by an early radiation-dominated
era. Next, the radiation becomes subdominant with the
Universe entering the dark matter era and subsequently
followed by a final stage where dark energy dominates
at late times. This realistic model can be achieved by
means of a coupling between the three components, as
can be noticed from Eqs. (9)-(11). In fact, there we have
assumed constant barotropic indeces for the three com-
ponents (γv, γm, γsm) = (0, 1, 2), however, the exchange
of energy between them alters their own characteristics
because the interaction terms Qi modified those initial
values of (γv, γm, γsm), so that the effective barotropic
indeces become (−Qv/ρv, 1−Qm/ρm, 2−Qsm/ρsm), ac-
cording to Eqs. (9)-(11). This allows us to choose an
adequate set of interaction terms Qi to modify the initial
barotropic indexes, in a sense that the three interacting
components represent radiation, dark matter and dark
energy respectively. To this end we adopt a transversal
interaction Qt between the three components.

Let us accommodate the interaction terms Qi as the
components of a vector Q = (Qv, Qm, Qsm) which lives
on the interaction plane defined by Eq. (12). Thus,
we introduce a three-dimensional internal space with an
orthonormal vector basis {et, eo,n} and set the coordi-
nate origin at the intersection of the plane (12) with the
barotropic index vector γ = (γv, γm, γsm). The pair of
vectors {et, eo} is contained in the interaction plane, et
is orthogonal to the vector γ, the orthogonal projection
of the vector γ on the interaction plane defines the direc-
tion of eo and n is orthogonal to the interaction plane,
meaning that Q = qt et + qo eo, where qt and qo are the
components of the interaction vectorQ on the plane (12).

With et the unique vector of the basis orthogonal to
the vector γ, we select only those interactions which
are collinear with the aforesaid preferred direction in the
plane (12) Qt = qt et which will be called “transversal
interaction”, ensuring that γ · Q = 0. In our case, the
vector barotropic index is γ = (0, 1, 2) and the transver-
sal interaction becomes

Qt = (1,−2, 1)Qv. (15)

In the following we will see that the transversal character
of the interaction vector (15) will simplify enough the
algebra of the model for more details see Ref. [9]. For
instance from the transversal interaction (15) we have
Qsm = Qv, then inserting it in Eq. (11) we obtain

ρ′sm + 2ρsm = Qv, (16)

Now, if we compare the scalar field interacting with an
intrinsic interaction Q in absence of dark matter, repre-
sented by Eqs. (6) and (7), with the same scalar field
in presence of an explicit transversal interaction between
this component and dark matter see Eqs. (9) and (16),
then we conclude that the potential is not modified by
the transversal interaction because Eqs. (6) and (9) have
the same meaning: that Q = Qv , however, the kinetic
energy is strongly affected as can be seen from Eqs. (7)
and (16). In fact, both equations are not the same unless
we make the transformation ρsm → −ρsm, in this case
the kinetic term changes its sign and the scalar field be-
comes imaginary. Besides, from the equations of state
of the kinetic energy, psm = ρsm, we reach the conclu-
sion that the pressure simultaneously changes its sign
psm → −psm as a consequence of the interaction between
the dark fluid components. Interestingly, the change of
sign of the kinetic energy does not emerge when the flat
Friedmann universe crosses a soft singularity as occurs
for the tachyon fields [53] because both, the associated
pressure psm and the kinetic energy ρsm diverge simulta-
neously according to psm = ρsm. Actually this is not a
serious difficulty because we will see below that the lin-
ear transversal interaction makes the energy density of
the scalar field ρφ = φ̇2/2 + V (φ) be positive definite.
An important consequence of this result also can be ex-
tracted from Eqs. (9) and (15), after combining them
we reach Qm = −2Qv = −2ρ′v = −2(dV/dφ) (dφ/dη) =
−2(dV/dφ) (dφ/3Hdt). Thus, the MKG equation (14)
becomes

φ̈+ 3Hφ̇− V ′(φ) = 0, (17)

showing that the transversal interaction changes the sign
in the derivative of the potential of the ordinary KG equa-
tion. In other words we have found the explicit transver-
sal interaction

−3HQm

φ̇
= 2

dV

dφ
, (18)

which modifies the behavior of the scalar field. The
idea of the gradient of the potential generating an in-
teraction between the two perfect fluids, as was men-
tioned above, is not new and it was analyzed in the
literature a long time ago (see e.g. [19] and reference
therein). In order to link our formalism of interacting
three components with the standard proposal examined
within the framework of interacting dark sector we must
identify the exchange of energy encoded in Eq. (18)

with Qm = −2 dV dφ(2ρsm/3ρt)
1/2 = [∂ lnm(φ)/∂φ]ρaφ̇,

where the choice of the mass function m(φ) defines the
coupling and as a consequence the interaction itself [20],
and ρa could be the total energy density or one of its
components.

After differentiation Eq. (13) and using Eqs. (9)-(11)
and (15), we obtain

ρ′′ = ρm + 4ρsm. (19)
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Then, we will construct an interacting three fluid model
with the transversal interaction (15) by solving the al-
gebraic system of equations in the (ρv, ρm, ρsm)-variables
(4), (13), and (19) to find ρv, ρm, and ρsm as functions
of ρ, ρ′ and ρ′′,

ρv =
1

2
[2ρ+ 3ρ′ + ρ′′] , (20)

ρm = − [2ρ′ + ρ′′] , (21)

ρsm =
1

2
[ρ′ + ρ′′] , (22)

Following Refs. [8] and [9], we replace (20) into (9), (21)
into (10) or (22) into (11) and get the third order differ-
ential equation, which we call “source equation”, for the
total energy density:

ρ′′′ + 3ρ′′ + 2ρ′ = 2Qv. (23)

Thus, once the transversal interaction Qt is specified, we
obtain the energy density ρ by solving the source equa-
tion (23), whereas the component energy densities ρv,
ρm, and ρsm are obtained after inserting ρ, ρ′, and ρ′′

into Eqs. (20)-(22).

