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We study circular shells in a (2þ 1)-dimensional background within the framework of Einstein-Born-

Infeld theory. For shells around black holes we analyze the mechanical stability under perturbations

preserving the symmetry. Shells around vacuum are also discussed. We find a large range in the values of

the parameters compatible with stable configurations.
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I. INTRODUCTION

The Born-Infeld electromagnetic theory [1] was
introduced in order to avoid the infinite self energy of a
charged point particle, which constitutes a well-known
problem within Maxwell electrodynamics, and it is the
only nonlinear theory without birefringence. Maxwell
and Born-Infeld theories have electric-magnetic duality
invariance [2], a property not shared with other electro-
magnetic theories. Recently, the Born-Infeld electrody-
namics has received considerable attention as it can be
obtained as a low energy limit of string theory, which at
present constitutes the main candidate for a unified theory.
The spherically symmetric solution of Einstein gravity
coupled to Born-Infeld electrodynamics corresponds to a
charged black hole [3]. The solution in 2þ 1 dimensions
[4] also represents a black hole which is singular at the
origin, where the Ricci scalar and the Ricci square diverge.
However, the metric is regular everywhere, and is given by

ds2 ¼ �fðrÞdt2 þ f�1ðrÞdr2 þ r2d’2; (1)

where the function fðrÞ has the form

fðrÞ ¼ �Mþ r2

l2
þ 2r

b2

�
r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2Q2

q �

� 2Q2 ln

0
@rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2Q2

p
r1

1
A: (2)

The dimensionless constants M and Q are identified as
the Arnowitt-Deser-Misner mass and the charge,�l�2¼�
is the cosmological constant with dimensions ½length��2,
and b is the Born-Infeld parameter; b has dimensions
of length, and therefore those of the inverse of the field
strength. The limit b ! 0 corresponds to Maxwell linear
electrodynamics; in this limit the well-known static
Bañados-Teitelboim-Zanelli (BTZ) solution with charge

[5] is recovered, and we simply have fðrÞ¼�Mþ r2=l2�
2Q2 lnðr=r0Þ. The spacetime geometry of the BTZ black
hole has constant negative curvature and it is, locally, that
of anti–de Sitter (AdS) space; it only differs from anti–de
Sitter in its global properties. This feature makes the BTZ
solution of great interest within the framework of the
AdS/CFT correspondence. In the geometry defined by
Eqs. (1) and (2), the radii r0 and r1 are related by 2

ffiffiffi
e

p
r1 ¼

r0, and are associated to the zero of the electrostatic
potential A0 in each theory. We will assume that the cos-
mological constant� is negative (i.e., l2 > 0), so that in the
case of a vanishing charge the geometry is asymptotically
anti–de Sitter. For suitable values of the other parameters,
this choice makes possible a standard horizon structure [4],
in which the metric function is always positive beyond a
certain radius (different for each theory).
Thin layers of matter naturally appear in the context of

general relativity and cosmology. For instance, they can be
used to model the gravitational collapse to a black hole, and
also for the study of the evolution of bubbles and domain
walls in a cosmological setting. Spherically symmetric
shells around vacuum (bubbles), around black holes and
stars, and also being the throat of traversable wormholes,
have been extensively studied [6–8]; these shells have also
been considered in more than four dimensions [9,10]. The
dynamics of collapsing shells in three spacetime dimen-
sions has been presented and applied to several examples in
Ref. [11]. Besides, shells in a three-dimensional back-
ground within Einstein-Maxwell theory have been associ-
ated to thin-shell wormholes [12]. On the other hand, we
have recently analyzed the problem in the four-dimensional
case for Einstein gravity coupled to Born-Infeld electro-
dynamics in relation with thin-shell wormholes [13] and
shells around vacuum or around black holes [14].
The current interest in (2þ 1)-dimensional Einstein-

Maxwell and Einstein-Born-Infeld black holes, leads to
address the related problem of the behavior of thin layers
associated with them. In the present article, we study the
characterization and the linearized stability under pertur-
bations preserving the symmetry of circular charged shells

*eiroa@iafe.uba.ar
†csimeone@df.uba.ar

PHYSICAL REVIEW D 87, 064041 (2013)

1550-7998=2013=87(6)=064041(7) 064041-1 � 2013 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CONICET Digital

https://core.ac.uk/display/52476247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevD.87.064041


around black holes; as a particular case, we also analyze
shells around vacuum. We mathematically build the shells
starting from two black hole geometries with a negative
cosmological constant, given by Eqs. (1) and (2). We apply
the well-known cut and paste procedure; we work under
the condition that the resulting shell is constituted by
normal matter, that is, by matter satisfying the energy
conditions. We set the units so that G ¼ c ¼ 1.

