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Interacting dark sector with variable vacuum energy
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We examine a cosmological scenario where dark matter is coupled to a variable vacuum energy
while baryons and photons are two decoupled components for a spatially flat Friedmann-Robertson-
Walker spacetime. We apply the χ2 method to the updated observational Hubble data for con-
straining the cosmological parameters and analyze the amount of dark energy in the radiation era.
We show that our model fulfills the severe bound of Ωx(z ≃ 1100) < 0.009 at the 2σ level, so it is
consistent with the recent analysis that includes cosmic microwave background anisotropy measure-
ments from the Planck survey, the Atacama Cosmology Telescope, and the South Pole Telescope
along with the future constraints achievable by the Euclid and CMBPol experiments, and fulfills
the stringent bound Ωx(z ≃ 1010) < 0.04 at the 2σ level in the big-bang nucleosynthesis epoch.
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I. INTRODUCTION

The existence of dark matter and dark energy have
been supported by many observations such as cosmic mi-
crowave background, power spectrum of clustered mat-
ter, and supernovae Ia data among other probes [1–3].
Even though a fundamental (microscopic) theory for de-
scribing the dark sector remains elusive, observations
suggest that the dark matter is connected with the for-
mation of the large-structure [1] whereas dark energy is
causing the expansion of the Universe to speed up, rather
than slow down.

To understand the hidden nature of the interacting
dark sector [13], one has to confront these models with
the observational data; the transfer of energy could al-
ter the cosmic history leading to testable imprints in
the Universe [7]. The amount of dark energy in the re-
combination epoch should fulfill the bound by Ωx(z ≃
1100) < 0.01 at least [6]. Additionally, the presence of
vacuum energy during big-bang nucleosynthesis (BBN)
is well motivated both by considerations of dark en-
ergy as well as inflation, giving as a stringent bound
Ωx(1Mev) < 0.21 so that the model does not affect the
BBN process and therefore the abundance of light ele-
ments such as 4He [4], [5]. The Planck mission indicates
that Ωx(z ≃ 1100) < 0.009 with a 95% C.L., whereas the
joint analysis based on future surveys (Euclid+CMBPol)
will be able to constrain Ωx(z ≃ 1100) down to 0.00092;
the joint analysis of the Euclid+Planck data will be less
restrictive because it will lead to Ωx(z ≃ 1100) < 0.0022
[10].

Our goal is to investigate a universe with an inter-
acting dark sector and two decoupled components. We
constrain the cosmic set of parameters by using the up-
dated Hubble data and the severe bounds reported by
the Planck mission on early dark energy among other
observational data.

II. THE MODEL

We consider a spatially flat homogeneous and
isotropic universe described by Friedmann-Robertson-
Walker (FRW) spacetime with a line element given by
ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2), with a(t) being
the scale factor. The universe is filled with interacting
dark matter and variable vacuum energy (VVE) plus de-
coupled baryonic matter and radiation components. The
evolution of the FRW universe is governed by the Fried-
mann and conservation equations,

3H2 = ρt = ρr + ρb + ρm + ρx, (1)

ρ̇r + 3Hγrρr = 0, ρ̇b + 3Hγbρb = 0, (2)

ρ̇m + ρ̇x + 3H(γmρm + γxρx) = 0, (3)

where H = ȧ/a is the Hubble expansion rate, and the
equations of state for each species take a barotropic form
pi = (γi − 1)ρi. Then the constants γi indicate the
barotropic index of each component being i = {r, b,m, x},
so that γr = 4/3, γb = 1, and γx = 0, whereas γm will
be estimated later on. So, ρx plays the role of a VVE,
ρb represents a pressureless baryonic matter, ρr is a ra-
diation component and ρm can be associated with dark
matter.
Solving the linear algebraic system of Eq. (3) along

with ρ = ρm + ρx, we acquire both dark component den-
sities as functions of ρ and ρ′

ρm = −γxρ+ ρ′

γm − γx
, ρx =

γmρ+ ρ′

γm − γx
, (4)

where we introduced the variable η = ln(a/a0)
3, ′ ≡

d/dη. The baryons and photons are decoupled from
the dark sector, so Eq. (2) leads to ρr = ρr0a

−3γr and
ρb = ρb0a

−3γb , respectively. In order to continue the
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analysis of the interacting dark sector, we take into ac-
count the exchange of energy in the dark sector through
the term 3HQ into Eq. (3), which we will tackle next.
It is convenient to use dη = 3Hdt to obtain the balance
equations in a simpler form:

ρ′m + γmρm = −Q, ρ′x + γxρx = Q. (5)

From Eqs. (4) and (5), we obtain the source equation
[13] for the energy density ρ of the dark sector

ρ′′ + (γm + γx)ρ
′ + γmγxρ = Q(γm − γx). (6)

Here, the nonlinear interaction Q between both dark
components is Q = αρ′ρ, with α being the coupling con-
stant. This interaction was not examined in the litera-
ture before and gives rise to a scenario where VVE can
be viewed as a variable cosmological constant [14].
By replacing the specific form of Q into the source

equation (6), it turns into a nonlinear second-order dif-
ferential equation for the total energy density ρ. Inserting
γx = 0 into the latter equation, one gets its first integral

ρ′ = γm

[α

2
ρ2 − ρ+D

]

, (7)

whereD is an integration constant. Plugging Eq. (7) into
Eq. (4), we obtain that ρx = [αρ2/2 + D] = Λ, so dark
energy can be considered as a VVE provided at late times
ρt ≃ ρ = 3H2 and then Λ ≃ (αH4/2 +D) [14]. In order
to get ρ(a), we need to express the first-order nonlinear
differential equation (7) as an integration by quadrature.
Solving Eq. (7) under the condition 1 > 2αD allows us
to obtain the total energy density of the dark sector

ρ =
K(1 +R)a−3γmR +R− 1

α [Ka−3γmR − 1]
, (8)

where R =
√
1− 2αD, K is an integration constant. Us-

ing the present-density parameters Ωi0 = ρi0/3H
2
0 and

the flatness condition, 1 = Ωr0 + Ωb0 + Ωx0 + Ωm0, we
write the integration constants K and D in terms of den-
sity parameters:

K =
3αH0

2(Ωx0 +Ωm0)− (1−R)

3αH0
2(Ωx0 +Ωm0)− (1 +R)

,

D = 3H0
2Ωx0 −

α

2
[3H0

2(Ωx0 +Ωm0)]
2. (9)

The total energy density is given by

ρt = 3H0
2(1 − Ωb0 − Ωx0 − Ωm0)a

−3γr + 3H0
2Ωb0a

−3

+
K(1 +R)a−3γmR +R− 1

α [Ka−3γmR − 1]
. (10)

The Universe is dominated by radiation at early times.
After this epoch pressureless baryonic matter dominates
followed by an era dominated by dark matter when

γmR ≃ 1, ending with a de Sitter phase at late times
[cf. Eq. (10)]. To see that dark matter dominates
the evolution of the Universe during a short period
of time, we use energy density of the dark sector (8)
and we find ρ = (1/α) − (R/α)[1 + x/(1 − x)], where
x = Ka−3γmR. When x is considerably small, Eq. (8)
leads to ρ ≃ (1 − R)/α − (2R/α)x along with ρm =
−ρ′/γm ≃ (2R/αγm)x

′. Using x′ = −KγmRa−3γmR, we
obtain that ρm ≃ −(2R2K/αγm)a

−3γmR > 0 provided
K < 0; such fact can be verified by using the best-fit
values of the cosmological parameters found in the next
section.

III. OBSERVATIONAL HUBBLE DATA

CONSTRAINTS

We focus on the cosmological constraints on the pa-
rameter space of the interacting dark sector plus the de-
coupled radiation and baryonic components. The statis-
tical analysis is based on the χ2 function of the Hubble
data which is constructed as (see, e.g., Ref. [23])

χ2(θ) =

29
∑

k=1

[H(θ, zk)−Hobs(zk)]
2

σ(zk)2
, (11)

where the θ denotes a set of parameters, Hobs(zk) is the
updated observational H(z) data at the redshift zk, and
σ(zk) is the corresponding 1σ uncertainty [15]. We will
use data listed in Ref. [15] and the Hubble parameter at
z = 0 [22], commenting how the observational data were
obtained [15]. The first compilation of nine measure-
ments of the Hubble parameter as a function of the red-
shift in the range 0.1 < z < 1.75 was used for constrain-
ing a dark energy model in Ref. [16]. Stern et al. added
two more observations in the redshift range 0.2 < z < 1.0
[17], and another eight new high-accuracy estimates of
H(z) led to a sample of 19 observational H(z) measure-
ments, spanning almost 10 Gyr of cosmic time [18]. Fur-
ther, Blake et al. obtained three data points by combin-
ing a baryon acoustic peak and an Alcock-Paczynski dis-
tortion from galaxy clustering in the WiggleZ Dark En-
ergy Survey [19], whereas from the Sloan Digital Sky Sur-
vey Data Release 7 within a redshift window 0 < z < 0.4,
Zhang et al. obtained four new observational H(z) data
points [20]. Another two data points were added by con-
sidering the baryonic acoustic oscillations scale as a stan-
dard ruler in the radial direction [21]. Using Eqs. (9)
and (10), one gets the Hubble parameter in terms of
the redshift, z = a−1 − 1, and the relevant cosmologi-
cal parameters θ = (H0,Ωb0,Ωx0,Ωm0, α, γm) as follows,
H(z, θ) = [ρt/3]