A. Linear transversal interaction Qt

We will look for the set of transversal interaction which
are linearly dependent on ρv, ρm, ρsm, along with their
derivatives up to first order, and ρ, ρ′, ρ′′, ρ′′′. Hence,
after using Eqs. (20)-(22) one finds that

Qv = β1ρ+ β2ρ
′ + β3ρ

′′ + β4ρ
′′′, (24)

becomes a linear functional of the basis elements ρ, ρ′,
ρ′′, ρ′′′ (see [8], [9]), and β1, β2, β3, β4 are four constant
parameters which will be restricted to the ranges where
the characteristics roots of the source equation (23) are
positive definite. The energy density ρ is found by solving
the source equation (23) for the general linear transversal
interaction (24). It is given by

ρ = 3H2
0

(

Ax3γs + Bx3γ+ + Cx3γ
−

)

, (25)

where x = z + 1 and z is the cosmological redshift while
the characteristic roots (γs, γ−, γ+) of the source equa-
tion (23), sourced by the interaction Qv (24), are ac-
commodated according to the requirement that γs is the
minimum of {γs, γ−, γ+}. The component energy densi-
ties become

ρv → ρx =
3H2

0

2
[(γs − 2)(γs − 1)Ax3γs

+(γ+−2)(γ+−1)Bx3γ+ +(γ−−2)(γ−−1)Cx3γ
− ], (26)

ρm → ρc = 3H2
0 [γs(2− γs)Ax3γs

+γ+(2− γ+)Bx3γ+ + γ−(2− γ−)Cx3γ
− ], (27)

ρsm → ρdr =
3H2

0

2
[γs(γs − 1)Ax3γs

+γ+(γ+ − 1)Bx3γ+ + γ−(γ− − 1)Cx3γ
− ]. (28)

after insert the total energy density (25) into Eqs. (20)-
(21)-(22). We have made the substitution ρv → ρx,
ρm → ρc, and ρsm → ρdr to show that the interaction
was taken into account explicitly. More precisely, ρx, ρc,
and ρdr will represent the dark energy, dark matter and
dark radiation energy densities. So that, we will work
under the condition γs < 2/3 < γ− ≈ 1 < γ+ ≈ 4/3
to show the transition of the universe from an early era
dominated by radiation to an intermediate stage domi-
nated by dark matter (non-baryonic) to end in a dark
energy dominated era at late times. At this point it is
interesting to remark that in the exceptional case γs < 0,
the scale factor could have phantom behavior with a Big
Rip singularity in remote future because and the energy
density is increasing without limit, meaning that ρt di-
verges at the singularity. Although in our model there is
no phantom behavior because the best-fit values for γs
are always positive definite, when we take into account
the values of γs at 1σ or 2σ levels [see Table (I)] there
is some probability that the model leads to a phantom
scenario, indicating that such kind of final fate cannot be
statistically excluded at all.

On the other hand, the integration constants A, B and
C can be expressed in terms of the density parameters

A =
(1− Ωφ0)(γ+ − 1)(γ− − 1) + Ωr0(γ+ − 2)(γ− − 2)

(γs − γ+)(γs − γ−)

+
(Ωφ0 − Ωr0)γ+γ−
(γs − γ+)(γs − γ−)

(29)

B =
(1− Ωφ0)(γs − 1)(1− γ−) + Ωr0(γs − 2)(2− γ−)

(γs − γ+)(γ+ − γ−)

− (Ωφ0 − Ωr0)γsγ−
(γs − γ+)(γ+ − γ−)

(30)

C =
(1− Ωφ0)(γs − 1)(1− γ+) + Ωr0(γs − 2)(2− γ+)

(γs − γ−)(γ− − γ+)

− (Ωφ0 − Ωr0)γsγ+
(γs − γ−)(γ− − γ+)

(31)

where Ωv0 = ρv0/3H
2
0 , Ωdr0 = ρdr0/3H

2
0 , Ωc0 =

ρc0/3H
2
0 , and Ωr0 = ρr0/3H

2
0 are the density parameters

fulfilling the condition Ωφ0+Ωc0+Ωr0 = 1 for a spatially
flat FRW universe along with Ωv0 +Ωdr0 = Ωφ0.
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B. Reconstructing the scalar field

Due to the interest of reconstructing the scalar field in
the FRW cosmology we will implement a useful proce-
dure to find the potential as a function of the scalar field
φ by taking advantage of the knowledge of V (a), φ̇2(a)
and ρt(a) as explicit function of the scale factor instead

of the cosmological time through V = ρx, φ̇
2/2 = ρdr and

ρt = φ̇2/2 + V + ρm + ρr0/a
3γr , we extract this informa-

tion from Eqs. (26)-(28). Rewritten the kinetic energy

density φ̇2/2 of the scalar field as φ̇2 = 3ρtφ
′2, we easily

obtain it as a function of the scale factor

φ =

∫
√
6Ωsm

a
da, (32)

where Ωsm = φ̇2/2ρt. After integrate the last equations
we find the scalar field φ(a). Inverting it gives a(φ) and
by using Eq. (26), it follows V (φ) = ρx(a(φ)). Also, we
can reconstruct the scalar field and potential in terms of
redshift z = −1 + a−1. Thus the procedure determines
V (φ) and defines a model with an exact solution for the
spatially flat FRW cosmology. In addition, the energy
density of the scalar field ρφ = V + φ̇2/2 = ρx + ρdr as a
function of the scale factor is easily calculated from Eqs.
(26) and (28), it reads

ρφ = 3H2
0 [(γs − 1)2Ax3γs

+(γ+ − 1)2Bx3γ+ + (γ− − 1)2Cx3γ
− ], (33)

showing that ρφ is a real function in spite of the scalar
field may take imaginary values. Resuming in our model,
not only the total energy density of the scalar field
ρφ = φ̇2/2 + V = ρx + ρdr remains positive definite al-
ways, but most importantly, the radiation and dark en-
ergy components are well defined along the stage we were
considered.

As a last comment, we have made an artificial splitting
of the scalar field component into a potential V (φ) and

a kinetic energy density 1/2φ̇2 terms, which were associ-
ated with the energy densities ρv and ρsm, respectively.
Basically in this association we have changed the original
degree of freedom φ by the scale factor a as can be seen
from Eqs. (26), (28) and (33). The replacement of the
degree of freedom was essential to facilitate the recon-
struction process at the beginning of this section. This is
a natural consequence of the interaction model that we
have used, moreover, the modeling done in this section
and the forthcoming one, where we will deal with the
observational constraints, require an explicit scale fac-
tor dependence of all magnitudes and principally of the
Hubble expansion rate.