II. MATHEMATICAL CONSTRUCTION

To define a shell (more precisely a ring) of radius a we
take two geometries of the form (1) with different metric
functions f1, f2 and different coordinates r1, r2, t1 and t2,
and we remove the outer region r1 > a of one of them and
the inner region r2 < a of the other one. Then, we join the
resulting manifolds at r1 ¼ r2 ¼ a to form a new one. For
a shell surrounding a black hole, the radius a is chosen
beyond the largest horizon radius of the inner geometry
and also a should be large enough to remove the horizons
(if any) of the outer geometry. In the case of a shell around
vacuum, the first restriction is no longer needed. The
new complete spacetime in general includes a (1þ 1)-
dimensional matter shell at r1;2 ¼ a; this implies that the

metric of the complete geometry, though continuous every-
where, must have discontinuous derivatives. More pre-
cisely, at the shell radius r1 ¼ r2 ¼ a the line element
satisfies f1ðaÞdt12 ¼ f2ðaÞdt22, while the derivatives of
the metric at both sides of the (1þ 1)-dimensional surface
r1;2 ¼ a are related with the surface energy-momentum

tensor Sji by the Lanczos equations [15,16]

8�Sji ¼ �½Kj
i � þ �j

i ½K�; (3)

where Kj
i is the extrinsic curvature tensor, K stands for its

trace, and the brackets denote the jump of a given quantity
across the circumference r1;2 ¼ a. We let the radius a to be

a function of the proper time � on the ring. Then the
components of the extrinsic curvature tensor are given by

K�
�
1;2 ¼ � €aþ f01;2ðaÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f1;2ðaÞ þ _a2
q ; (4)

K’
’
1;2 ¼ 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1;2ðaÞ þ _a2

q
; (5)

where a prime denotes a derivative with respect to r and a
dot stands for d=d�. The surface energy density � ¼ �S��
and the pressure p ¼ S’’ are given by

� ¼ � 1

8�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2ðaÞ þ _a2

q
þ 1

8�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðaÞ þ _a2

q
; (6)

p ¼ €aþ f2
0ðaÞ=2

8�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2ðaÞ þ _a2

p � €aþ f1
0ðaÞ=2

8�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðaÞ þ _a2

p : (7)

The energy and pressure for a static (a ¼ a0) ring read

�0 ¼ � 1

8�a0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2ða0Þ

q
þ 1

8�a0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ða0Þ

q
; (8)

p0 ¼ f2
0ða0Þ

16�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2ða0Þ

p � f1
0ða0Þ

16�
ffiffiffiffiffiffiffiffiffiffiffi
f1ðaÞ

q : (9)

A static shell of normal (i.e., nonexotic) matter satisfies the
weak energy condition, i.e., �0 � 0 and �0 þ p0 � 0; this
implies f1ða0Þ � f2ða0Þ. With some changes, the cut and
paste procedure can be used to construct a wormhole
geometry; in this case, both terms in the expressions for
� and p will have the same sign. Then, the weak energy
condition cannot be fulfilled because the joining of
two exterior regions (r1;2 > a0) with metrics given

by f1ðr1Þ and f2ðr2Þ would give �0 ¼ �ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ða0Þ

p þffiffiffiffiffiffiffiffiffiffiffiffiffi
f2ða0Þ

p Þ=ð8�a0Þ< 0. In our study of bubbles or shells
around black holes, we will work under the assumption
of normal matter.

III. STABILITYANALYSIS

From the Lanczos equations, we can obtain an equation
for the evolution of the shell radius in the form analogous
to the energy conservation for a point particle restricted to
a motion in only one spatial dimension. Squaring twice the
expression for the energy density and after some algebra
we obtain

_a2 þ VðaÞ ¼ 0; (10)

where the potential VðaÞ has the form
VðaÞ ¼ f1ðaÞ þ f2ðaÞ

2
�

�
f1ðaÞ � f2ðaÞ
16�a�ðaÞ

�
2 � ½4�a�ðaÞ�2:

(11)

The energy and pressure satisfy the conservation equation

d

d�
ða�Þ þ p

da

d�
¼ 0; (12)

which leads to

�0 ¼ � 1

a
ð�þ pÞ: (13)

If an equation of state p ¼ pð�Þ is given, this can be
integrated to obtain the energy density as a function of
the ring radius by inverting the resulting relation

ln a ¼ �
Z d�

�þ pð�Þ þ C: (14)

