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Nuclear kinetic calculations based on point kinetic model have been generally 

applied as the standard method for neutronics codes. As the central control rod              

(C-CR) withdrawal test has demonstrated in a prismatic core type high-temperature 

gas-cooled reactor (HTGR) named High Temperature Engineering Test Reactor 

(HTTR), the transient calculation of kinetic parameter, reactivity, and neutron 

fluxes, requires a new method to shorten calculation-process time. Development of 

neural network method was applied to point kinetic model as the necessity of               

real-time calculation that could work in parallel with the digital reactivity meter.              

The combination of Time Delayed Neural Network (TDNN) and Jordan Recurrent 

Neural Network (Jordan RNN) named TD-Jordan RNN was the result of the 

modeling approach. The application of TD-Jordan RNN with adequate learning, 

tested offline, determined results accurately even when signal inputs were noisy. 

Furthermore, the preprocessing for neural network input utilized noise reduction as 

one of the equations to transform two of twelve time-delayed inputs into power 

corrected inputs. 

 

© 2017 Atom Indonesia. All rights reserved 

 

 

INTRODUCTION
 

Japan Atomic Energy Agency (JAEA) has 

constructed a high-temperature gas-cooled reactor 

(HTGR) as a technology development that could 

provide electricity generation as well as heat for 

applications such as hydrogen generation and coal 

liquefaction. The HTGR has a prismatic core named 

the High Temperature Engineering Test Reactor 

(HTTR). The major specifications of the HTTR are 

shown in Table 1. Safety demonstration tests were 

conducted to demonstrate the inherent safety 

features of the HTTR [1]. The central control rod 

(C-CR) withdrawal test was one of the HTTR safety 

demonstration tests besides coolant circulator trips. 

The simulation of power transient employs software 

simulation and measurements during the withdrawal 

test. Utilized standard codes such as SRAC, MVP, 

and RELAP codes require long calculation process 
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time. Therefore, the standard codes are difficult to 

use for online determination purpose of reactor 

parameters such as neutron flux and reactivity. 

Hence, an alternative method is needed.                        

The research presented in this paper attempted to 

create such a method. It focused on modifying 

neural network (NN) to create a new method that 

approximated the point kinetic model. 

The fuel temperature coefficient, as one of the 

reactivity coefficients, will be the most important 

parameter for reactivity and neutron flux 

determination during control rod withdrawal.        

An NN modification approximating the classical 

point kinetic model of reactor physics has been done 

and tested for online reactivity determination.         

In another progress in nuclear power plant 

monitoring, the condition of the reactor can be 

effectively monitored by analyzing small fluctuatons 

in the process variables, such as reactivity 

coefficients [3,4]. However, in a power transient,      

a reactor with strong negative reactivity responds   

to the reactivity insertion by correcting the total 
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reactivity. This correction can be done in coupled 

neutronics and thermalhydraulic calculations.     

This fast coupled calculation is commonly     

applied in PWR simulators such as VERA-CS [5], 

PC-TRAN [6], and BATAN PWR Simulator [7].    

In the case of NN application, NN could help        

the core designer for peaking factor prediction [8]. 

However, progresses in advanced technologies   

such as NN technique for prediction nuclear   

physics parameter have been very rare.  

This research aimed at developing a new 

method for online reactivity and neutron flux 

determination during C-CR withdrawal as well as 

pretest analysis of reactivity insertion accident.    

The development of the new method was carried out 

by modification of NN for approximation of 

classical point kinetic model. The input layer of the 

NN is equipped with special preprocessing (SPP)   

as one of the time delayed Jordan recurrent      

neural network (TD-Jordan RNN) features, in which 

the initial power input correlates to the C-CR  

inputs. SPP containing noise reduction transformed 

two of the twelve time-delayed inputs into two 

different characterized inputs. Furthermore, the 

research investigated the extrapolation and 

interpolation capability. 