Let us apply the reconstruction procedure to analyze
the asymptotic behaviors of the scalar field and potential
in the early radiation-dominated era, where the overall
barotropic index γ ≃ γ+ ≈ 4/3, and in the dark energy

dominated era where the universe has an accelerated ex-
pansion implying γ ≃ γs. At early times, from Eqs. (26)
and (32) we have the approximated potential and scalar
field

V ≃ 3H2
0

2
(γ+ − 2)(γ+ − 1)B a−3γ+ , (34)

∆φ ≃ −
√

3γ+(γ+ − 1) ln a, (35)

the former being negative definite because the effective
barotropic index γ ≈ γ+ is close to 4/3 and the latter
becomes real while the scale factor behaves as a ≈ t2/3γ+ .
Hence reconstructing the potential and the interaction
term Qm, we obtain

V ≃ 3H2
0

2
(γ+ − 2)(γ+ − 1)B e

√
3γ+/(γ+−1)∆φ, (36)

and

Qm ≃ −3H2
0γ+(γ+−2)(γ+−1)B e

√
3γ+/(γ+−1)∆φ, (37)

after calculating the explicit transversal interaction (18)
in the early limit.

At late times, when the dark energy governs the dy-
namic of the universe, Eqs. (26) and (32) lead to

V ≃ 3H2
0

2
(γs − 2)(γs − 1)A a−3γs , (38)

∆φ ≃
√

3γs(γs − 1) ln a, (39)

hence, after reconstruct the potential, we obtain the fol-
lowing positive real expression:

V ≃ 3H2
0

2
(γs − 2)(γs − 1)A e−

√
3γs/(γs−1)∆φ, (40)

because the effective barotropic index γ ≈ γs. In this
late regimen the scale factor behaves as a ≈ t2/3γs . Using
again the explicit transversal interaction (18) in this late
approximation we get the interaction term Qm

Qm ≃ −3H2
0γs(γs − 2)(γs − 1)A e

√
3γs/(γs−1)∆φ, (41)

In the intermediate stage, where effective barotropic
index γ ≃ γ− ≈ 1 the universe transits a dark matter
dominate era and the dark matter energy density behaves
as ρc ≈ 3H2

0Ca−3 while the scalar field and potential
become negligible.

III. OBSERVATIONAL CONSTRAINTS ON A

TRANSVERSAL INTERACTING MODEL

We will provide a qualitative estimation of the cosmo-
logical parameters by constraining them with the Hubble
data [21]- [22] and the strict bounds for the behavior of
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dark energy at early times [30],[31], [32] . In the former
case, the statistical analysis is based on the χ2–function
of the Hubble data which is constructed as (e.g.[23])

χ2(θ) =

29
∑

k=1

[H(θ, zk)−Hobs(zk)]
2

σ(zk)2
, (42)

where θ stands for cosmological parameters, Hobs(zk) is
the observational H(z) data at the redshift zk, σ(zk) is
the corresponding 1σ uncertainty, and the summation
is over the 29 observational H(z) data[18]. The Hub-
ble function is not integrated over and it is directly re-
lated with the properties of the dark energy, since its
value comes from the cosmological observations. Using
the absolute ages of passively evolving galaxies observed
at different redshifts, one obtains the differential ages
dz/dt and the function H(z) can be measured through
the relation H(z) = −(1+ z)−1dz/dt [21], [22]. The data
Hobs(zi) andHobs(zk) are uncorrelated because they were
obtained from the observations of galaxies at different
redshifts.

From Eq. (25) one finds that the Hubble expansion of
the model becomes

H(θ|z) = H0

(

Ax3γs + Bx3γ+ + Cx3γ
− +Dx3γr

)
1
2

(43)

A, B, and C being obtained form (29), (30), and (31),
respectively, but D is obtained from (3). Here, we con-
sider θ = {H0, γs, γ+, γ−, γr,Ωv0,Ωdr0,Ωc0} as the inde-
pendent parameters to be constrained for the model en-
coded in the Hubble function (43) with the statistical es-
timator (42). We will take two independent parameters
and fix the other ones along the statistic analysis until
all parameters have been varied and estimated with the
χ2–function. Then, for a given pair of (θ1, θ2), we are go-
ing to perform the statistic analysis by minimizing the χ2

function to obtain the best-fit values of the random vari-
ables θcrit = {θcrit1, θcrit2} that correspond to a minimum
of Eq.(42). Then, the best–fit parameters θcrit are those
values where χ2

min(θcrit) leads to the local minimum of the
χ2(θ) distribution. If χ2

d.o.f = χ2
min(θcrit)/(N−n) ≤ 1 the

fit is good and the data are consistent with the considered
modelH(z; θ). Here, N is the number of data and n is the
number of parameters [23]. The variable χ2 is a random
variable that depends on N and its probability distribu-
tion is a χ2 distribution for N − n degrees of freedom.
Besides, 68.3% confidence contours in the 2D plane are
made of the random data sets that satisfy the inequality
∆χ2 = χ2(θ) − χ2

min(θcrit) ≤ 2.30. The latter equation
defines a bounded region by a closed area around θcrit
in the two-dimensional parameter plane, thus the 1σ er-
ror bar can be identified with the distance from the θcrit
point to the boundary of the two-dimensional parameter
plane. It can be shown that 95.4% confidence contours
with a 2σ error bar in the samples satisfy ∆χ2 ≤ 6.17.
Here N = 29 and n = 8, so in principle, we will perform
28 minimization of χ2 statistical estimator, interpreting
the goodness of fit by checking the condition χ2

d.o.f < 1;

2D Confidence level

Priors Best fits ±1σ ± 2σ χ2
d.o.f

(Ωv0,Ωdr0, γs, γ+, γ−, γr) = (0.7499, 0.00006, 0.010, 1.3000, 1.0099, 1.3400) (H0,Ωc0) = (70.00+3.76+4.82
−2.02−3.11, 0.239

+0.086+0.101
−0.019−0.042) 0.7368

(Ωc0,Ωdr0, γs, γ+, γ−, γr) = (0.1999, 0.00006, 0.010, 1.3000, 1.0099, 1.3400) (H0,Ωv0) = (70.00+4.99+6.07
−2.03−3.16, 0.7299

+0.057+0.0658
−0.0109−0.0238) 0.7368

(Ωv0,Ωc0, γs, γ+, γ−, γr) = (0.7499, 0.1999, 0.010, 1.3000, 1.0099, 1.3400) (H0,Ωdr0) = (70.00+3.54+4.60
−2.00−3.06, 0.00006