1/2.
The two-dimensional C.L. obtained with a stan-

dard χ2 function for two parameters is shown in
Fig. (1), and the estimation of these parameters is
briefly summarized in Table (I); reporting their cor-
responding marginal 1σ error bars [24]. We find the
best fit at (Ωb0,Ωx0) = (0.059+0.113

−0.107, 0.74
+0.07
−0.07) with
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FIG. 1: Two-dimensional C.L. associated with 1σ, 2σ for different θ
planes.

2D Confidence level

N Priors Bestfits χ2
d.o.f

I (Ωb0,Ωm0, α, γm) = (0.051, 0.219, 10−6, 1.010) (H0,Ωx0) = (70.40+2.31

−2.24 , 0.73 ± 0.01) 0.725

II (Ωb0,Ωx0, α, γm) = (0.049, 0.74, 10−7, 1.014) (H0,Ωm0) = (70.79+2.11
−2.19 , 0.202

+0.015
−0.016) 0.703

III (Ωx0,Ωm0, α, γm) = (0.74, 0.21, 10−7, 1.014) (H0,Ωb0) = (70.79+2.18
−2.17 , 0.041

+0.015
−0.016) 0.703

IV (Ωb0,Ωx0,Ωm0, γm) = (0.049, 0.73, 0.220, 1.010) (H0, α) = (70.30+2.05

−2.04 , [7.5
+7.21

−7.61 ]× 10−7) 0.724

V (H0,Ωm0, α, γm) = (69.04, 0.20, 10−7, 1.036) (Ωb0,Ωx0) = (0.059+0.113
−0.107 , 0.74

+0.07
−0.07) 0.753

VI (H0,Ωb0,Ωm0, α) = (68.5, 0.043, 0.205, 10−8) (Ωx0, γm0) = (0.77+0.07
−0.06, 1.047

+0.192
−0.452) 0.794

TABLE I: We show the observational bounds for the 2D C.L.
obtained in Fig. (1) by varying two cosmological parameters.

Mission Bound on Ωx[z ≃ 103)]

Us ≤ 0.000001

Euclid < 0.024

CMBPol < 0.0025

SPT < 0.02

WMAP7 < 0.018

WMAP7+ACT < 0.025

WMAP7+SPT < 0.013

WMAP7+SPT+BAO+SNe < 0.014

Planck+WP < 0.010

Planck+WP+high L < 0.009

Planck+Euclid < 0.0022

CMBPol+Euclid < 0.00092

TABLE II: Comparison of different estimations or simulations
on the fraction of dark energy at early times.

χ2
d.o.f = 0.753 by using the priors (H0,Ωm0, α, γm) =

(69.04km s−1 Mpc−1, 0.20, 10−7, 1.036); the values of
Ωb0 and Ωx0 agree with the data released by
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the Planck mission [2] and WMAP9 project [3]
[see Fig. (2)]. Indeed, Planck+WP data in-
dicate that Ωx0 = 0.685+0.018

−0.016 at a 68% C.L.;

Planck+WP+high L data lead to Ωx0 = 0.6830+0.017
−0.016

at 68% C.L. [2] [see Fig. (2)]. We get the best fit
at (H0,Ωm0) = (70.79+2.11

−2.19km s−1Mpc−1, 0.202+0.015
−0.016)

along with χ2
d.o.f = 0.703 < 1. The wiggleZ data give

Ωm0 = 0.309+0.041
−0.035 while the joint data 6dF+SDSS+

BOSS+ WiggleZ lead to Ωm0 = 0.307+0.010
−0.011 at 68%

C.L [2], showing a discrepancy on Ωm0 no bigger than
0.32% [see Figs. (2) and (3)]. The analysis leads to
(Ωx0, γm) = (0.77+0.07