Then �ðaÞ can be substituted in VðaÞ and this would allow,
in principle, to obtain the time evolution of the ring radius.
We are interested in a perturbative treatment of the

dynamics, more precisely, the stability of static solutions.
Because of the analogy with the problem of a point
particle in a one-dimensional potential, the analysis is
straightforwardly carried out in terms of the sign of the
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second derivative of the potential VðaÞ at an equilibrium
configuration given by a ¼ a0. We introduce the
definitions

SðaÞ ¼ f1ðaÞ þ f2ðaÞ
2

; (15)

RðaÞ ¼ f1ðaÞ � f2ðaÞ
2

; (16)

mðaÞ ¼ 2�a�: (17)

This allows us to write the potential as

VðaÞ ¼ S� R2

16m2
� 4m2: (18)

A static configuration a ¼ a0 implies Vða0Þ ¼ 0, equilib-
rium requires V 0ða0Þ ¼ 0, and the condition for stability is
that V 00ða0Þ> 0. The first and second derivatives of the
potential read

V 0ða0Þ ¼ S0 � R0R
8

�
1

m

�
2 � R2

8m

�
1

m

�0 � 8mm0; (19)

V00ða0Þ ¼ S00 � 8m02 � 8mm00 � R2

8

��
1

m

�02 þ 1

m

�
1

m

�00�

� 1

4
R0R

1

m

�
1

m

�0 � 1

8

�
1

m

�
2½R02 þ RR00�: (20)

In the perturbative treatment, only the first derivative of the
pressure at the equilibrium position is involved in the
dynamics. Second derivatives of m and of m�1 can be
expressed in terms of first derivatives by recalling the
conservation equation a�0 ¼ �ð�þ pÞ and introducing
the parameter

� � p0ða0Þ
�0ða0Þ ; (21)

which relates the derivatives of the pressure and energy
density at the equilibrium radius a0; in the case 0 � �< 1
this parameter can be understood as the speed of sound
along the ring. With this definition we have

m00 ¼ � 1

a0

�
m0 � m

a0

�
�; (22)

�
1

m

�00 ¼ 2m02

m2
þ 1

m2a0

�
m0 � m

a0

�
�: (23)

Then taking into account that V 0ða0Þ ¼ 0 and defining the
auxiliary functions

Xða0Þ ¼ 1

8m

�
S0 � RR0

8m2
� R2

8m

�
1

m

�0�
; (24)

Yða0Þ ¼ S00 � 1

8m2
ðR02 þ RR00Þ � RR0

2m

�
1

m

�0 � R2

8

�
1

m

�02
;

(25)

Zða0Þ ¼ 8m

a0

�
m

a0
�m0

�
�þ R2

8m

�
2m02

m3
þ 1

m2a0

�
m0 � m

a0

�
�

�
;

(26)

the stability condition for a static equilibrium configuration
takes the concise form

Zða0Þ< Yða0Þ � 8X2ða0Þ: (27)

Because we are interested in the study of bubbles and rings
around black holes (not in thin-shell wormholes), the
additional condition of normal matter must be imposed.
The natural way to understand the results is then to present
the stability regions by drawing the intersection of the
relation (27) and the inequalities �0 � 0, �0 þ p0 � 0
for different values of the parameters.
In the case of shells around black holes in Einstein-

Born-Infeld theory, we fix the scale with the choice of
the cosmological constant; the inner metric corresponds
to noncharged black holes (Q1 ¼ 0) with different masses,
thus the ring charge is simply the charge associated to the
exterior metric. We first consider the limit b ! 0, which
corresponds to Maxwell electrodynamics. The values of
the masses and charges of the exterior metrics are shown in
Figs. 1–3. For low values of the mass M2, two critical
values of the charge Q2 exist: Qi

c and Qii
c are such that

for a charge under Qi
c and for a charge beyond Qii

c there is
an event horizon in the original outer metric, while for
0<Qi

c < jQ2j<Qii
c it presents a naked singularity. For a

certain value of the mass, the critical values of the charge
fuse into one, and beyond that an event horizon always
exists in the original exterior metric for any value of the
charge. In the complete manifold, the features of the outer
original metric, i. e. its horizon structure, determine the
behavior (range, location and shape) of the stability regions
in parameter space as the charge increases. In particular,
only in the case in which the horizon of the original metric
is lost, stability could be possible for vanishing or negative
�. In all cases a vanishing charge makes stability compat-
ible only with �> 1. Figures 1–3 illustrate the behavior of
the stability regions with an increase of the charge for a
fixed value of the cosmological constant and three different
values of the mass. The main difference with the results for
the four-dimensional case [14] is that in three dimensions
the evolution of the regions is not monotonous: as the
considered charge becomes larger, so that the original outer
geometry has an event horizon, the stability regions
recover the same form of those corresponding to low
values of the charge.
In the case of Einstein gravity coupled to Born-Infeld