+0.00666+0.14974
−0.02882−0.03404) 0.7368

(Ωv0,Ωdr0,Ωc0, γ+, γ−, γr) = (0.7499, 0.00006, 0.1999, 1.3000, 1.0099, 1.3400) (H0, γs) = (70.00+2.57+3.54
−2.04−3.05, 0.010

+0.007+0.055
−0.090−0.112) 0.7368

(Ωv0,Ωdr0,Ωc0, γs, γ+, γr) = (0.7499, 0.00006, 0.1999, 0.010, 1.3000, 1.3400) (H0, γ−) = (70.00+2.30+3.27
−2.05−3.04, 1.009

+0.492+0.566
−0.289−0.7945) 0.7368

(H0,Ωdr0, γs, γ+, γ−, γr) = (70.00, 0.00006, 0.010, 1.3000, 1.0099, 1.3400) (Ωv0,Ωc0) = (0.729+0.167+0.218
−0.102−0.152, 0.239

+0.210+0.355
−0.281−0.364) 0.7368

(H0,Ωv0,Ωdr0, γ+, γ−, γr) = (70.00, 0.7499, 0.00006, 1.3000, 1.0099, 1.3400) (Ωc0, γs) = (0.239+0.215+0.267
−0.091−0.115, 0.010

+0.225+0.486
−0.170−0.271) 0.7368

(H0,Ωc0, γs, γ+, γ−, γr) = (70.00, 0.1999, 0.010, 1.3000, 1.0099, 1.3400) (Ωv0,Ωdr0) = (0.729+0.140+0.182
−0.076−0.120, 0.00006

+0.08098+0.20684
−0.06068−0.68741) 0.7368

(H0,Ωc0,Ωdr0, γ+, γ−, γr) = (70.00, 0.1999, 0.00006, 1.3000, 1.0099, 1.3400) (Ωv0, γs) = (0.729+0.076+0.094
−0.030−0.051, 0.010

+0.126+0.163
−0.223−0.186) 0.7368

(H0,Ωv0,Ωc0, γ+, γ−, γr) = (70.00, 0.7499, 0.1999, 1.3000, 1.0099, 1.3400) (Ωdr0, γs) = (0.00066+0.03791+0.06316
−0.08401−0.10266, 0.010

+0.271+0.335
−0.189−0.303) 0.7368

(H0,Ωc0,Ωdr0, γs, γ−, γr) = (70.00, 0.1999, 0.00006, 1.3000, 1.0099, 1.3400) (Ωv0, γ+) = (0.729+0.054+0.065
−0.08−0.014 , 1.30+0.147+2.60

−0.147−2.60) 0.7368

(H0,Ωc0,Ωdr0, γs, γ+, γr) = (70.00, 0.1999, 0.00006, 0.010, 1.3000, 1.3400) (Ωv0, γ−) = (0.729+0.061+0.070
−0.023−0.039, 1.009

+0.532+0.646
−0.532−0.646) 0.7368

TABLE I: Observational bounds for the 2D C.L. obtained in Fig.
(I) by varying two cosmological parameters. The χ2

d.o.f in all the cases
studied is less than unity.

as a way to keep the things clear and focus on extracting
relevant physical information form this statistical estima-
tion, we only show the most interesting cases.

We start our statistical estimations by performing a
global analysis on the eight parameters that characterize
the model. In doing so, we find that χ2(θ) reaches
a minimum at {H0, γs, γ+, γ−, γr,Ωv0,Ωdr0,Ωc0} =
(70.00, 0.010, 1.300, 1.009, 1.3400, 0.749, 0.00006, 0.199)
along with χ2

d.o.f = 20.172/(29 − 8) ≃ 0.9605 < 1. The
two-dimensional C.L. obtained with the standard χ2

function for two independent parameters is shown in Fig.
(I), whereas the estimation of these cosmic parameters
is briefly summarized in Table (I). We see that γs varies
from 0.010+0.007+0.055

−0.090−0.112 to 0.010+0.271+0.335
−0.189−0.303 at 1σ − 2σ

confidence levels, so these values clearly fulfill the con-
straint γs < 2/3 at 95% C.L. that ensure the existence of
accelerated phase of the universe at late times [Table (I)].
Regarding the latter results, it must be stressed that we
report for the most relevant minimization procedures the
corresponding marginal 1σ −−2σ error bars [47], as can
be seen in Table (I). We find the best fit at (H0,Ωv0) =
(70.00+4.99+6.07

−2.03−3.16km s−1 Mpc−1, 0.7299+0.057+0.0658
−0.0109−0.0238)

with χ2
d.o.f = 0.736 by using the pri-

ors (Ωc0,Ωdr0, γs, γ+, γ−, γr) = (0.1999, 6 ×
10−5, 0.010, 1.3000, 1.0099, 1.3400). These findings
show, in broad terms, that the estimated values of
H0 and Ωv0 are in agreement with the standard
ones reported by the WMAP-7 project [27]. The
value of Ωv0 is slightly greater than the standard
one of 0.7 being such discrepancy less or equal to
0.02%. Moreover, we find that using the priors
(H0,Ωdr0, γs, γ+, γ−, γr) = (70.00km s−1 Mpc−1, 6 ×
10−5, 0.010, 1.3000, 1.0099, 1.3400) the best-fit val-
ues for the present-day density parameters are
considerably improved, namely, these turn give
(Ωv0,Ωc0) = (0.729+0.167+0.218

−0.102−0.152, 0.239
+0.210+0.355
−0.281−0.364) along

with the same goodness condition (χ2
d.o.f = 0.7368)

[Table (I)]. Regarding the estimated value of Ωc0,
we find that it varies from 0.239+0.086+0.101

−0.019−0.042 to

0.239+0.215+0.267
−0.091−0.115 at 68%, 95% C.L., without show-

ing a significant difference with the standard ones [27].
In performing the statistical analysis, we find that
H0 ∈ [70.00+2.57+3.54

−2.04−3.05, 70.00
+4.99+6.07
−2.03−3.16]km s−1 Mpc−1 so
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the estimated values are met within 1σ C.L. reported by
Riess et al [24], to wit, H0 = (72.2± 3.6)km s−1 Mpc−1.
These values are consistent with the analy-
sis of ACT and WMAP-7 data that gives
H0 = 69.7 ± 2.5km s−1 Mpc−1 [25] or with the
median statistic H0 = 68 ± 2.8km s−1 Mpc−1 reported
in [26].