−0.06, 1.047
+0.192
−0.452), pointing that the

dark matter is not pressureless provided the barotropic
index is greater than the unity [cf. Table (I)]. Regarding
the Hubble parameter, we find that it varies over a wide
range, H0 ∈ [70.30+2.05

−2.04; 70.79
+2.18
−2.17]km s−1 Mpc−1. Fit-

ting the base Λcold dark matter model for the WMAP-9
data, it found H0 = (70.0 ± 2.2)kms−1Mpc−1 at 68%
C.L. [3], and agrees with our best estimations H0 =
70.30+2.05

−2.04kms−1Mpc−1 at 68% C.L. In Fig. (2), we
show bounds of H0 that include the megamaser-based
distance to NGC4258, SZ clusters, and others (see Ref.
[2]). Figure (3) shows the decelerating parameter, den-
sity parameters, and equations of state with the red-
shift. Present-day value of q(z = 0) ∈ [−0.62;−0.59]
as stated in the WMAP9 report [3]. The total equa-
tion of state, wefft = −1 +

∑

j γjΩj, does not cross the
phantom line neither the effective dark energy equation
of state, and the same happens for dark energy effective
equation of state, weffx = −[αρρ′ + ρx]/ρx. Their values
at z = 0 vary over the intervals, wefft0 ∈ [−0.74, 0.72] and
weffx0 ∈ [−0.99,−0.97], respectively.
An interacting dark matter–VVE model has to be

constrained with the physics behind recombination or
big-bang nucleosynthesis epochs [7]. As is well known,
the fraction of dark energy in the recombination epoch
should fulfill the severe bound Ωede := Ωx(z ≃ 1100) <
0.01 [6]. The CMB measurements will put further con-
straints on early dark energy; the latest constraints on
early dark energy come from the Planck+WP+high L
data: Ωede < 0.009 at 95% C.L [2]. We found that
Ωx(z ≃ 103) ∈ [10−6, 10−5], so our estimations satisfied
the bound reported by the Planck mission [see Table (II)].
Further, the small-scale CMB temperature measurement
from the SPT improves over WMAP7 alone by a fac-
tor of 3.5 [8], while WMAP7+SPT+BAO+SNe leads to
Ωede < 0.014, and WMAP+SPT gives Ωede < 0.013[9].
Our value on Ωx(z ≃ 1100) ≤ 10−6 at the 1σ level is
below the bounds achieved with the forecasting method
applied to the Euclid project [10]; this survey will be

able to constrain as Ωede < 0.024 . We fulfill the
bound reported from the joint analysis based on Eu-
clid+CMBPol data, Ωede < 0.00092 [see Table (II)]. Our
estimation on Ωx(z ≃ 1100) is much smaller than the
bounds obtained by means of the standard Fisher ma-
trix approach applied to the Euclid and CMBPol exper-
iments [10], [12]. Around z = 1010 (BBN), we obtain
that Ωx ∈ [10−34; 10−33] at the 1σlevel, so the conven-
tional BBN processes that occurred at a temperature of
1Mev are not spoiled [11].

IV. SUMMARY

We have studied an interacting dark matter and VVE
scenario along with decoupled baryons and photons com-
ponents for a flat FRW universe; the new nonlinear inter-
action allowed for the dark mix to interpolate between a
warm dark matter regime at early times, after the initial
radiation regime, and end with a de Sitter phase.

The statistical analysis performed with the updated
Hubble data [see Figs. (1)-(2) and Table (I)] allowed
us to constrain the behavior of dark energy in the re-
combination era and compare it with the latest bounds
coming from the Planck+WP+high L data, SPT, and
ACT, among other experiments. We have found that
Ωx(z ≃ 103) ∈ [10−6, 10−5], so our estimations satis-
fied the stringent bound reported by the Planck mis-
sion, Ωede < 0.009 at 95% C.L. [2] [see Table (II)] and
agrees with the small-scale CMB temperature measure-
ment from the SPT [8] or with the upper limit set by
WMAP7+SPT+BAO+SNe data [9]. Further, the value
Ωx(z ≃ 103) ≃ 10−6 obtained here will be consistent
with the future constraints achievable by the Euclid and
CMBPol experiments, [10], [12]. We also showed that
dark energy around z = 1010 (BBN) fulfills the strong
upper limit Ωx(z ≃ 1010) < 0.04 at the 1σ level [11],
so the standard BBN processes and the well-measured
abundance of light elements are not disturbed.
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