 
Table 1. Major specifications of the HTTR [2] 
 

Thermal Power 30 MW 

Reactor coolant Helium gas 

Outlet coolant temperature 850 oC / 950 oC 

Inlet coolant temperature 395 oC 

Primary coolant pressure 4 MPa 

Core material Graphite 

Core diameter 290 cm 

Average power density 2.5 W/cm3 

Fuel Low-enrichment UO2 

Fuel element type Prismatic block  

Uranium enrichment 3-10 % (av. 6 %) 

Pressure vessel Steel (21/4 Cr-Mo) 

Number of main cooling system 1 

 

 

METHODOLOGY 

The research steps consisted of experiments 

on control rod withdrawal and NN modification 

approximating classical point kinetic model to 

determine the reactivity and neutron flux.             

The global analysis error was presented to study    

the determination capability of modified NN.       

For more detail investigation, the 9-15MW   

learning data was used for extrapolation test and     

9-15-18MW learning data was used for interpolation 

and extrapolation tests. 

Experiment on control rod withdrawal 

In a reactor safety demonstration, C-CR 

withdrawal at critical condition was assumed as a 

cause of an early reactivity accident. C-CR was 

located at the center of the reactor core. A central 

pair, out of 16 pairs of control rods, was withdrawn 

and a reactivity insertion event without scram was 

measured and simulated offline.  

Figure 1 shows withdrawal test effects on 

reactivity and neutron flux with the reactivity 

transient affected by a C-CR withdrawal of 20 mm. 

The research conducted measurements during       

the C-CR withdrawal tests for withdrawals of                   

20 mm, 30 mm, and 40 mm at power levels of                  

9 MW, 15 MW, and 18 MW, respectively.                     

The online testing was conducted as well at a power 

level of   24 MW. Furthermore, the test also                

adopted two withdrawal speeds: slow mode (about 

1.45 mm/s) and fast mode (more than 3.8 mm/s). 

Table 2 presents the measurement results of                 

17 cases of C-CR withdrawal tests. The C-CR 

withdrawal test for 40 mm at fast speed was not 

performed at 15 MW because of the technical 

limitations; rather, the test used a 10 mm withdrawal 

at a similar speed. 
 

 
 

Fig. 1. Withdrawal test effects on reactivity and neutron flux 

with the reactivity transient is affected by C-CR withdrawal of 

20 mm. 

 
In the model, the acquisition time was 

assumed to be three seconds. The C-CR withdrawal 

test data at the reactor power of 9 MW was 

recorded. Furthermore, the results of the same tests 

for reactor powers of 15 MW and 18 MW were 

recorded for the acquisition time of one second. 

Consequently, three data files which had a three-

second acquisition time were generated from        

the original data file that had a one-second 

acquisition time.  

Globally, all data were stored in 43 files 

grouped in 17 measurement conditions as shown in 

Table 2. The calculated withdrawal values and 
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withdrawal speeds are presented in this table.      

The withdrawal values were measured from the 

difference of C-CR position averages. The 

experiments performed consisted of slow 

withdrawals at about 1.47 mm/s and fast 

withdrawals at about 4.44 mm/s. 

 
Table 2. The measurement results of 17 cases of C-CR 

withdrawal test. 
 

Condition 

Number 

Data 

Name 

Initial Power 

[%] 

Withdrawal 
Flux  

Increase 

[%] 
Value  

[mm] 

Speed 

[mm/s] 

1 9MW1 29.4 20.61 1.47 2.246855 

2 9MW2 29.7 39.95 1.48 4.105406 

3 9MW3 30.1 21.38 4.64 2.513532 

4 9MW4 30.2 39.37 4.45 4.656803 

5 15MW1 51.0 20.53 1.47 3.417861 

6 15MW2 51.1 30.76 1.47 4.850839 

7 15MW3 51.5 41.41 1.49 5.956258 

8 15MW4 50.1 18.55 4.45 3.257523 

9 15MW5 50.2 27.99 4.35 4.995771 

10 15MW6 51.0 28.77 4.44 4.972806 

11 15MW7 50.6 12.12 4.38 2.095365 

12 18MW1 60.2 20.30 1.45 4.004648 

13 18MW2 60.2 30.04 1.43 5.595942 

14 18MW3 59.9 40.23 1.44 6.633646 

15 18MW4 60.1 19.41 3.88 3.784463 

16 18MW5 60.1 31.39 3.92 6.312897 

17 18MW6 60.2 41.53 4.15 8.227152 

 

 