For the sake of completeness, we also report bounds for
other cosmological relevant parameters [see Table (II)],
such as the fraction of dark matter Ωc(z = 0), the overall
equation of state at z = 0 (ωove0 = γove0 − 1), decelerat-
ing parameter at the present time q0, and the transition
redshift (zt) among many others, all these quantities are
derived using the ten best-fit values reported in Table (I).
We find that the transition redshift is of the order unity
zt = 0.604+0.203+0.325

−0.025−0.043 at 1σ, 2σ C.L., such values are

close to zt = 0.69+0.20
−0.13 reported in [36], [37] quite recently

or with the marginalized best-fit values zt = 0.623+0.039
0.052

listed in [39], [40]. Moreover, taking into account a χ2-
statistical analysis made in the (ω0, zt)–plane based on
the supernova sample (Union 2) it has been shown that
at 2σ C.L. the transition redshift varies from 0.60 to 1.18
[38]. The behavior of decelerating parameter with red-
shift is shown in Fig. (II), in particular, its present-day
value varies as q0 = −0.579+0.350+0.470

−0.247−0.354 at 68%, 95% C.L.
for the 12-cases mentioned in Table (I), all these val-
ues are in perfectly agreement with the one reported by
WMAP-7 project [27]. The aforesaid value is similar to
q0 = −0.53+0.17

−0.13 estimated in [28] or with the marginal-

ized best-fit values q0 = −0.671+0.120
−0.283 listed in [39], [40].

The effective equation of state (EOS) for the three
components are obtained from Eqs.(9)-(11), they read

ωeffj =
(

γj −
Qj

ρj

)

− 1, (44)

where j = {x, c, dr}. Besides, the overall EOS of the mix
and the EOS of the scalar field are given by

ωove =
γvΩx + γmΩc + γsmΩdr + γrΩr

∑

i Ωi
− 1,

ωφ =
Qm + ρdr − ρx

ρφ
. (45)

In Fig. (II) we plot the overall equation of state as a
function of redshift for the best-fit value shown in Ta-
ble (I), in general, we find that −1 ≤ ωove ≤ 0, which
is tantamount to saying that ωeff(z) leads always to
0 ≤ (4/3)Ωr+Ωc+2Ωdr ≤ 1 while ωφ ≥ 0 for z ≥ 0 but it
reaches negatives values in the remote future z ∈ (0,−1],
then it does not pass the values −1 because it fulfills
the condition Qm + ρdr − ρx ≥ −1 so these EOS do
not exhibit a quintom behavior [29], as a matter of fact
their present-day values are ωove0 = −0.752+0.137+0.345

−0.201−0.287

and ωφ0 = 0.279+1.191+1.987
−1.552−2.015, respectively. On the other

hand, the effective EOS associated to the dark energy,
ωv, does not cross the phantom divide line also and its

Bounds for cosmological parameters

zt q(z = 0) ωove(z = 0) ωφ(z = 0) ωeffv(z = 0) ωeffc(z = 0) Ωrad(z = 0) Ωφ(z ≃ 1100) Ωrad(z ≃ 1100) Ωφ(z ≃ 1010) Ωrad(z ≃ 1010) Ωdr(z ≃ 1010)

0.604 −0.579 −0.752 0.271 −2.27 −3.89 0.049 0.014 0.833 0.0025 0.971 0.0054

TABLE II: Derived bounds for cosmic parameters using the best fit
values of 2D C.L. obtained in Table. (I). The above values represent
the mean value of each parameter.

present-day value varies around ωv0 = −2.27 with an er-
ror less than 0.56%. The present-day value of effective
EOS of dark matter (ωeffc0) shows a deviation form zero
[see Fig. (II)] and covers the range ωeffc0 = −3.890+2.378

−1.631

[see Table (II)]; these values deviates from the cosmo-
logical constraints on the matter equation of state ob-
tained with the five-year survey of the WMAP satellite of
ωeffc0 = −0.35+1.17

−0.98×10−2 at 95% C.L [43] or with a com-
parable constraint found with the WMAP-5 project but
combined with galaxy clustering and supernovae data in
[44], for example, it reported ωeffc0 ∈ [−1.5, 1.13]× 10−6.
However, as was pointed out in [43], a natural question is
if this value and the associated EOS can be physically ac-
ceptable. There are some models of dark matter particles
produced by a gas of interacting particle with condensate
that spontaneously breaks Lorentz invariance which have
a varying EOS that takes negative values [45].

Regarding the behavior of density parameters Ωx ≃ Ωφ,
Ωc, Ωdr and Ωr , we find that nearly close to z = 0 the
dark energy is the main agent that speeds up the uni-
verse, far away from z = 1 the universe is dominated
by the dark matter and at very early times the radi-
ation component enter in action, controlling the entire
dynamic of the universe around z ≃ 103[cf. Fig. (III)].
As was expected the fraction of dark radiation and stan-
dard radiation at the present moment are negligible.

As is well known, distance indicators can be used for
confronting distance measurements to the corresponding
model predictions. Among the most useful ones are those
objects of known intrinsic luminosity such as standard
candles, so that the corresponding comoving distance can
be determined. That way, it is possible to reconstruct the
Hubble expansion rate by searching this sort of object
at different redshifts. The most important class of such
indicators is type Ia supernovae. Then, we would like
to compare the Hubble data with the Union 2 compila-
tion of 557 SNe Ia [48] by contrasting theoretical distance
modulus with the observational data set. In order to do
that, we note that the apparent magnitude of a supernova
placed at a given redshift z is related to the expansion
history of the Universe through the distance modulus

µ ≡ m−M = 5 log
dL(z)

h
+ µ0, (46)

where m and M are the apparent and absolute magni-
tudes, respectively, µ0 = 42.38, h = H0/100km

−1s−1,
and dL(z) = H0(1+ z)r(z), r(z) being the comoving dis-
tance, given for a FRW metric by

r(z) =

∫ z

0

dz′

H(z′)
(47)
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Using the Union 2 data set, we will obtain 12 Hubble
diagrams and compare each of them with the theoret-
ical distance modulus curves that represent the best-
fit cosmological models found with the updated Hubble
data (see Fig. (IV)); it turned out that at low redshift
(z < 1.4) there is excellent agreement between the theo-
retical model and the observational data.