nonlinear electrodynamics, the departure from standard
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FIG. 3. Shell around a black hole in Einstein-Maxwell theory. The values of the parameters are �r20 ¼ �1, M1 ¼ 0:3, Q1 ¼ 0,
M2 ¼ 1:5.
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FIG. 1. Shell around a black hole in Einstein-Maxwell theory. The values of the parameters are �r20 ¼ �1, M1 ¼ 0:1, Q1 ¼ 0,
M2 ¼ 0:5; the critical values of the charge are Qi

c ¼ 0:4321 and Qii
c ¼ 1:4682.
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FIG. 2. Shell around a black hole in Einstein-Maxwell theory. The values of the parameters are �r20 ¼ �1, M1 ¼ 0:2, Q1 ¼ 0,
M2 ¼ 1; the critical value of the charge is Qc ¼ 1.
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Maxwell theory is determined by the parameter b, which
can be taken non-negative without losing generality. The
stability study is performed in terms of the dimensionless
quantity b=r0. As before, we consider charged shells
around (2þ 1)-dimensional noncharged black holes; the
results are shown in Figs. 4–6. The behavior of the original
outer metric with the charge is analogous to that of the
Maxwell case; however, for all other parameters fixed, the
difference between the values of the two critical charges is
smaller in Born-Infeld electrodynamics. More precisely:
for a given value of b=r0, the difference between Qii

c and

Qi
c decreases as the massM2 is enlarged, while for a given

value of M2 this difference becomes smaller as a larger
b=r0 is chosen. This is reflected in the evolution of the
shape and size of the stability regions as functions of the
parameters. We display only the results corresponding to
b=r0 ¼ 1. The plots show that the region such that smaller
positive and also negative values of � are compatible with
stability is reduced and finally disappears as the massM2 is
taken larger. Another point to be noted is that, for charges
near the critical ones, the stability regions for the same
values of jQ2j=Qc are in general slightly larger in the case
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FIG. 5. Shell around a black hole in Einstein-Born-Infeld theory with b=r0 ¼ 1. The values of the parameters are �r20 ¼ �1,
M1 ¼ 0:16, Q1 ¼ 0, M2 ¼ 0:8; the critical value of the charge is Qc ¼ 0:8944.
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FIG. 4. Shell around a black hole in Einstein-Born-Infeld theory with b=r0 ¼ 1. The values of the parameters are �r20 ¼ �1,
M1 ¼ 0:1, Q1 ¼ 0, M2 ¼ 0:5; the critical values of the charge are Qi

c ¼ 0:4657 and Qii
c ¼ 1:2597.
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of Born-Infeld electrodynamics, making stability compat-
ible with lower values of the parameter �.

As a particular case, we can study bubbles—rings
around vacuum—by taking the inner black hole mass M1

equal to zero. This can be done for bothMaxwell and Born-
Infeld theories. Within both theoretical frameworks the
results are very similar to those corresponding to rings
around black holes, so figures are not included. However,
the numerical analysis shows that, in general, for the same
values of the ring charge, rings around black holes admit
slightly larger stability regions, associated to smaller pos-
sible values of the parameter �, than rings around vacuum.

IV. SUMMARY

We have constructed charged rings around (2þ 1)-
dimensional noncharged black holes within the frame-
work of Einstein-Born-Infeld theory, and we have studied
their stability under linearized radial perturbations. The
Einstein-Maxwell case corresponds to the limit in which
the Born-Infeld parameter b is zero. We have found that,
for fixed�r20 and taking a given b=r0, for low values of the

massM2 of the outer metric, there are two critical values of
the charge such that the stability regions are larger for
charges between them; these critical charges are no longer
present for large values of the mass M2, and the stability
regions are smaller in this case. There are ranges of the
parameters for which the stability regions include the
physically more interesting case 0<�< 1, so � can be
understood as the velocity of sound on the shell. For fixed
M2, the critical values of charge get closer to each other as
b=r0 grows, reducing the range of charge corresponding to
larger stability regions.
We have also considered the particular case of bubbles,

that is, charged rings around vacuum. Though not dis-
played, the numerical results show that, for fixed values
of the parameters, the stability regions of rings around
vacuum are slightly smaller than those of rings around
black holes, in the sense that stiffer matter is needed.
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