Nuclear physics approach 

In classical point kinetic calculation of short-

term reactivity, the modeling approaches the effects 

of reactor feedback for responding to external 

reactivity insertion. Reactivity is usually a function 

of time and frequently depends on neutron 

population n(t). Therefore, the equations are 

generally nonlinear. Reactivity also depends on flux 

due to several factors. In the early stages of the 

process, the power influences the temperature of the 

components of the reactor core. Doppler effect also 

causes temperature change that directly affects the 

macroscopic cross sections and strongly influences 

reactivity. There are many feedbacks in the reactor, 

but only certain feedbacks significantly affect 

reactivity. Therefore, Doppler broadening needs to 

be determined and incorporated into the solution of 

the point kinetics equations [9]. 

Several mathematical techniques have 

approximated the model of C-CR withdrawal.                 

One such technique is the reactor point kinetic, 

which describes the reactivity (t) as a sum of two 

contributions [9]: 
 

)()()( ttt fext    (1) 

 

This equation describes the modeling 

hypothesis for reactivity calculations based on the 

point kinetic model. Equation (1) shows how the 

reactivity calculation assumes significant input of 

ext(t), which represents external reactivity 

insertion by adjusting a control rod, and the 

parameter f(t), which denotes the change in 

reactivity corresponding to inherent feedback 

mechanisms. Similarly, another important 

technique, the perturbation theory, expresses the 

corresponding change in multiplication in terms of 

the fluxes characterizing the unperturbed core [9]. 

The NN application development should 

perform the input-output modeling of reactivity and 

neutron flux determination. According to the point 

kinetic model described in Eq. (1), the effective 

inputs are external reactivity insertion and inherent 

feedback. The rod position was the only external 

reactivity during the withdrawal test. Another 

effective parameter was the initial power, which was 

affected by fuel temperature in reactor core.                 

The other feedback mechanisms that were caused by 

fuel temperature increase were fuel expansion and 

deformation of Maxwellian spectrum in fuel to 

higher energy. The fuel expansion for the thermal 

reactor was small; modeling neglected the parameter 

correlated with fuel expansion. The deformation of 

the Maxwellian spectrum was determined by 

moderator temperature. In fact, during withdrawal, 

the moderator temperature, flow, etc., increased 

slowly, and were neglected for the modeling input. 

In model simplification, the feedback mechanism 

was triggered by fuel temperature, which correlated 

with the feedback mechanism. We thus considered 

only two modeling inputs: control rod position and 

initial power. 

In the organization of the model input, the 

NN employed some preprocessing. The control rod 

position (in mm) was converted into the change of 

the control rod position. The conversion result was 

dependent on time delay (TD) applied in conversion 

function formulated by the equation below: 

 
ntt

t XXx ＝  (2) 

 

where X and n denote C-CR position value (in mm) 

and time-delayed parameter, and t is time (block)  

for C-CR withdrawal test. One block time equals                           

3 seconds. The n time variation of 1 to 10 is formed 

by the TD input characteristics that is described as 

C-CR position change during power transients.                      

It is shown in Fig. 2. 
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The C-CR position change for fast and slow 
modes of withdrawal is dependent on the 
aforementioned time delay. The curve of the fast 
mode withdrawal speed had a higher gradient of 
increase of C-CR change during withdrawal than 
shown in Fig. 2. The curve peak height depended on 
the withdrawal value. Ten TD input used by 
developed NN covered the effect of withdrawal 
value until 42.9 mm if we assumed that the lowest 
withdrawal value in slow mode was 1.43 mm/s.                
The maximum withdrawal value for slow mode in 
experiment was 41.41 mm, so the use of ten TD 
inputs was adequate. However, the TD input values 
of withdrawal may be set to a wider range as well. 
 

 
 

Fig. 2. The n time variation that is formed the time delay (TD) 

input characteristics that is described as the C-CR position 

change during power transient. 

 

 

Neural network determination  

The difference of teaching divided by 

reference signal dj represents the optimum pattern to 

be performed by the NN as known supervised 

learning paradigm. The calculated output Yｋ gives 

signal error. Hence, the signal error concludes a 

square error, E, by the equation below: 
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Thus, learning carries out the update of 

synaptic weights iteratively with the aim of 

eventually making the NN emulate the measured 

outputs. The weight updates (wjk
ｔ) at iteration time 

t are calculated by the delta rule equation below: 
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where j is the input index, k is the output index, and 

 is a constant that determines the learning rate.   