Now, we seek for another kind of constraint that comes
form the physics at early times because this can be con-
sidered as a complementary tool for testing our model.
As is well known the fraction of dark energy at recombi-
nation epoch should fulfill the bound Ωede(z ≃ 1100) <
0.1 in order to the dark energy model be consistent with
the big-bang nucleosynthesis (BBN) data. Some signals
could arise from the early dark energy (EDE) models un-
covering the nature of DE as well as their properties to
high redshift, giving an invaluable guide to the physics
behind the recent speed up of the universe [30]. Then, it
was examined the current and future data for constrain-
ing the amount of EDE, the cosmological data analyzed
has led to an upper bound of Ωede(z ≃ 1100) < 0.043
with 95% confidence level (CL) in case of relativistic
EDE while for a quintessence type of EDE has given
Ωede(z ≃ 1100) < 0.024 although the EDE component
is not preferred, it is also not excluded from the current
data [30]. Another forecast for the bounds of the EDE are
obtained with the Planck and CMBPol experiments[31],
thus assuming a Ωede(a ≃ 10−3) ≃ 0.03 for studying
the stability of this value, it found that 1σ error coming
from Planck experiment is σPlanck

ede ≃ 0.004 whereas the
CMBPol improved this bound by a factor 4 [31]. Taking
into account the best-fit values reported in Table (I), we
find that at early times the dark energy changes rapidly
with the redshift z over the interval [103, 1010]; indeed
Table (II) shows that around z ≃ 1100 (recombination)
Ωφ ≃ 0.014. Let us compare our estimations with the
recent bounds on early dark energy from the cosmic mi-
crowave background using data from the WMAP satel-
lite on large angular scales and South Pole Telescope on
small angular scales reported by Reichardt et al in [33].
They found a strong upper limit on the EDE density of
Ωede < 0.018 at 95% confidence, a factor of three im-
provement over WMAP data alone [33]. Interestingly
enough, our findings are in agreement with the aforesaid
upper limit indicating that the amount of early dark en-
ergy cannot be greater than 1.4% of the total energy
density in the recombination epoch. Pettorino et al.
investigated constraints on early dark energy from the
CMB anisotropy, taking into account data from WMAP9
combined with latest small-scale measurements from the
SPT. For a simple parametrization of the time evolution
of dark energy involving only two parameters, namely
the fraction of dark energy at present, and the constant
fraction of dark energy at early times, Ωede, they found a
constraint Ωede < 0.015 at 95% confidence level [32]. De-
spite our parametrization of dark energy at early times
is completely different form the one proposed in [32], our
estimations Ωφ ≃ 0.014 < 0.015 meet within their upper

bound. Because early dark energy models lead to much
larger signatures in the CMB anisotropy than traditional
dark energy models it is crucial to find further bounds to
confront our model, where dark energy coupled to dark
radiation and dark matter, with additional bounds for
dark energy in the recombination era. For instance, the
small-scale CMB temperature anisotropy power measure-
ment from the SPT bandpowers improves the constraints
on the early dark energy density over WMAP7 alone by a
factor of 3.5; the 95% upper limit on Ωede is reduced from
0.052 for WMAP7-only to 0.013 for WMAP7+SPT. This
is a 38% improvement on the upper limit of Ωede < 0.018
reported for WMAP7+K11 [33]. Adding low-redshift ge-
ometrical measurements does not help constrain early
dark energy, although, these data have a dramatic ef-
fect on the quality of the constraints on the late-time
dark energy density and equation of state. The up-
per limit is essentially unchanged at Ωede < 0.014 for
WMAP7+SPT+BAO+SNe. The Ωede < 0.013 bound
from WMAP+SPT is the best published constraint from
the CMB (see [34] and reference therein). Our findings
point out that the model constructed here not only ful-
fill the severe bound of Ωφ(z ≃ 1100) < 0.018 obtained
from the measurements of CMB anisotropy from ACT
and SPT [33], [32], [34] but also is consistent with the
future constraints achievable by Planck and CMBPol ex-
periments [31] as well, corroborating that the value of
the cosmological parameters selected before, through the
statistical analysis made with Hubble data, are consis-
tent with BBN constraints. Besides, regarding the values
reached by dark energy around z = 1010 (BBN), we find
that Ωφ = 0.0025 at 1σlevel indicating the conventional
BBN processes that occurred at temperature of 1Mev is
not spoiled because the severe bound reported for early
dark energy Ωφ(z ≃ 1010) < 0.21[41] or a strong upper
limit Ωφ(z ≃ 1010) < 0.04 [42] are fulfilled at BBN.

We now analyze the main differences between two cos-
mological scenarios where the radiation term is involved.
On the one hand, we can consider a standard model
where the radiation component is taken as a free evolving
component which is decoupled from dark sector, but on
the other hand, the radiation component could interact
with the dark sector; in particular, the latter case is an
appealing manner for extracting a physical insight about
the role played by the interaction. At present, dark en-
ergy dominates the whole dynamics of the universe and
there is an obvious decoupling with radiation practically.
However, from a theoretical point of view, it is reasonable
to expect that dark components can interact with other
fluids of the universe substantially in the very beginning
of its evolution due to process occurred in the early uni-
verse. For instance, dark energy interacting with neutri-
nos was investigated in [46]. The framework of many in-
teracting components could provide a more natural arena
for studying the stringent bounds of dark energy at re-
combination epoch. There could be a signal in favor of
having dark matter exchanging energy with dark energy
while radiation is treated as a decoupled component [16],
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[17] or the case where dark matter, dark energy, and radi-
ation exchange energy. More precisely, when the universe
is filled with interacting dark sector plus a decoupled ra-
diation term, it was found that Ωx(z ≃ 1100) = 0.01 [16]
or Ωx(z ≃ 1100) = 10−8 [17] but if radiation is coupled
to the dark sector, the amount of dark energy is drasti-
cally reduced, giving Ωx(z ≃ 1100) ≃ O(10−11) [9]. In
our model, we have found that the amount of early dark
energy leads to Ωφ(z ≃ 1100) = 0.014, so the behavior of
dark energy at recombination is considerably much more
smooth than in the aforesaid cases [16], [17], [9], [40].

So far we have shown significant observational evi-
dences supporting the model of three interacting com-
ponents plus a decoupled one. However, we will perform
a further comparative analysis for taking into account
several data sets along with theirs constraints on the
most relavant parameters [49], [50], namely, the values
or bounds reported for H0, Ωv0, Ωc0, and Ωede.