The weight updates that is assisted by error function 

iterate the network until it reaches a suitable error. 

Therefore, the update of the weights makes the 

environment knowledge available to the teaching 

output that is reachable through network iteration 

number [10]. NN has teachers or reference signals 

in input-output learning due to the complexity of the 

model. After an appropriate weight is reached,      

the forward calculation is faster than an analytical 

calculation.  

We proposed and introduced an improved 

NN, a combination of Jordan RNN and TDNN, for a 

special case of reactivity and neutron flux 

determination during HTTR C-CR withdrawal.                

The modified Jordan RNN was able to provide 

Jordan-type feedback by applying TD found usually 

in TDNN architecture. The modeling exploited                

the principle of time series input combined with            

Jordan type feedback. The TD-Jordan RNN was 

constructed using the modeling approach, 

considering the input and network model.  

Figure 3 shows the architecture of the 

developed TD-Jordan RNN with SPP. The 

developed method approximates the fundamental 

physical concepts governing the behavior of the 

neutron population in the reactor related with 

reactivity calculation as shown in Eq. (1). 

Jordan RNN and TDNN were the basic 

contributors to the developed architecture scheme, 

TD-Jordan RNN. The Jordan RNN received 

feedback signals from the output layer, close to 

feedback of neutronic calculation if we refer again 

to the point kinetic model. Jordan RNN inserted 

feedback signals from output signals multiplied with 

a constant value , called the feedback rate, as in the 

formula below: 
 

)1(1   tt

i

t

i Yxx , 10    (5) 

 

where  is recurrent parameter, xi
t+1

 is the input of 

feedback signal at time (t+1), xi
t
 is the input of 

feedback signal at time (t), and Y is the network 

output. The implementation of TDNN to the new 

scheme was based on C-CR change dependent       

on some time delay variation in the TD 

transformation function; the time delay was adjusted 

by n parameter in range of 1 to 10. The important 

feature of TDNN was to make the training 

dependent on error-prone preprocessing algorithms 

for time alignment by way of dynamic input based 

on time-delayed characteristic [10]. Consequently, 

the previous input made calculations as well as the 

plant model. The parameter inputs were normalized 

in [-1,1]. Random numbers were set at 30 % of area    

[-1,1] to smooth errors adequately during early 

learning; thus, the possibility of getting an 

undesirable random number was minimal.
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        Fig. 3. The architecture of the developed TD-Jordan RNN with special preprocessing. 

.

An important issue to be addressed is how to 
develop a specialized structure by building prior 
information into the design [10]. The optimization is 
the next most important work after modeling by 
adjusting parameter with some emulation. 
Verification and validation were performed to 
ensure that modeling and optimization complied 
with accuracy requirements. Consequently, 
optimization found the most accurate processes, 
such as cross-validation during learning, pattern 
selection in the class based on nearest neighbor 
method, and wide pattern selection with new 
guidelines, for enhancing the extrapolation 
capability of NN.  
 
 
Special preprocessing (spp) 

The SPP applied in TD-Jordan RNN 
estimated input values as the effect of initial power. 
The feedback was clearly identified after 
withdrawal, when the measured neutron flux values 
increased slightly even though the C-CR       
position changed inputs back to zero. The same 
level of C-CR position change also gave       
different neutron flux peak heights depending        
on the power level. In detail, SPP used initial    
power values as multiplication factor and   
maximum function of C-CR position change. SPP 
enhanced the developed network to follow the 
power level effect to the feedback mechanism, 
which affected the reactivity and neutron             
flux determination.  

The SPP contained two advanced 

preprocessing, Xt
SPP-1

 and Xt
SPP-2

, at time delays of 

T=9 and T=10. For the first SPP (Xt
SPP-1

), the initial 

power influenced the maximum function of C-CR 

position change by using stepped equation starts 

from Xt
a
 calculation using C-CR position change 

input (xt). The calculation continued to Xt
b
 

calculation using Xt
a
 input, continued until the last 

step. xt was corrected by adding Xd, resulting in Xt
RA

 

as the desired NN input. 
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Detailed stepped equations are as follows. 
 In the noise reduction step, the input is TD C-

CR values:  
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 The multiplication of initial power  
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where P is the automatically-calculated initial 

power.  

The second preprocessing was a short 

equation as direct withdrawal multiplication by 

initial power to the C-CR position, changed as 

described by the equation (10) below: 
 

t

SPP

t X
P

X
100

2 
 (10) 

 

Equations (9) and (10) appear similar; 

however, each equation has unique characteristics. 
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The first equation results in a smooth increase, as 

the maximum function describe in eq. (8); the 

second equation amplifies the multiplication of      

C-CR position change. 

 

 

RESULTS AND DISCUSSION 
 

Learning process 

Two general technical terms are used in this 
study. The first term is pattern generalization to get 
optimal learned data, and the second term is 
generalization during learning for learning epoch 
optimization. Generalization of learned data in a 
training set is necessary due to the essence of       
NN learning problem as a curve-fitting problem. 
The guideline for enhancing the extrapolation 
capability of NN is also a pattern generalization 
method. Another pattern generalization is the 
nearest neighbor method to select a learned data    
for each type of data of 15MW1, 15MW3, 15MW5, 
15MW7, 18MW1, 18MW3, 18MW4, and 18MW6. 
The selected data are nearest to neighbored data at 
the same class of measurement condition.  

The learned data contained two pattern data 
sets. The first pattern data set included 9MW1, 
9MW2, 9MW3, 9MW4, 15MW1, 15MW3, 
15MW5, and 15MW7 data for NN learning of         
9 MW data and 15 MW data. Meanwhile, the        
18 MW data was excluded in the first pattern for 
examining the extrapolation capability of 18MW. 
Simultaneously, the first pattern was compared to 
the second in analysis results. The second pattern 
included 18MW1, 18MW3, 18MW4, and 18MW6 
data and a wider pattern selection to assure better 
extrapolation capability. The test with the first 
pattern aimed to determine the extrapolation 
capability when the network had more limited data 
for learning. Furthermore, we could consider the 
final result of 9-15-18MW learning, which had 
limited data. 

The learning optimization should consider 
that the NN encodes an input-output mapping into 
synaptic weights. Consequently, the learning      
must be extensive enough that generalization to                
the future is possible. The learning epoch of 10

5
  

was assumed for performing adequate learning. 
Figure 4 shows two curves, one pertaining to 
measurement on the learned data set of 9-15MW 
and the other pertaining to the learned data set of             
9-15-18MW. The 9-15-18MW learning gave better 
results as already expected. 

Early stopping during learning by identifying 
the onset of over fitting through the use of cross-
validation assures the best generalization over all 
learned data sets (learning sets) and tested data sets 
(validation sets). The cross-validation heuristic 
suggests that the minimum point of the tested data 

curve is to be used as a sensible criterion for 
stopping the learning session [10]. Unfortunately, 
the cross-validation was unusable, because the 
optimal epoch for other power levels (less than              
9 MW and more than 18 MW) was unknown.               
The adequate learning was performed by 
considering the gradient of learning error for               
stable condition. 
 

 
Fig. 4. Learning Error for 9-15 MW learning and for 9-15-18 

MW learning. 

 
 
Analysis result with two different learning 

The calculation process began by entering  
the C-CR level and initial power. The network 
determined the reactivity and neutron flux outputs           
in milliseconds. By using adequate epoch, the 
determination testing of 9-15MW and 9-15-18MW 
learning were done to all offline data as shown in 
Fig. 5 for global reactivity analysis error and Fig. 6 
for global neutron flux analysis error. The error               
was the difference between measurement and 
determination at peak point. The x axis indicates the 
file name, the condition of which is explained in 
Table 2. The comparison was made only for the 
peak point because the significant error was usually 
recorded in the peak point. Other points may be 
described by figure. 

In reactivity determination, both types of 
learning had almost the same accuracy 
characteristics. The significant error of 15MW4-2 
data was affected by the error of C-CR position.   
The reactivity determination test indicated that the 
network may determine the reactivity at power 
levels more than 18 MW or less than 9 MW. 
Differently, in neutron flux determination test 
results, the 9-15-18MW learning yielded slightly 
better results than 9-15MW learning. Significant 
error at 18MW6 data by 9-15MW learning was due 
to learning being too poor to generalize a nonlinear 
condition of 18MW6 data. The test identified the 
network weakness: the neutron flux determination in 
extrapolation area resulted in significant errors.  