Our starting point is the present-day value of the Hub-
ble parameter H0. The Planck power spectra leads to a
low value of the Hubble constant, which is tightly con-
strained by CMB data alone within the ΛCDM model.
From the Planck+WP+highL analysis, it found that
H0 = (67.3 ± 1.2)kms−1Mpc−1 at 68% [49]. A low
value of H0 has been found in other CMB experiments,
most notably from the recent WMAP-9 analysis. Fit-
ting the base ΛCDM model for the WMAP-9 data, it is
found H0 = (70.0 ± 2.2)kms−1Mpc−1 at 68% C.L. [50].
Then, our best estimation H0 = 70.00+3.76

−2.02kms−1Mpc−1

at 68% C.L is perfectly in agreement with the value
reported by WMAP-9 project but shows a slightly dif-
ference with the Planck+WP+highL data, which is less
than 0.04%. Besides, Riess et al have used HST observa-
tions of Cepheid variables in the host galaxies of eight
SNe Ia to calibrate the supernova magnitude-redshift
relation[51]. Their best estimate of the Hubble constant,
from fitting the calibrated SNe magnitude-redshift rela-
tion, is H0 = (73.8 ± 2.4))kms−1Mpc−1, where the 1σ
error includes known sources of systematic errors. There-
fore, this measurement is discrepant with the Planck
estimate at about the 2.5σ level. On the other hand,
the Spitzer Space Telescope mid-infrared observations
helped to recalibrate secondary distance methods used
in the HST Key Project, which led to H0 = [74.3 ±
1.5(statistical) ± 2.1(systematic)]kms−1Mpc−1. The er-
ror analysis in the latter result does not include a number
of known sources of systematic error and is very likely
an underestimate [52]. In Fig. (V), we show other ob-
servational estimations of the Hubble constant that in-
cludes the megamaser-based distance to NGC4258, par-
allax measurements for 10 Milky Way Cepheids, Cepheid
observations, a revised distance to the Large Magellanic
Cloud, and three estimates of H0 based on geometrical
methods corresponding to the points called UGC 3789,
RXJ1131-1231, and SZ clusters (see [49] and references
therein).

The approximate constraints on the present-day value
of dark matter with 68% errors show that Wiggle-Z

data give Ωc0 = 0.309+0.041
−0.035, while Boss experiment

seems to increase the dark matter amount in 0.019%,
thus Ωc0 = 0.315+0.015

−0.015; whereas the joint statistical
analysis with the data 6dF+SDSS+ BOSS+ Wiggle-
Z leads to Ωc0 = 0.307+0.010

−0.011 at 68% confidence level
[49], showing that there is a discrepancy with our es-
timation of dark matter, Ωc0 = 0.239+0.086

−0.019, no bigger
than 0.24% [see Fig. (VI)]. Concerning the estimations
on the fraction of dark energy, Planck+WP data indi-
cate that the vacuum energy amount is 0.685+0.018

−0.016 at

68% C.L, Planck+WP+highL data lead to 0.6830+0.017
−0.016

at 68% C.L whereas the joint statistical analysis on
Planck+WP+highL+ BAO gives 0.692±0.010 at 1σ level
[49]. In our case, the contour plot in the plane Ω0 −H0

leads to Ωv0 = 0.7299+0.057
−0.0109, then the relative differ-

ence between Hubble data and Planck+WP+highL is
0.068%; moreover, in the case of Planck+WP+highL+
BAO data such disagreement is reduced without exceed-
ing 0.054% at 1σ level [see Fig. (VII)]. Besides, the CMB
anisotropies measurements put further constraints on the
behavior of dynamical dark energy in the recombination
epoch, in particular, the latest constraints on early dark
energy come from Planck+WP+highL data and leads
to Ωede < 0.009 at 95% C.L [49]. We have found that
Ωφ(z ≃ 103) ≃ 0.014, so the relative error between both
estimations is |ΩUs

φ −ΩPlanck
ede |/|ΩPlanck

ede | ≃ 0.5%. The lat-
ter disagreement can be reduced in a future by including
additional measurements of Hubble data points or other
data sets, allowing to improve the statistical analysis per-
formed here.

IV. SUMMARY AND CONCLUSIONS

We have examined a universe filled with interacting
dark radiation, dark matter, dark energy plus a decou-
pled radiation term for a spatially flat FRW spacetime.
Following [9], we have coupled those components with a
linear transversal interaction because it gives a unique
preferred direction in the interacting constraint plane
∑

i Qi = 0 and obtained their energy densities in terms
of the scale factor. We have asymptotically reconstructed
the behavior of the scalar field and potential energy from
the early to late eras.

On the observational side, we have examined the pre-
vious model by constraining the cosmological parame-
ters with the Hubble data and the well-known bounds
for dark energy at recombination era. In the case of
two-dimensional (2D) C.L., we have made ten statisti-
cal constraints with the Hubble function [see Fig. (I)
and Table (I)]. We have found that γs varies from
from 0.010+0.007+0.055

−0.090−0.112 to 0.010+0.271+0.335
−0.189−0.303 within the

marginalized 1σ − 2σ confidence levels, so these val-
ues clearly fulfill the constraint γs < 2/3 for getting
an accelerated phase of the universe at late times. Us-
ing (H0,Ωdr0, γs, γ+, γ−, γr) = (70.00km s−1 Mpc−1, 6 ×
10−5, 0.010, 1.3000, 1.0099, 1.3400) the best-fit values
for the present-day density parameters are given
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by (Ωv0,Ωc0) = (0.729+0.167+0.218
−0.102−0.152, 0.239

+0.210+0.355
−0.281−0.364)

along with χ2
d.o.f = 0.7368 [Table (I)]. We have

obtained that estimated value of Ωc0 varies from
0.239+0.086+0.101

−0.019−0.042 to 0.239+0.215+0.267
−0.091−0.115 at 68%, 95%

C.L., without showing a significant difference with
the standard ones [27]. Besides, it turned out that
H0 ∈ [70.00+2.57+3.54

−2.04−3.05, 70.00
+4.99+6.07
−2.03−3.16]km s−1 Mpc−1 so

the latter values are met within 1σ C.L. reported by
Riess et al [24], are consistent with the analysis of
ACT and WMAP-7 data that give H0 = 69.7 ±
2.5km s−1 Mpc−1 [25] and with the median statistic
H0 = 68± 2.8km s−1 Mpc−1 reported in [26]. Regarding
the derived cosmological parameters, for instance, the
transition redshift turned out of the order unity vary-
ing over the interval zt = 0.604+0.203+0.325

−0.025−0.043 at 1σ, 2σ

C.L., such values are in agreement with zt = 0.69+0.20
−0.13

reported in [36]-[37], meet within the 2σ C.L obtained
with the supernovae (Union 2) data in [38], and meet
with the marginalized best-fit values zt = 0.623+0.039

0.052

listed in [39], [40]. Besides, the decelerating parame-
ters q(z = 0) = −0.579+0.350+0.470

−0.247−0.354 at 68%, 95% C.L.
for the 12 cases mentioned in Table (I), all these val-
ues are in perfect agreement with the one reported by
WMAP-7 project [27]. The aforesaid value is similar to
q0 = −0.53+0.17

−0.13 estimated in [28] or with the marginal-

ized best-fit values q0 = −0.671+0.120
−0.283 listed in [39], [40].

Concerning the overall equation of state, we have found
that −1 ≤ ωove ≤ 0 with ωove0 = −0.752+0.137+0.345

−0.201−0.287

whereas and the scalar field equation of states ωφ ≥ 0
if z ≥ 0 but it reaches negatives values in the remote
future z ∈ (0,−1] and its present-day value is given by
ωφ0 = 0.279+1.191+1.987

−1.552−2.015 [see Table (II) and Fig. (II)].
On the other hand, the present-day value of effective
EOS for non-baryonic dark matter varies in the inter-
val ωeffc0 = −3.890+2.378

−1.631 [see Table (II)];such values de-
viates from the cosmological constraints obtained form
WMAP-5 project ωeffc0 = −0.35+1.17

−0.98 × 10−2 at 95% C.L

[43] or with the value ωeffc0 ∈ [−1.5, 1.13]×10−6 obtained
from the WMAP-5 project along with a combined analy-
sis with galaxy clustering and supernovae data reported
in [44]. However, some physically acceptable models of
dark matter particles produced by a gas of interacting
particle with condensate have a varying EOS that take
negative values [45] [Fig. (II)]. Besides, we have found
that the fraction of dark radiation at present moment
is Ωdr0 ≃ O(10−5) for the 12 cases mentioned in Table
(I). The dark energy amount Ωφ(z) governs the dynamic
of the universe near z = 0, whereas far away from z = 1
the universe is dominated by the fraction of non-baryonic
dark matter Ωc(z) and at very early times the fraction
of radiation Ωr(z) controls the entire dynamic of the uni-
verse around z ≃ 103[cf. Fig. (III)], giving in the re-
combination era Ωrad(z ≃ 103) ≃ 0.8330 whereas in the
nucleosynthesis epoch leads to Ωrad(z ≃ 1010) ≃ 0.971.
In order to contrast the previous analysis, performed
with the updated Hubble data, with another observa-
tional data set we use the compilation of 557 SNe Ia [48]
called Union 2 for obtaining 12 Hubble diagrams and

compare each of them with the theoretical distance mod-
ulus curves that represent the best-fit cosmological mod-
els found with the updated Hubble data (see Fig. (IV));
it turned out that at low redshift (z < 1.4) there is ex-
cellent agreement between the theoretical model and the
observational data.

We have compared the behavior of early dark en-
ergy during the recombination era or the nucleosynthe-
sis process occurring a high redshift z ∈ [103, 1010] as a
way to confirm the physical relevance of the model pro-
posed in this article. A severe upper bound for EDE
at z ∈ 103 indicated that Ωede < 0.018 at 95% confi-
dence [33]. Pettorino et al. constrained early dark en-
ergy from the CMB anisotropy, taking into account data
from WMAP9 combined with latest small-scale mea-
surements from the SPT, giving a better upper limit
Ωede < 0.015 at 95% confidence level [32]. Despite our
parametrization of dark energy at early times is com-
pletely different form the one proposed in [32], our esti-
mations lead to Ωφ ≃ 0.014 < 0.015, so is consistent with
both [33] and [32]. Besides, the small-scale CMB tem-
perature anisotropy power measurement from the SPT
bandpowers improves the constraints on the early dark
energy density over WMAP7 alone by a factor of 3.5;
the 95% upper limit on Ωede is reduced from 0.052 for
WMAP7-only to 0.013 for WMAP7+SPT. This is a 38%
improvement on the upper limit of Ωede < 0.018 re-
ported for WMAP7+K11 [33]. Adding low-redshift ge-
ometrical measurements does not help constrain early
dark energy, although these data have a dramatic ef-
fect on the quality of the constraints on the late-time
dark energy density and equation of state. The up-
per limit is essentially unchanged at Ωede < 0.014 for
WMAP7+SPT+BAO+SNe. The Ωede < 0.013 bound
from WMAP+SPT is the best published constraint from
the CMB (see [34] and reference therein). Our findings
point out that the model constructed here not only ful-
fill the severe bound of Ωφ(z ≃ 1100) < 0.018 obtained
from the measurements of CMB anisotropy from ACT
and SPT [33], [32], [34] but also is consistent with the
future constraints achievable by Planck and CMBPol ex-
periments [31] as well, corroborating that the value of
the cosmological parameters selected before, through the
statistical analysis made with Hubble data, are consis-
tent with BBN constraints. Regarding the values reached
by dark energy around z = 1010 (BBN), we see that
Ωφ = 0.0025 at 1σlevel indicating the conventional BBN
processes that occurred at temperature of 1Mev is not
spoiled because the severe bound reported for early dark
energy Ωφ(z ≃ 1010) < 0.21[41] or a strong upper limit
Ωφ(z ≃ 1010) < 0.04 [42] are fulfilled at BBN. In addi-
tion, we have performed a full comparison between the
constraints put by the Hubble data on H0, Ωv0, Ωc0,
and Ωφ(z = 1100) parameters with the recent bounds re-
ported by the Planck mission and WMAP-9 project [see
Fig. (V)-Fig. (VI)-Fig. (VII)].

Finally, notice that the neutrino sector is another fer-
tile arena that the standard model is still unable to fully
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describe, with open questions related to the effective
number of neutrinos. Indeed, the presence of an extra
dark radiation component could be an indication for an
extra (sterile) neutrino species provided the cosmological
constraints gave an effective number of neutrino greater
than the standard value (Neff > 3.046), however, this
issue requires further analysis, specially taking into ac-
count the data released by the ATC along with the SPT
[35].
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