Concerning the significant error in the 
reactivity determination of 15MW4-2, Fig. 7 shows 
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variation testing of C-CR position to understand    
the possible C-CR position error due to inconsistent 
withdrawal speed, which may have contributed      
to the determination error. When withdrawal was 
finished, the C-CR position data were changed   
twice by adding 1 mm and 2 mm to yield the 
reactivity determination result change. The first      
C-CR position change resulted in reactivity 
determination of 0.02536 %k/k (error=0.00282) 
and the second C-CR position change resulted        
in reactivity determination of 0.02709 %k/k 
(error=0.00109). The testing error decreased 
significantly if we made comparisons with                     
the determination result of 0.02368 %k/k 
(error=0.00450). All C-CR position input           
were experiment data without change. Furthermore,      
the significant error shown in Fig. 5 was   
unavoidable due to the variance of C-CR position 
signal from  the reactor instrument. 

 

 
 

Fig. 5. The global reactivity analysis error. 
 

 
 

Fig. 6. The global neutron-flux analysis error. 

 

 
 

Fig. 7. The error of C-CR position may result in significant 

error for reactivity determination. 

Extrapolation testing 

More detail testing were carried out to show 
the sensitivity of reactivity and neutron flux 
determination in point of view of extrapolation and 
interpolation capability. The results of extrapolation 
testing for reactivity determination with low 
withdrawal speed are shown in Fig. 8 and high 
withdrawal speed in Fig. 9. The low speed mode 
withdrawal was tested by using 18MW3-2 data     
and high speed mode withdrawal testing was 
described by 18MW6-3 data as an example.         
The TD-Jordan RNN with 9-15MW learning 
accurately determined the reactivity and neutron 
flux as well as 9-15-18MW learning. Nevertheless, 
the TD-Jordan RNN learned 9-15 MW data   
showed a slight error after withdrawal as shown     
in Fig. 9. The slight error was due to the Jordan 
RNN performing the linear learning of 9 MW      
and 15 MW data. Hence, the 9-15-18 MW    
learning in an interpolation testing will theoretically 
improve the NN for determining the reactivity and 
neutron flux better than the extrapolation testing. 
The improved NN will be discussed in the 
interpolation testing section. 
 

 
 

Fig. 8. Extrapolation testing for reactivity determination with 

low withdrawal speed. 

 

 
 

Fig. 9. Extrapolation testing for reactivity determination with 

high withdrawal speed. 

 
As a follow-up to reactivity determination 

testing in low and high withdrawal speeds, the 
results of neutron flux determination is shown in 
Fig. 10 in low withdrawal speed and Fig. 11 in   
high withdrawal speed. Result characteristics of 
both 9-15MW and 9-15-18MW learnings in neutron 
flux determination were almost similar. The neutron 
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flux determinations that are with neither the           
9-15MW learning nor 9-15-18MW learning resulted 
in a good accuracy. However, a slight error occurred 
in Fig. 11 as well as in Fig. 9, where both tested the 
high speed withdrawal mode, due to a similar               
linear problem. The accurate results revealed that                    
TD-Jordan was useful despite linear learning. 

 

 
 

Fig. 10. Extrapolation testing for neutron flux determination 

with high withdrawal speed. 

 

 
 

Fig. 11. Extrapolation testing for neutron flux determination 

with high withdrawal speed. 

 

 
 

Fig. 12. Reactivity determination test with low withdrawal 

speed. 

 

 
 

Fig. 13. Reactivity determination test with high withdrawal 

speed. 

 
 

Fig. 14. Neutron flux determination test with low withdrawal 

speed. 

 

 
Fig. 15. Neutron flux determination test with high withdrawal 

speed. 

 

 

Interpolation testing 

The interpolation testing for reactivity 

determination were also performed with low and 

high withdrawal speeds. The interpolation testing 

results for 15 MW reactor power are shown in     

Fig. 12 to Fig. 15. The results in these figures show 

a low error that is similar for other testing using      

9 MW or 18 MW data. The 15MW3 data in Fig. 12 

and 15MW3-3 data in Fig. 14 are examples for the 

low speed mode withdrawal. Furthermore, the 

15MW6-2 data in Fig. 13 and Fig. 15 are an 

example for high speed mode withdrawal for                   

both reactivity and neutron flux determination.                 

All examples in the interpolation testing show that 

the modified NN could give better determination 

result than extrapolation result, as assumed. 

According to the determination error in                

Fig. 7, potential errors due to the inconsistency of 

withdrawal speed in fast withdrawal could be solved 

if the rod level noise divided by withdrawal level is 

small. However, the other error trend in Fig. 9 and 

Fig. 11 did not occur in the interpolation case, as the 

testing results showed in Fig. 13 and Fig. 15.  

The testing proved that the developed NN 

was accurate for modeling and optimization. Adding 

data in learning improved the NN accuracy, 

especially in the extrapolation case for getting a 

merit of nonlinear determination. Hence, learning 

with limited data created poor knowledge and class-

imbalance; the unknown class was blindly 
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extrapolated. The optimizations that could be               

taken as learning data preparation required a 

guideline for enhancing the extrapolation capability, 

as well as a nearest neighbor method. The learning 

rate and momentum were stagnant in 0.1 and                    

0 to assure the stability of a lengthy learning 

process. A learning   of 9-15-18MW data can take 

half day to reach 100 thousand epochs with an Intel 

i3-based computer. 

 

 

Online testing 

In the TD-Jordan RNN prototype development, 

the offline and online testing were carried out for  

the power level of 24 MW. Figure 16 shows                       

the online testing utilizing TD-Jordan RNN parallels 

with other neural network methods of neuro-expert 

and TSS-MLP [11]. The 9-15-18MW learning                   

data was utilized. All testing results show good 

prediction with low errors except 24MW1-1                     

data. Figure 17 shows the extrapolation testing                          

using 24MW1-1 data, showing maximum error 

prediction. The case of the 24MW1-1 data resulted 

in larger error than any other cases of 24MW data. 

The same problem happened in offline testing                   

for the 18MW6-1 data. The similarity of both                    

data is low withdrawal speed at lowest withdrawal 

length. This problem is unavoidable due to the outer 

input-output mapping problem in modified NN.                       

The TD-Jordan that mapped the input-output for 

reactivity and neutron flux determination found                 

the maximum error at specific data in which the                   

data with higher withdrawal length has been                 

learned more. Consequently, the numerical                      

iteration will give higher error on testing for the     

data that is learned less than other data. The edge               

of the mapping fell on the data for the low 

withdrawal speed at the lowest withdrawal                    

length. However, the maximum error problem only 

happened on reactivity prediction. The extrapolation 

testing using 24MW1-1 data shows low error for 

neutron flux prediction, as shown in Fig. 18. 

 

 
 

Fig. 16. Online testing utilizing TD-Jordan RNN parallels     

with other neural network methods of neuro-expert and        

TSS-MLP [5]. 

 
 

Fig. 17. The extrapolation testing using 24MW6-1 data shows 

maximum error prediction. 
 

 
 

Fig. 18. The extrapolation testing using 24MW6-1 data shows 

good error for neutron flux prediction. 

 

 

CONCLUSION 

A modified neural network named TD-Jordan 
RNN with special preprocessing was developed    
for reactivity and neutron flux determination.      
This new method could determine the reactor 
parameter of reactivity and neutron flux promptly. 
Therefore, it could be applied in online 
determination. The TD-Jordan RNN showed good 
determination accuracy during offline C-CR 
withdrawal test with reactor power range of            
9-18 MW. For best accuracy, TD-Jordan 
optimization requires wider pattern selection of 
learning data and learning guidelines for enhancing 
the extrapolation capability, and the nearest 
neighbor method was utilized. Furthermore, the 
online testing were performed to determine the 
reactivity and neutron flux with power level of                   
24 MW in which the 9-15-18MW learning data was 
utilized. The online testing showed accurate results 
indicated by the difference of measurement and 
prediction value. However, the maximum error for 
reactivity determination occurred only for low 
withdrawal speed at the lowest withdrawal length. 
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